The websockets Package

Bryan W. Lewis
blewis@illposed.net

June 27, 2011

1 Introduction

The websockets package is an HTML 5 Websocket implementation for the R language, based on
the C libwebsockets library written by Andy Green. The websockets package is especially well-
suited to lightweight interaction between R and web scripting languages like Javascript. Multiple
simultaneous websocket connections are supported.

By “lightweight” we mean that the library has few external dependencies and is easily portable.
More significantly, websockets lets Javascript and other scripts embedded in web pages directly
interact with R, bypassing traditional middleware layers like .NET, Java, and web servers normally
used for such interaction.

The HTML 5 Websocket API is a modern socket-like communication protocol for the web. Note
that the HTML 5 Websocket API is still under development and may change. Some browsers may
not enable Websockets by default (including recent versions of Firefox), but there are usually simple
methods to enable the API. Despite its developmental status, the API is presently widely supported:
most recent browsers support it and there are many available langauge implementations.

2 Using websockets, step by step

The websockets library may be viewed as a server that can initiate and respond to HTML 5
websocket and HT'TP events over a network connection (Websockets are an extension of standard
HTTP). The library is intentionally somewhat simple and tries to implement most important func-
tions of the interface in the R language.

All R/Websocket applications use the following basic recpie:

1. Load the library.



The websockets Package

Initialize a websocket context with createContext.
Set callback functions that will respond to desired events.
Accept requests from connections (e.g., Javascript code).

Service the socket interface with service, often in an event loop.

SEE A e B

Delete the context environment when done.

We outline the steps below.

2.1 Load the library

library ('websockets ")

The websockets library suggests the RISONIO library be installed, as it is quite useful to have
available when interacting with Javascript.

2.2 Initialize a websocket context with createContext

The R/Websocket service is initialized by a call to the createContext function. The function takes
2 arguments, a network port to listen on, and an optional file name of a file to service standard
HTTP requests. The function returns an environment, into which so-called “callback” functions
may be assigned that will respond to websocket events. Here is an example:

context = createContext ()

HTML 5 Websockets may be be used directly by Javascript embedded in arbitrary web pages.
The websockets library can respond to websocket requests on its port that are not associated
with any local HTML web page. For an example of this, see the package demo available from
demo(’json.R’).

For convenience, the websockets library includes the ability to serve an HTML file to incoming
HTTP requests on its port. For example, the basic package demo available from demo (’ websockets’)
serves clients the file basic.html located in the package installation path. However, serving HTML
web pages is not the primary function of the websockets library and there are many other excellent
alternatives for that available to R.

2.3 Set callback functions to respond to events

Clients may connect to the websocket service immediately after the context is initialized. Nothing
interesting will happen however until callback functions are defined to respond to events.

The websockets package presently supports the following events:




The websockets Package

established: Occurs when a websocket connection is successfully negotiated.
closed: Occurs when a client closes its websocket connection.
receive: Occurs when data is received from a connection.

broadcast: Occurs when data is received from a broadcast event.

R functions may be defined to handle some, all, or none of the above event types. Such functions
are termed “callbacks.”

The setCallback function may be used to define a callback function in the websocket context
environment returned by createContext. (It simply assigns the functions in that environment.)
A callback function must take precisely 3 arguments that are filled in by the library with values
corresponding to an event when invoking a callback function. The values are:

DATA: A RAW vector that holds any incoming data associated with the event. It may be of
length zero if the event does not have any data to report.

WS: A pointer reference to the websocket connection associated with the event.

COOKIE: A pointer to a data ’cookie’ associated with the websocket client connection.

The arguments can be named arbitrarily, but there must be three.

The example function below assigns a random number (in character form) to the cookie of a new
client connection after a connection is established, and then sends a message to the connection:

f = function (DATA, WS, COOKIE) {

x = runif (1)

setCookie (COOKIE, paste(x))

websocket_write (paste (" Connection established. Your cookie value is”,x), WS)

}

setCallback ("established”, f, context)

Here is an example function callback that receives data from a client connection and simply
echoes it back:

f = function (DATA, WS, COOKIE) {
websocket_write (DATA, WS)

}

setCallback ("receive”, f, context)




The websockets Package

2.4 Accept requests from web clients

Javascript and other web script clients can very easily interact with the R websockets library
directly from most browsers. The listing below presents a very basic javascript example, see the
basic.html file in the package installation path, or the http://illposed.net/rwebsockjson.html
file for more complete examples.

<html><body>
<script>
socket = new WebSocket ("ws://localhost: 7681”7, "R”);
try {
socket .onmessage = function got_packet(msg) {

document . getElementByld ("output”). textContent = msg. data;

}

catch (ex) {document.getElementByld (”output”).textContent = "Error: 7 + ex;}
</script>

<div id="output”> SOCKET DATA APPEARS HERE </div>

</body></html>

Note, in particular, that the websockets package defines a single protocol called “R.”
Future versions of the package will admit multiple protocols.

2.5 Service the socket interface with service

Websocket events are placed in a queue. The service function processes events in the queue
on a first-come, first-served basis. The service function processes each event by invoking the
appropriate callback function. It returns without blocking if there are no events to service. Events
may be processed indefinitely by evaluating the service function in a loop, for example:

while (TRUE)
{

service (context)
Sys.sleep (0.05)

}

Although this is a polling loop, the Sys.sleep function prevents the R session from spinning and
consuming lots of CPU time. A blocking version of service is not presently available, but this
simple approach works surprisingly well.




The websockets Package

2.6 Delete the context environment when done

Underlying low-level data pointers used by the library are automatically de-allocated when the
environment returned by createContext is deleted, and the garbage collector has run.

rm(context )
ge ()

A new context may be created any time after this point. We are conisdering forcing the garbage
collector to run automatically when a context is deleted, but are not sure about the implications of
doing that yet.

3 Tricks and miscellaneous notes

We present a few more advanced and other miscellaneous notes in this section.

3.1 Binary data

At the time of this writing (June, 2011), Javascript websocket clients do not support binary data.
It is possible to exchange binary data with some websocket clients however, and the default 1/O
type on the R side of the library is the R raw type. For convenience, R character variables are cast
to raw by the library automatically, but all other types require manual serialization to raw prior to
transmission.

JSON is probably a good choice to use when interacting with Javascript and the data size is not
too large. The suggested RISONIO package helps map many native R objects to JSON and vice
versa, greatly facilitating interaction between R and Javascript. But, JSON data is transferred as
characters, which may incur performance and in some cases numeric issues.

3.2 Broadcasting

The HTML 5 Websocket API is a peer to peer, connection oriented protocol and does not specifically
include a way to broadcast data across multiple connections.

The websockets library emulates broadcasting with a trick, the websocket_broadcast function.
The websocket_broadcast function takes a single DATA argument (without specifying a websocket
connection). When invoked, it induces the broadcast callback with the specified DATA payload
once for each connected client websocket on the server. The broadcast callback may then use
websocket_write to send out the DATA payload to each client websocket in succession.




The websockets Package

Using this trick, the websockets library can quickly send the same DATA to all connected
websockets.

3.3 Pushing data to a connection

The websocket_write function may be called at any time to write data to a specific websocket
connection. However, websocket_write requires a pointer to the connection which is usually only
available from inside a callback function.

There are at least two viable approaches to writing data to a connection from the server to a
client without requiring the client initiate the transfer.

1. Maintain a list of active client websocket connections by adding to the list in the establish
function callback, and removing from the list in the close function callback. This will further
require that the connections are uniquely identifiable by setting an appropriate data cookie.
In this way, websocket_write may be called at any time to send data to connetions in the
active list.

2. Use the websocket_broadcast function as outlined in the last section.

The websocket_broadcast function is simple, but writes the same data to all the clients. Use the
other approach if you need to push data to multiple clients.

4 Interacting effectively with Javascript

Javascript has excellent HTML 5 Websocket support. The suggested RISONIO package provides
simple methods for exchanging data between R and Javascript using JSON, suitable for smallish
data sizes.

The Javascript available in the HTML page http://illposed.net/rwebsockjson.html and
the R code available from the demo(’ json’) demo illustrate using websockets, JSON and flotr to
implement basic dynamic R web plots.

5 Up next...

We've left out lots of the Websocket API features. Some of them that we plan on implementing
next include:

e SSL encrypted communication.




The websockets Package

e Multiple simultaneous protocol support.
e A blocking service function?

e Smarter object de-allocation and clean up




	Introduction
	Using websockets, step by step
	Load the library
	Initialize a websocket context with createContext
	Set callback functions to respond to events
	Accept requests from web clients
	Service the socket interface with service
	Delete the context environment when done

	Tricks and miscellaneous notes
	Binary data
	Broadcasting
	Pushing data to a connection

	Interacting effectively with Javascript
	Up next...

