Here you’ll find a series of example of calls to
yf_get()
. Most arguments are self-explanatory, but you can
find more details at the help files.
The steps of the algorithm are:
library(yfR)
# set options for algorithm
<- 'GM'
my_ticker <- Sys.Date() - 30
first_date <- Sys.Date()
last_date
# fetch data
<- yf_get(tickers = my_ticker,
df_yf first_date = first_date,
last_date = last_date)
# output is a tibble with data
head(df_yf)
## # A tibble: 6 × 11
## ticker ref_date price_open price_h…¹ price…² price…³ volume price…⁴ ret_ad…⁵
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM 2022-10-03 32.5 33.3 31.6 32.9 1.47e7 32.9 NA
## 2 GM 2022-10-04 34.2 35.8 33.9 35.8 1.98e7 35.8 0.0891
## 3 GM 2022-10-05 34.4 35.0 33.8 34.8 1.87e7 34.8 -0.0268
## 4 GM 2022-10-06 34.6 35.2 34.4 34.6 1.14e7 34.6 -0.00603
## 5 GM 2022-10-07 34.1 34.3 33.4 33.6 1.12e7 33.6 -0.0292
## 6 GM 2022-10-10 32.4 32.6 31.1 32.3 2.30e7 32.3 -0.0396
## # … with 2 more variables: ret_closing_prices <dbl>,
## # cumret_adjusted_prices <dbl>, and abbreviated variable names ¹price_high,
## # ²price_low, ³price_close, ⁴price_adjusted, ⁵ret_adjusted_prices
library(yfR)
library(ggplot2)
<- c('TSLA', 'GM', 'MMM')
my_ticker <- Sys.Date() - 100
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_yf_multiple first_date = first_date,
last_date = last_date)
<- ggplot(df_yf_multiple, aes(x = ref_date, y = price_adjusted,
p color = ticker)) +
geom_line()
p
library(yfR)
library(ggplot2)
library(dplyr)
<- 'GE'
my_ticker <- '2005-01-01'
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_dailly
first_date, last_date, freq_data = 'daily') %>%
mutate(freq = 'daily')
<- yf_get(tickers = my_ticker,
df_weekly
first_date, last_date, freq_data = 'weekly') %>%
mutate(freq = 'weekly')
<- yf_get(tickers = my_ticker,
df_monthly
first_date, last_date, freq_data = 'monthly') %>%
mutate(freq = 'monthly')
<- yf_get(tickers = my_ticker,
df_yearly
first_date, last_date, freq_data = 'yearly') %>%
mutate(freq = 'yearly')
# bind it all together for plotting
<- bind_rows(
df_allfreq list(df_dailly, df_weekly, df_monthly, df_yearly)
%>%
) mutate(freq = factor(freq,
levels = c('daily',
'weekly',
'monthly',
'yearly'))) # make sure the order in plot is right
<- ggplot(df_allfreq, aes(x = ref_date, y = price_adjusted)) +
p geom_line() +
facet_grid(freq ~ ticker) +
theme_minimal() +
labs(x = '', y = 'Adjusted Prices')
print(p)
library(yfR)
library(ggplot2)
<- c('TSLA', 'GM', 'MMM')
my_ticker <- Sys.Date() - 100
first_date <- Sys.Date()
last_date
<- yf_get(tickers = my_ticker,
df_yf_multiple first_date = first_date,
last_date = last_date)
print(df_yf_multiple)
## # A tibble: 207 × 11
## ticker ref_date price_open price_…¹ price…² price…³ volume price…⁴ ret_ad…⁵
## * <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM 2022-07-25 34.9 35.0 34.1 34.5 1.48e7 34.4 NA
## 2 GM 2022-07-26 34.0 34.1 33.0 33.3 1.45e7 33.3 -0.0342
## 3 GM 2022-07-27 34.0 34.8 33.6 34.7 1.23e7 34.6 0.0402
## 4 GM 2022-07-28 35.0 35.8 34.6 35.7 1.18e7 35.7 0.0306
## 5 GM 2022-07-29 35.8 36.4 35.4 36.3 1.44e7 36.2 0.0145
## 6 GM 2022-08-01 36.1 37.0 35.6 36.8 1.22e7 36.7 0.0141
## 7 GM 2022-08-02 36.3 37.0 36.1 36.1 1.31e7 36.0 -0.0174
## 8 GM 2022-08-03 36.8 38.2 36.8 37.3 1.60e7 37.2 0.0327
## 9 GM 2022-08-04 37.0 37.2 36.1 36.2 1.69e7 36.1 -0.0289
## 10 GM 2022-08-05 35.9 36.3 35.6 36.1 1.09e7 36.0 -0.00469
## # … with 197 more rows, 2 more variables: ret_closing_prices <dbl>,
## # cumret_adjusted_prices <dbl>, and abbreviated variable names ¹price_high,
## # ²price_low, ³price_close, ⁴price_adjusted, ⁵ret_adjusted_prices
<- yf_convert_to_wide(df_yf_multiple)
l_wide
names(l_wide)
## [1] "price_open" "price_high" "price_low"
## [4] "price_close" "volume" "price_adjusted"
## [7] "ret_adjusted_prices" "ret_closing_prices" "cumret_adjusted_prices"
<- l_wide$price_adjusted
prices_wide head(prices_wide)
## # A tibble: 6 × 4
## ref_date GM MMM TSLA
## <date> <dbl> <dbl> <dbl>
## 1 2022-07-25 34.4 133. 268.
## 2 2022-07-26 33.3 139. 259.
## 3 2022-07-27 34.6 137. 275.
## 4 2022-07-28 35.7 139. 281.
## 5 2022-07-29 36.2 142. 297.
## 6 2022-08-01 36.7 142. 297.