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1 Introduction

This document walks you step by step through the data analysis with the tiger
package. For more information on the method, please see the relevant publica-
tion by Reusser et al.| [2008]. In fact, the example presented here will reproduce
the Weisseritz case study from [Reusser et al., 2008].

2 Data

In this example, we are looking at the difference between an observed river dis-
charge time series and the model output from a hydrological model, simulating
the river discharge from meteorolgical input data. The data is provided in the
package and is shown in figure

> library(tiger)

> data(tiger.example)

> measured <- tiger.res$measured
> modelled <- tiger.res$modelled

> plot(d.dates, measured, type = "1", col = "blue")

> lines(d.dates, modelled)

> legend("topright", legend = c("measured", "modelled"), 1ty = 1,
+ col = c("blue", "black"))

3 Doing the calculations

First of all, we will generate our synthetic peak errors which will help to better
understand the error groups. The synthetic peak errors are shown in figure

> peaks2 <- synth.peak.error(rise.factor = 2, recession.const = 0.02,

+ rise.factor2 = 1.5, errl.factor = ¢(1.3, 1.5, 2), err2.factor = c(0.02,
+ 0.03, 0.06), err4.factor = c(9, 22, 40), err5.factor = c(0.2,

+ 0.3, 0.5), err6.factor = c(2, 3, 5), err9.factor = c(1.5,

+ 3, 6))
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Figure 1: Measured and modelled river discharge.
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Figure 2: Synthetic peak errors.

[1] "Check if peak volumes are correct for 'volume-optimized'\npeaks:"
[1] "Volume for reference peak: 20.3895471993771"

[1] "Volumes for error peaks:"

[1] 20.38916 20.38863 20.38802 20.38132 20.38950 20.36542

The synthetic peak error number 5 overestimates the peak, but the total
volume is kept correct. The recession constant is optimized to obtain a cor-
rect volume and the package asks you to check whether the optimization was
successful.

The command bellow plots the synthetic peak errors.

> p.synth.peak.error (peaks2)

Then, we will call the function that does all the computation. The object re-
turned (result) is equivalent to tiger.res provided in data(tiger.example).
This result object will then be further processed by plotting and summarizing
methods.

> result <- tiger(modelled = d.qgko.calib, measured = d.ammelsdorf_interp,
+ window.size = 240, synthetic.errors = peaks2)
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Figure 3: Scatter plots of the performance measures.

4 Assessing performance measures used to build
error groups

About 50 performance measures are used to split the time series into error
groups. Some of these performance measures are highly correlated and not of
much interest for further interpretation. Therefore, we will exclude those from
further plots. Note that we want to keep the CE and RMSE measures in any
case. We will also create a scatter plot of the remaining measures to get an
impression of their interdependence (Figure [3|- here, we are only showing the
scatter plots for the first five measures).

> correlated <- correlated(result, keep = c("CE", "RMSE"))

> print (scatterplot (result$measures.uniform, show.measures = correlated$measures.uniform$t
+ 2, 3, 5, 6)1))

To get an impression of how the performance measures react to the synthetic
peaks, we can create a number of plots (figure . Nine plots show the response
of some exemplary measures (y-axis) to the synthetic peak errors, each of which
is shown with a different symbol. On the x-axis, no error would be in the
centre and the severity of the error increases to each side. The variable do.out
determines whether to exclude outliers from the plot.
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Figure 4: Performance measures for synthetic peak errors.

> show.measures <- which(names (result$measures) J/,in), c("CE", "PDIFF",

+ "ME n , HMSDE n , HSMSE n , Hqur n , HSMALE n , "1agtlme n , ”NSC”) )
> peaks.measures (result, show.measures = show.measures, mfrow = c(2,
+ 5), do.out = c(rep(FALSE, 4), TRUE, TRUE, rep(FALSE, 3)))

5 How many clusters to use?

In order to determine the optimum number of error groups during the c-means
clustering, we try to minimize the validity index (figure [5)).

> validity.max <- 10

> par(mar = c(4, 4, 1, 1) + 0.1)

> xmax <- 1

> while (any(result$validity[xmax:length(result$validity)] < validity.max)) {

+ xmax <- xmax + 1

+ F

> plot(result$validity[1:xmax], ylab = expression(V[XB]), xlab = "Number of clusters",
+ type = "b", lty = 2, ylim = c(0, validity.max))

The while loop determines the maximum number to plot on the x-axis.
The 2 cluster solution combines clusters A-C and D-F from the 6 cluster
solution, while the 5 cluster solutions combines clusters B and D from the 6
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Figure 5: Validity index for the identification of the optimal cluster number for

c-means clustering.
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Figure 6: Simulated and observed discharge series. The colour bars indicate the
error class during this time period. Plots are show for 2, 5, and 6 classes.

cluster solution (figure @ Therefore the 6 cluster solution also represents the
using the 6 group (cluster)

2 and 3 cluster solutions. In this example, we are

solution.

> par(mfrow = c(3, 1), mar = c(2, 4, 1, 2) + 0.1)

> errors.in.time(d.dates, result, solution = 2, show.months = TRUE)
> errors.in.time(d.dates, result, solution = 5, show.months = TRUE,
+ new.order = c(3, 4, 5, 2, 1))

> errors.in.time(d.dates, result, solution = 6, show.months = TRUE,
+ new.order = c(4, 6, 5, 2, 1, 3))

> solutions <- 6

6 Time pattern of error groups

The temporal occurence of the error groups is shown in figure[7} The new.order
parameter helps to reassign the color pattern, such that it is equivalent to the
figures in |[Reusser et al., [2008].

> new.order <- c(4, 6, 5, 2,
> par(mar = c(2, 4,

1, 3)
1, 2) +0.1)
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Figure 7: Simulated and observed discharge series. The colour bars indicate the
error class during this time period.

> errors.in.time(d.dates, result, solution = solutions, show.months = TRUE,
+ new.order = new.order)

7 Characterizing the error groups

In order to characterize the error groups, we can check which of the synthetic
peaks belong to which error groups. Note that the output is formated as
ETEXtables with & as the delimiter between columns and

as end of line delimiter.
> peaks.in.clusters(result, solution = solutions, new.order = new.order)

level & 1&2&3&4&5&6 \\

\hline

peak size (1) & C&AXA&A&A&KA \\
shift (2) & F&ALAZALAZD \\
recession (3) & F&AXAZALA&A \\
lag (4) & B&A&AZA&KA&A \\
size./integr (5) & AZAZA&KA&ZAZA \\
width (6) & F&A&A&A&A&A \\



false peak (7) & F&F&F&A&D&D \\
undeteced peak (8) & C&A&A&A&AYB \\
shift w/o peak (9) & F&AZAZA&AZA \\

Cluster & Error & Level\\
A & peak size (1) &2 3 4 5 6 \\

shift (2) & 2 3 4 5 \\

recession (3) &2 3 4 5 6 \\

lag (4) &2 3 4 5 6 \\
size./integr (6) &1 2 3 4 5 6 \\

width (6) &2 3 4 5 6 \\
false peak (7) & 4 \\

undeteced peak (8) & 2 3 4 5 \\
shift w/o peak (9) &2 3 4 5 6
B & lag (4) & 1 \\

& undeteced peak (8) & 6 \\

C & peak size (1) & 1 \\

& undeteced peak (8) & 1 \\

D & shift (2) & 6 \\

& false peak (7) & 5 6 \\

F & shift (2) & 1 \\

& recession (3) & 1 \\

& width (6) & 1 \\

& false peak (7) &1 2 3 \\

& shift w/o peak (9) & 1 \\

Frrrereeeee

\\

But also, we can check what the values of the performance measures in
each cluster are. This is done with box plots as shown in figure S} The plotting
command also produces a summary table of the findings as described by |Reusser
et al.| |2008].

> par(mfrow = c(4, 6), mar = c(2, 2, 3, 1) + 0.1)
> summary.table <- box.plots(result, solution = solutions, show.measures = correlated$meas
+ new.order = new.order)

> print (summary.table)

(1] "A & {\bf best:
[2] "B & {\bf best:
[3] "C & {\bf best:
[4] "D & {\bf best:
[6] "E & {\bf best:
[6] "F & {\bf best:

PDIFF, ME, RMSE, PEP, MARE, CE, IoAd, PI, t_test, r[d], DE, r[k], RSM
CE, PI, t_test, t[L]; {\bf worst:} NSC, Rsqr, MSDE, DE, MAQOE, LCS, RS
Rsqr, CE, IoAd, r[d], DE, MAOE, LCS; {\bf worst:} RMSE, MSDE; {\bf lo
PDIFF, RMSE, PEP, PI, DE; {\bf worst:} Rsqr, t[L], r[d], MAOE, LCS; {
RMSE, MSDE, t[L], DE, RSMSGE; {\bf worst:} MARE, Rsqr, CE, IoAd, PI,

Rsqr, t[L], r[d], DE, LCS, RSMSGE; {\bf worst:} RMSE, CE, PI; {\bf lo

I S
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Figure 8: Matrix of box plots comparing the normalized performance measure
values. The yellow line indicates the “perfect fit” for each of the performance
measures.Simulated and observed discharge series. The colour bars indicate the
error class during this time period.
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