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The vegan packages has two major components: multivariate analysis, mainly or-
dination, and methods for diversity analysis of ecological communities. This docu-
ment gives an introduction to the latter. Ordination methods are covered in other
documents. Many of the diversity functions were written by Roeland Kindt and
Bob O’Hara.

Most diversity methods assume that data are counts of individuals. The methods
are used with other data types, and some people argue that biomass or cover are
more adequate units than counts of individuals of variable sizes. However, this
document only uses a data set with counts: stem counts of trees on lha plots in
the Barro Colorado Island. The following steps make these data available for the
document:
> library(vegan)
> data(BCI)

1. DIVERSITY INDICES

Function diversity finds the most commonly used diversity indices:

s
(1) H=- Z p; logy p; Shannon—Weaver
i=1
s
(2) D=1~ ZP? Simpson
i=1
1 . .
(3) Dy = inverse Simpson

5
> P}
where p; is the proportion of species ¢, and S is the number of species so that
Zle p; = 1, and b is the base of the logarithm. It is most common to use natural
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the data set.

logarithms (and then we mark index as H'), but b = 2 has theoretical justification.
Shannon index is calculated with:
> H <- diversity(BCI)
which finds diversity indices for all sites.
Vegan does not have indices for evenness (equitability), but the most common
of these, Pielou’s evenness J = H'/log(S) is easily found as:
> J <- H/log(specnumber (BCI))
where specnumber is a simple vegan function.
Vegan also can estimate Rényi diversities of order a:

S
1
(4) Ha:l_GIOgE p?
=1

or the corresponding Hill numbers N, = exp(H,). Many common diversity indices
are special cases of Hill numbers: Ny = S, Ny = exp(H'), No = D5, and N, =
1/(max p;). We select a random subset of five sites for Rényi diversities:
> k <- sample(nrow(BCI), 6)
> R <- renyi(BCI[k, 1)
We can really regard a site more diverse if all of its Rényi diversities are higher than
in another site. We can inspect this graphically using the standard plot function
for the renyi result(Fig. 1).

Finally, the a parameter of Fisher’s log-series can be used as a diversity index:

> alpha <- fisher.alpha(BCI)

2. RAREFACTION

Species richness increases with sample size, and differences in richness actually
may be caused by differences in sample size. To solve this problem, we may try
to rarefy species richness to the same number of individuals. Expected number of
species in a community rarefied from N to n individuals is:

(5) Sy = ia — pi), where p; = <N - xi) / <J7\lf)

where x; is the count of species 7, and (IZ ) is the binomial coefficient, or the number
of ways we can choose n from N. p; give the probabilities that species ¢ does not
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occur in a sample of size n. This is only defined for N — z; > n, but for other
cases p; = 0 or the species is sure to occur in the sample. The variance of rarefied
richness is:

0 e () /()]

i=1 j>i
Equation 6 actually is of the same form as the variance of sum of correlated vari-
ables:

(7) var (Z zz> = Zvar(xi) — 2cov(z;, ;)

The number of stems per hectare varies in our data set:
> quantile (rowSums (BCI))

0% 25% 50%  75% 100%
340.0 409.0 428.0 443.5 601.0

To express richness for the same number of individuals, we can use:
> Srar <- rarefy(BCI, min(rowSums (BCI)))

Rarefaction curves often are seen as an objective solution for comparing species
richness with different sample sizes. However, rank orders typically differ among
different rarefaction sample sizes, and rarefaction richness often shares the problems
of Rényi diversities.

As an extreme case we may rarefy sample size to two individuals:
> S2 <- rarefy(BCI, 2)
This will not give equal rank order with the previous rarefaction richness:
> all(rank(Srar) == rank(S2))
[1] FALSE

Moreover, the rarefied richness for two individuals only is a finite sample variant of
Simpson’s diversity index (or, more precisely of D; + 1), and almost identical with
sample sizes in BCI:

> range(diversity(BCI, "simp") - (S2 - 1))
[1] -0.002868298 -0.001330663

Rarefaction is sometimes presented as ecologically meaningful alternative to dubious
diversity indices, but the differences really seem to be small.

3. SPECIES ABUNDANCE MODELS

Diversity indices may be regarded as variance measures of species abundance
distribution. We may wish to inspect abundance distributions more directly. Ve-
gan has functions for Fisher’s log-series and Preston’s log-normal models, and in
addition several models for species abundance distribution.

3.1. Fisher and Preston. In Fisher’s log-series, the expected number of species
with n individuals is:

ax™

(8) fn =
where x is a nuisance parameter defined by « and total number of individuals NV
in the site, z = N/(N — «). Fisher’s log-series for a randomly selected plot is (Fig.
2):

> k <- sample(nrow(BCI), 1)

> fish <- fisherfit(BCI[k, 1)

> fish

n
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(28) Frequency

Fisher log series model
No. of species: 85

Estimate Std. Error
alpha 33.654 4.5788
We already saw this model as a diversity index. Now we also obtained estimate of
standard error of « (these also are optionally available in fisher.fit). The stan-
dard errors are based on the second derivatives (curvature) of the partial derivatives
of log-likelihood at the solution of a. The distribution of « often is very non-normal
and skewed, and standard errors are of not much use. However, fisherfit has a
profile method that can be used to inspect the validity of normal assumptions,
and will be used in calculations of confidence intervals from profile deviance:

> confint (fish)

2.5 % 97.5%
25.62719 43.70514

Preston’s log-normal model is the main challenger to Fisher’s log-series. Instead
of plotting species by frequencies, it bins species into frequency classes of increasing
sizes. As a result, upper bins with high range of frequencies become more common,
and sometimes the result looks similar to Gaussian distribution truncated at the
left.

There are two alternative functions for the log-normal model: prestonfit and
prestondistr. Function prestonfit uses traditionally binning approach, and is
burdened with arbitrary choices of binning limits and treatment of ties. Function
prestondistr directly maximizes truncated log-normal likelihood without binning
data, and it is the recommended alternative. Log-normal models usually fit poorly
to the BCI data, but here our random plot:

> prestondistr(BCI[k, ])

Preston lognormal model
Method: maximized likelihood to log2 abundances
No. of species: 85

mode width S0
0.9394031 1.6444133 23.4100353
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Frequencies by Octave
0 1 2 3 4 5
Observed 31.00000 18.00000 18.00000 10.00000 4.000000 2.000000
Fitted 19.88549 23.39415 19.01393 10.67653 4.141737 1.110014
6
Observed 2.0000000
Fitted 0.2055267

3.2. Ranked abundance distribution. An alternative approach to species abun-
dance distribution is to plot logarithmic abundances in decreasing order, or against
ranks of species. These are known, among other names, as ranked abundance distri-
bution curves, dominance—diversity curves and Whittaker plots. Function radfit
fits some of the most popular models using maximum likelihood estimation:

S
N 1
(9) ap = g5 kz; T brokenstick
(10) ar = Na(l —a)"* preemption
(11) a, = exp [log(p) + log(o)®] log-normal
(12) ar = Npyr? Zipf
(13) Gr = Nc(r+ 5)7 Zipf-Mandelbrot

Where a.. is the expected abundance of species at rank r, .S is the number of species,
N is the number of individuals, @ is a standard normal function, p; is the estimated
proportion of the most abundant species, and «, i, o, 7y, 8 and c¢ are the estimated
parameters in each model.

It is customary to define the models for proportions p, instead of abundances a,.,
but there is no reason for this, and radfit is able to work with the original abun-
dance data. We have count data, and the default Poisson error looks appropriate,
and our example data set gives (Fig. 3):

> rad <- radfit(BCI[k, ])
> rad

RAD models, family poisson
No. of species 85, total abundance 387

parl par2 par3 Deviance AIC BIC
Null 111.8736 353.0672 353.0672
Preemption 0.053337 121.0869 364.2806 366.7232
Lognormal 0.76046  1.255 28.3779 273.5715 278.4568
Zipf 0.17283 -0.93043 8.2282 253.4219 258.3072

Mandelbrot 0.25035 -1.0368 0.58633 6.2294 253.4230 260.7510

Function radfit compares the models using alternatively Akaike’s or Schwartz’s
Bayesian information criteria. These are based on log-likelihood, but penalized
by the number of estimated parameters. The penalty per parameter is 2 in AIC,
and log S in BIC. Brokenstick is regarded as a null model and has no estimated
parameters in vegan. Preemption model has one estimated parameter («), log-
normal and Zipf models two (u, o, or 1,7, resp.), and Zipf-Mandelbrot model has
three (¢, 3,7).

Function radfit also works with data frames, and fits models for each site.
It is curious that log-normal model rarely is the choice, although it generally is
regarded as the canonical model, in particular in data sets like Barro Colorado
tropical forests.
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4. SPECIES ACCUMULATION AND SPECIES POOL

Species accumulation models and species pool models study collections of sites,
and their species richness, or try to estimate the number of unseen species.

4.1. Species accumulation models. Species accumulation models are similar
to rarefaction: they study the accumulation of species when the number of sites
increases. There are several alternative methods, including accumulating sites in the
order they happen to be, and repeated accumulation in random order. In addition,
there are three analytic models. Rarefaction pools individuals together, and applies
rarefaction equation (5) to these individuals. Kindt’s exact accumulator resembles
rarefaction:

(14) S = i(l — p;), where p; = (N;fz) / (JD

where f; is the frequency of species i. Approximate variance estimator is:

S
(15) S =pi(l—p)+2) ) (%‘m Pj(l—z?j)>

i=1 j>i

where r;; is the correlation coefficient between species 7 and j. Both of these are
unpublished: eq. 14 was developed by Roeland Kindt, and eq. 15 by Jari Oksanen.
The third analytic method was suggested by Coleman:

S fi
1
(16) Sp=>_(1-p;), where p; = <1 - )
i=1

n

and he suggested variance s? = p;(1 — p;) which ignores the covariance component.
In addition, eq. 16 does not properly handle sampling without replacement and
underestimates the species accumulation curve.

but the recommended is Kindt’s exact method (Fig. 4):

> sac <- specaccum(BCI)
> plot(sac, ci.type = "polygon", ci.col = "yellow")
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4.2. Number of unseen species. Species accumulation models indicate that not
all potential species are seen in any sites. These unseen species also belong to
the species pool of the site. Functions specpool and estimateR implement some
methods of estimating the number of unseen species. Function specpool studies
a collection of sites, and assumes how many species may be unobserved. Function
estimateR works with counts of individuals, and also can be used with a single site.
Both functions assume that the number of unseen species is related to the number
of rare species, or species seen only once or twice.

Function specpool implements the following models to estimate the pool size
Sp:

2
(17) Sp =5, + ZL}Q Chao
N-—-1 .
(18) Sp =S80+ f1 1st order Jackknife
2

(19) Sp=8,+ fi QNN_ 5 + fa ]isz[]\f_—Q)l) 2nd order Jackknife
So

(20) Sp =58+ Z(l —-p)" Bootstrap
i=1

Here S, is the observed number of species, f; and fo are the numbers of species
observed once or twice, N is the number of sites, and p; are proportions of species.
The idea in jackknife seems to be that we missed about as many species as we saw
only once, and the idea in bootstrap that if we repeat sampling (with replacement)
from the same data, we miss any many species as we missed originally.

The variance estimators are of Chao is:

4 2
(21) s2 = fy (i—&-G?’—&-C;),Where G:%

The variance of the first-order jackknife is based on the number of “singletons” r
(species occurring only once in the data) in sample plots:

N
A\ N -1
= (E-4)%
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Variance of the second-order jackknife is not evaluated in specpool (but contribu-
tions are welcome). For the variance of bootstrap estimator, it is practical to define
a new variable ¢; = (1 — p;)V for each species:

So
(23) 2 = ;qi(l —q)+ 2222,,7 where
Zp=...

The extrapolated richness values for the whole BCI data are:
> specpool (BCI)

Species Chao Chao.SE Jack.1l Jackl.SE  Jack.2 Boot
All 225 236.6053 6.659395 245.58 5.650522 247.8722 235.6862
Boot.SE n

A1l 3.468888 50

If the estimation of pool size really works, we should get the same values of estimated
richness if we take a random subset of a half of the plots:

> s <- sample(nrow(BCI), 25)

> specpool(BCI[s, 1)

Species Chao Chao.SE Jack.l Jackl.SE  Jack.2 Boot
All 212 242.0312 14.23972 241.76 8.528165 256.1733 225.7051
Boot.SE n

A1l 4.684375 25

These typically are even lower than the observed richness (225 species) at the whole
data set.

4.3. Pool size from a single site. The specpool function needs a collection of
sites, but there are some methods that estimate the number of unseen species for
each single site. These functions need counts of individuals, and species seen only
once or twice, or other rare species, take the place of species with low frequencies.
Function estimateR implements two of these methods:

> estimateR(BCI[k, ])

28
S.obs 85.000000
S.chaol 109.473684
se.chaol 12.578970
S.ACE 116.301606
se.ACE 5.509697

Chao’s method is similar as above, but uses another, “unbiased” equation. ACE is
based on rare species also:

Srare ay
S, = Sabund + —— 2 where
b bund T O cr CACE’Y
Cacg =1 — —2
(24) ACE Nrare
Srare N, 1
2 rare ol rare ~
= — 1 _—
7 C’ACE Z Z(Z )al Nrare

i=1
Now a; takes the place of fi; above, and means the number of species with only one
individual. Here S,punq and Siare are the numbers of species of abundant and rare

species, with an arbitrary upper limit of 10 individuals for a rare species, and Nyare
is the total number of individuals in rare species.
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FIGURE 5. Beals smoothing for
Ceiba pentandra.

Probability of occurrence

The pool size is estimated separately for each site, but if input is a data frame,
each site will be analysed.

If log-normal abundance model is appropriate, it can be used to estimate the
pool size. Log-normal model has a finite number of species which can be found
integrating the log-normal:

(25) Sp = S,oV2m

where S, is the modal height or the expected number of species at maximum (at p),
and o is the width. Function veiledspec estimates this integral from a model fitted
either with prestondistr or prestonfit, and fits the latter if raw site data are
given. Log-normal model fits badly, and prestonfit is particularly poor. Therefore
the following explicitly uses prestondistr, although this also may fail:

> veiledspec (prestondistr(BCI[k, ]))

Extrapolated Observed Veiled
96.49459 85.00000 11.49459

> veiledspec (BCI[k, J])

Extrapolated Observed Veiled
406.4778 85.0000 321.4778

4.4. Probability of pool membership. Beals smoothing was originally sug-
gested as tool of regularizing data for ordination. It regularizes data too strongly
for that purpose, but it has been suggested as a method of estimating which of the
missing species could occur in a site, or which sites are suitable for a species. The
probability for each species at each site is assessed from other species occurring on
the site.

Function beals implement Beals smoothing:

> smo <- beals(BCI)

We may see how the estimated probability of occurrence and observed numbers of
stems relate in one of the more familiar species (Fig. 5):

> j <- which(colnames(BCI) == "Ceiba.pentandra")

> plot(smo[, jl, BCI[, j], main = "Ceiba pentandra", xlab = "Probability of occurrence",

+ ylab = "Occurrence")



