
Creating a simple calibrator case study from scratch: a

cookbook

Robin K. S. Hankin

July 21, 2006

1 Introduction

Package calibrator of bundle BACCO performs Bayesian calibration of computer models. This
document constructs a minimal working example of a simple problem, step by step. Datasets and
functions have a .int suffix, representing “intermediate”.

This document is not a substitute for KOH or KOHa or Hankin 2005 or the online help files
in BACCO. It is not intended to stand alone: for example, the notation used here is that of KOH,
and the user is expected to consult the online help in the BACCO package when appropriate.

This document is primarily didactic, although it is informal.
Nevertheless, many of the points raised here are duplicated in the BACCO helpfiles.
Note that many of the objects created in this document are interdependent and changing one

sometimes implies changing many others.
The author would be delighted to know of any improvements or suggestions. Email me at

r.hankin@noc.soton.ac.uk.
Observations are made over two parameters, x and y, which I style “latitude” and “longitude”.

I tend to think of the observation as temperature.
The model requires two parameters, A and B and, given these, gives output as a function of x

and y. The model is thus a function of four variables: x, y, A, B. Write θ = (A,B) to denote the
two parameters collectively. KOH use t to denote a specific value of parameters, and θ to denote
any old set of parameters one might like to consider.

Parameters A and B have true but unknown values and we wish to make inferences about
these true values.

2 List of objects that the user needs to supply

The user needs to supply several objects:

� Design matrices for the code runs and the field observations, here D1.int and D2.int.

� An extractor function to separate out the parameters from the independent variables, here
extractor.int()

� Various basis functions for the code runs (here h1.int() and H1.int()) and field observa-
tions (here h2.int() and H2.int())

� A function to create a hyperparameter object, here phi.fun.int()

� Two functions to return expectation under different distributions, here E.theta.int() and
Edash.theta.int()

� Data, here y.int for the code observations and z.int for the field observations, and z.int
for both together

1

3 Design matrices

There are two design matrices to consider: D1.int, which is the code run set, and D2.int, the
observation points. Generating the data is deferred to section 6 because we need basis functions
(section 3) and hyperparameters (section 4) before we can specify the appropriate distribution
from which random can be drawn.

In this section, we will generate design matrices of arbitrary size. Data is generated in section 7.
First, define the number of code observations (n1) and the number of field observations (n2):

> library(calibrator)

> library(emulator)

> n1 <- 20

> n2 <- 21

These can be varied at will. Now create the D1 matrix, of code observation points. This will
consist of

> D1.int <- latin.hypercube(n1, 4)

> rownames(D1.int) <- paste("coderun", 1:nrow(D1.int), sep = ".")

> colnames(D1.int) <- c("x", "y", "A", "B")

> head(D1.int)

x y A B
coderun.1 0.975 0.875 0.175 0.925
coderun.2 0.075 0.325 0.075 0.225
coderun.3 0.525 0.525 0.525 0.725
coderun.4 0.625 0.125 0.625 0.125
coderun.5 0.125 0.725 0.875 0.275
coderun.6 0.575 0.975 0.475 0.775

Notes

� Rownames and column-names are applied. They are not strictly necessary, but are very
useful in debugging.

� the points are randomly chosen (but fill parameter space reasonably)

� We have ten observation points. More can be added but at the cost of slower run times.

Now the field observation points. This is a two-column matrix, with an x column and a y
column.

> D2.int <- latin.hypercube(n2, 2)

> rownames(D2.int) <- paste("obs", 1:nrow(D2.int), sep = ".")

> colnames(D2.int) <- c("x", "y")

> head(D2.int)

x y
obs.1 0.7380952 0.6428571
obs.2 0.6428571 0.7380952
obs.3 0.2619048 0.3571429
obs.4 0.9761905 0.8809524
obs.5 0.9285714 0.2142857
obs.6 0.5476190 0.5476190

Notes

� See how the number of observations (n1) is different from the number of code runs (n2) as
an additional safety check.

� Rownames and columnnames are given.

2

3.1 Extractor functions

Now we need a function to extract the variable part and the parameter part. Working by analogy
to extractor.toy():

> extractor.int <- function(D1) {

+ return(list(x.star = D1[, 1:2, drop = FALSE], t.vec = D1[,

+ 3:4, drop = FALSE]))

+ }

Notes

� The function returns a two-element list, named x.star and t.vec.

� It just extracts the relevant columns: the first two give the lat and long, and columns three
and four give A and B

� drop=FALSE is needed to deal with one-row dataframes consistently.

4 Basis functions

We now need basis functions. The basis function h1.toy() is just a constant term with each
component. We will use a more sophisticated version.

Recall the fundamental equation of KOH:

z(x) = ρη(x, θ) + δ(x) + ε (1)

where z(x) is field observation, η(·, ·) a Gaussian process with unknown parameters representing
a computer model taking two arguments: the first argument is the independent variable x, and
the second argument a vector of parameters with θ being the true but unknown value of the
parameters. The δ(x) part is a model inadequacy term, also a Gaussian process with unknown
parameters. The last term is an observational iid error with ε ∼ N(0, λ2).

We will take reality to be
x + y2 + y + xy + CE (2)

where CE is correlated error. Observations are reality plus uncorrelated N(0, λ2) error. The model
is

Ax + By2 + CE (3)

Here the A and B are parameters whose true but unknown values can be determined by
comparing equation 2 with equation 3. The values of A and B are thus 1 and 1 respectively;
write θ = (A,B) to denote the parameters collectively.

The model inadequacy term is thus

y + xy + CE

Note that this requires A = B = 1. We will take the model basis functions to be

h1(x, θ) = (1, x, A, Ax, By2)T (4)

Notes

� The model output will be
h1(x, θ)T β1 + CE

where β1 = (0, 0, 0, 1, 1)T is the true value of the coefficients; see section 7 for this in use.

3

� The basis functions could be much more complicated than that or, indeed, much simpler. We
could have chosen, for example, h1(x, θ) = (1, x, y, x2, y2, A, B,Ax,Ay, Bx,By, Ax2, Ay2, Bx2, By2)T ;
or, going the other way, h1(x, θ) = 1.

The model inadequacy term then has a mean of y + xy. The basis functions for the model
inadequacy is then

h2(x) = (y, xy)T (5)

and the model inadequacy then has a mean of

h2(x)β2

where β2 = (1, 1)T . Again note the great scope for choosing basis functions (although in the case
of h2() there are no parameters to consider).

4.1 Defining regressor functions

We need an h1.int():

> h1.int <- function(xin) {

+ out <- c(1, xin[1], xin[3], xin[1] * xin[3], xin[2]^2 * xin[4])

+ names(out) <- c("const", "x", "A", "Ax", "By.sq")

+ return(out)

+ }

Note how the argument xin is just c(x,theta), where x is the independent variables and
theta the model parameters. So xin[1] is x, xin[2] is y, xin[3] is A, and xin[4] is B. See
how function h1.int() creates the basis functions (1, x, A, Ax, By2)T , as per equation 4.

Now we need a vectorized version:

> H1.int <- function(D1) {

+ if (is.vector(D1)) {

+ D1 <- t(D1)

+ }

+ out <- t(apply(D1, 1, h1.int))

+ colnames(out) <- c("const", "x", "A", "Ax", "By.sq")

+ return(out)

+ }

Notes

� Function H1.int is the one needed as arguments to functions like stage1(); function
h1.int() is not needed except from within H1.int().

� See how the columnnames are specified. Again, not strictly necessary but strongly recom-
mended

� See the special consideration for vector D1

Similarly for the model inadequacy function:

> h2.int <- function(x) {

+ out <- c(x[1], x[1] * x[2])

+ names(out) <- c("h2.x", "h2.xy")

+ return(out)

+ }

> H2.int <- function(D2) {

+ if (is.vector(D2)) {

4

+ D2 <- t(D2)

+ }

+ out <- t(apply(D2, 1, h2.int))

+ colnames(out) <- names(h2.int(D2[1, , drop = TRUE]))

+ return(out)

+ }

5 Hyperparameter object

We now need a function phi.fun.int() to create an appropriate hyperparameter object. Note
that function phi.change() is generic (so we don’t need to write one). The best way to write
phi.fun.int() is to proceed by analogy and modify function phi.fun.toy(), line by line. Most
of the function is straightforward to create. Note that the only parts that need changing in this
case are the internal functions pdm.maker.psi1() and pdm.maker.psi1(); I use “pdm” to denote
“positive definite matrix”. These two functions create positive-definite matrices Ωx and Ωt that
are used to determine c1 ((x, t), (x′, t′)). These are defined by:

> pdm.maker.psi1 <- function(psi1) {

+ jj.omega_x <- diag(psi1[1:2])

+ rownames(jj.omega_x) <- names(psi1[1:2])

+ colnames(jj.omega_x) <- names(psi1[1:2])

+ jj.omega_t <- diag(psi1[3:4], ncol = 2)

+ rownames(jj.omega_t) <- names(psi1[3:4])

+ colnames(jj.omega_t) <- names(psi1[3:4])

+ sigma1squared <- psi1[5]

+ return(list(omega_x = jj.omega_x, omega_t = jj.omega_t, sigma1squared = sigma1squared))

+ }

> pdm.maker.psi2 <- function(psi2) {

+ jj.omegastar_x <- diag(psi2[1:2], ncol = 2)

+ sigma2squared <- psi2[3]

+ return(list(omegastar_x = jj.omegastar_x, sigma2squared = sigma2squared))

+ }

Notes

� In function phi.fun.toy() there are two functions with the same name. They extract from
vectors psi1 and psi2 a positive definite matrix used in c1(·, ·) and c2((·, ·), (·, ·)).

� The purpose of all this is to implement the fact that Ωx and Ωt are arbitrary functions of
psi1. Here, it’s dead easy because the matrices are diagonal and the values just correspond
to consecutive elements of psi1 but in general there may be nonzero off-diagonal elements
of Ωx which may be a complicated function of psi1.

Given this, we can now change phi.int, using function phi.change(). Note that this function
is generic, so we do not need to write another version. The best way to call phi.change() is to
define intermediate variables that begin with jj:

> jj.psi1 <- 1:5

> names(jj.psi1) <- c("x", "y", "A", "B", "s1sq")

> jj.psi2 <- 1:3

> names(jj.psi2) <- c("x", "y", "s1sq")

> jj.mean1 <- rep(1, 5)

> names(jj.mean1) <- names(jj.psi1)

> jj.sigma1 <- diag(c(1.1, 1.1, 1.2, 1.3, 1.1))

> rownames(jj.sigma1) <- names(jj.psi1)

5

> colnames(jj.sigma1) <- names(jj.psi1)

> jj.mean2 <- c(1, 0.1, rep(1.1, 3))

> names(jj.mean2) <- c("rho", "lambda", names(jj.psi2))

> jj.sigma2 <- diag(c(1, 0.2, 1.1, 1.1, 1.2))/10

> rownames(jj.sigma2) <- names(jj.mean2)

> colnames(jj.sigma2) <- names(jj.mean2)

> jj.mean.th <- 1:2

> names(jj.mean.th) <- c("A", "B")

> jj.sigma.th <- diag(c(1.5, 1.7))

> rownames(jj.sigma.th) <- names(jj.mean.th)

> colnames(jj.sigma.th) <- names(jj.mean.th)

These variables may be passed directly to phi.fun.int():

> phi.int <- phi.fun.int(rho = 1, lambda = 1, psi1 = jj.psi1, psi2 = jj.psi2,

+ psi1.apriori = list(mean = jj.mean1, sigma = jj.sigma1),

+ psi2.apriori = list(mean = jj.mean2, sigma = jj.sigma2),

+ theta.apriori = list(mean = jj.mean.th, sigma = jj.sigma.th),

+ power = 2)

Notes:

� The purpose of the call to phi.fun.int() was to create a hyperparameter object, here
phi.int.

� you only have to call this function, with all its complicated arguments, once. Save the result
in, say, jj and then use function phi.change(), which is generic, and much simpler to use.

� The value for rho and lambda and power are just scalars

� psi1 and psi2 are structures, or named vectors (it’s always good practice to elements: two
for x and y, two for the parameters A and B, and one for sigma1squared. Vector psi2 has
three: two for x and y, and one for sigma2squared.

� the priors are as expected. Remember that the apriori distributions are over psi1 or psi2,
not just the roughness lengths.

So now we have a working hyperparameter object phi.int, we can modify it with generic
function phi.change():

> phi.int2 <- phi.change(old.phi = phi.int, phi.fun = phi.fun.int,

+ rho = 3)

> print(phi.int2$rho)

[1] 3

Note that function phi.change() takes an old.phi argument, which is a working hyper-
parameter object to be modified. It also takes a phi.fun argument, which is the name of a
hyperparameter creation function, in this case phi.fun.int.

6 Functions E.theta.int() and Edash.theta.int()

The online help page for E.theta.toy() discusses how to create a new function for use in a
particular example.

We need to define functions E.theta.int() and Edash.theta.int(). These functions change
when the basis functions h1.int() and h2.int() change, because of possible nonlinearity.

6

The function E.theta.toy() is relatively simple because there the basis functions were linear
in θ, so in this case expectation commutes past taking the basis functions1

The first step is to examine function E.theta.toy():

> E.theta.toy

function (D2 = NULL, H1 = NULL, x1 = NULL, x2 = NULL, phi, give.mean = TRUE)
{

if (give.mean) {
m_theta <- phi$theta.apriori$mean
return(H1(D1.fun(D2, t.vec = m_theta)))

}
else {

out <- matrix(0, 6, 6)
out[4:6, 4:6] <- phi$theta.apriori$sigma
return(out)

}
}
<environment: namespace:calibrator>

That was straightforward because the toy case included only linear basis functions. In the
intermediate case presented here, the basis functions are nonlinear so expectation will not commute
past h1.int(). Recall that function h1.int() includes a product:

> h1.int

function (xin)
{

out <- c(1, xin[1], xin[3], xin[1] * xin[3], xin[2]^2 * xin[4])
names(out) <- c("const", "x", "A", "Ax", "By.sq")
return(out)

}

(the fourth element of the output, viz xin[1]*xin[3], is nonlinear).
The fact that E(X2) 6= (E(X))2 complicates the matrix returned by function E.theta.int()

(see ?E.theta.int for details of this matrix). But we may copy from function E.theta.toy()
and modify as necesary:

> E.theta.int <- function(D2 = NULL, H1 = NULL, x1 = NULL, x2 = NULL,

+ phi, give.mean = TRUE) {

+ if (give.mean) {

+ m_theta <- phi$theta.apriori$mean

+ return(H1(D1.fun(D2, t.vec = m_theta)))

+ }

+ else {

+ out <- matrix(0, 5, 5)

+ out[3, 3] <- phi$theta.apriori$sigma[1, 1]

+ out[3, 4] <- phi$theta.apriori$sigma[1, 1] * x1[1]

+ out[4, 3] <- phi$theta.apriori$sigma[1, 1] * x2[1]

+ out[4, 4] <- phi$theta.apriori$sigma[1, 1] * x1[1] *

+ x2[1]

+ out[5, 5] <- phi$theta.apriori$sigma[2, 2] * x1[2] *

1This is not true in general. Consider a nonlinear case, for example h1(x, θ) = (1, A2x)T . Now Eθ (h1(x, θ))T —

that is, the expectation of (1, A2x)T under the prior distribution for θ—will be

(
1, (A

2
+ σ2

A)x

)T

.

7

+ x2[2]

+ return(out)

+ }

+ }

Notes

� The object returned when give.mean is TRUE does not need changing, because h1.int() is
linear in A and B. If there were nonlinear terms there (such as A2) we would need to add a
variance.

� The online help for E.theta.toy() discusses the give.mean being FALSE part. Here, we use
the fact that the prior distribution has zero correlation between A and B. The thing at the
top of page 5 of the supplement should be

Eθ

(
h1 (xj ,θ)h1 (xj ,θ)T

)
= Eθ


1 x A Ax By2

x x2 Ax Ax2 Bxy2

A Ax A2 A2x ABy2

Ax Ax2 A2x A2x2 ABxy2

By2 Bxy2 ABy2 ABxy2 B2y4

 (6)

which has value

1 x A Ax By2

x x2 Ax Ax2 Bxy2

A Ax A
2

+ σ2
A

(
A

2
+ σ2

A

)
x

(
A B + cov(A,B)

)
y2

Ax Ax2
(
A

2
+ σ2

A

)
x

(
A

2
+ σ2

A

)
x2

(
A B + cov(A,B)

)
xy

By2 Bxy2
(
A B + cov(A,B)

)
y2

(
A B + cov(A,B)

)
xy2

(
B

2
+ σ2

B

)
y4


and so the object to return (when give.mean is FALSE) is this, minus Eθ (h1(x, θ))Eθ (h1(x, θ))T

as documented. This would be
0 0 0 0 0
0 0 0 0 0
0 0 σ2

A σ2
Ax cov(A,B)y2

0 0 σ2
Ax σ2

Ax2 cov(A,B)xy
0 0 cov(A,B)y2 cov(A,B)xy σ2

By4


We can now use the fact that E(XY) = E(X) · E(Y) if X and Y are independent random
variables. In this case, because the prior variance matrix (viz, jj.psi1.apriori) is diagonal,
the different terms are indeed independent. So the covariance is zero and the matrix reduces
to 

0 0 0 0 0
0 0 0 0 0
0 0 σ2

A σ2
Ax 0

0 0 σ2
Ax σ2

Ax2 0
0 0 0 0 σ2

By4


which is implemented in function E.theta.int() given above2

� There is probably a better way to return this matrix.
2Returning to the nonlinear example given in the previous footnote, viz h = h1(x, θ) = (1, A2x)T . This would

have Eθ(h) =

(
1, x(A

2
+ σ2

A)

)T

and Eθ(h) · Eθ(h)T =

 1 x

(
A

2
+ σ2

A

)
x

(
A

2
+ σ2

A

)
x2

(
A

2
+ σ2

A

)2

.

8

6.1 Function Edash.theta.int()

Function Edash.theta.int() returns expectation of h1(x, θ) with respect to the normal distribu-
tion

N
(
(V −1

θ + 2Ωt)−1(V −1
θ Ωθ + 2Ωttk), (V −1

θ + 2Ωt)−1
)

(7)

Fortunately, Eθ(h · hT) is not required.
As the basis functions used are linear in theta3, expectation WRT the dashed distribution

commutes past the regressor function h1(·, ·). So we can just use the toy function:

> Edash.theta.int <- Edash.theta.toy

7 Data

We now generate some data: code runs, and observations.
This is done in order to test the routines: by generating data with known parameters and

hyperparameters we can verify that the package can reproduce at least approximately correct
values.

Consider the following equation, taken from KOH:

zi = ζ(xi) + ei = ρη (xi, θ) + δ(xi) + ei (8)

where zi is the i-th observation, ζ(xi) is the true value at point xi, ρ a calibration factor (of
notional value 1), η(·, ·) the code viewed as a function of observation point and parameter value, θ
the true but unknown set of parameters, and δ(·) the model inadequacy term, and ei ∼ N (0, λ2)
is an observational error term.

So, do the model first. Recall that the model is a Gaussian process and we have discussed the
mean in section 4. The variance matrix is given by function corr.matrix() of package emulator.
We know, ex cathedra, that A = B = 1:

> theta.TRUE <- c(1, 1)

and we can specify beta1 and psi1:

> beta1.TRUE <- c(0, 0, 0, 1, 1)

> psi1.TRUE <- c(4, 4, 4, 4, 0.5)

Now we need to create a design matrix:

> two.designs <- rbind(D1.int, D1.fun(x.star = D2.int, t.vec = theta.TRUE))

But what is needed by KOH is

Eθ

(
h · hT

)
= Eθ

(
1 A2x

A2x A4x2

)
=

 1 x

(
A

2
+ σ2

A

)
x

(
A

2
+ σ2

A

)
x2

(
A

4
+ 6A

2
σ2

A + 3(σ2
A)2
)  .

The manpage for function E.theta.toy() says how, if argument give.mean is FALSE, the value returned should

be the thing that has to be added to Eθ(h) · Eθ(h)T to give Eθ

(
h · hT

)
. The motivation for considering it this

way is that E.theta.toy(...,give=FALSE) will return a zero matrix for basis functions linear in θ.

So, for this h(·, ·), function E.theta.int() would have to return the difference between Eθ

(
h · hT

)
and Eθ(h) ·

Eθ(h)T , which would be

(
0 0

0 x2

(
4A

2
σ2

A + 2(σ2
A)2
))

.

3Returning to our nonlinear example, footnotes passim, viz h1(x, θ) = (1, xA2)T , we can see from equation 7

that E′
θ =
(
1, x
(
µ′2A + σ′2A

))T
where µ′A is the mean of the distribution in equation 7, that is, the first element of

the vector (V −1
θ

+2Ωt)−1(V −1
θ

Ωθ +2Ωttk), and σ′2A is the variance—that is the top left element of (V −1
θ

+2Ω−1
t)

(NB: this argument is true whether or not the variance matrix V θ and the positive definite scales matrix Ωt are
diagonal)

9

Here, two.designs is a design matrix of n1+n2 rows; the first n1 rows of which are the code
observation points, and the last n2 rows are the field observation points but with the true parameter
value added.

Just have a look at the first three and last three lines:

> two.designs[c(1:3, (n1 + n2):(n1 + n2 - 2)),]

x y A B
coderun.1 0.97500000 0.8750000 0.175 0.925
coderun.2 0.07500000 0.3250000 0.075 0.225
coderun.3 0.52500000 0.5250000 0.525 0.725
obs.21 0.07142857 0.4523810 1.000 1.000
obs.20 0.59523810 0.8333333 1.000 1.000
obs.19 0.11904762 0.9285714 1.000 1.000

See how the block of 1.0s in the lower right corner corresponds to appending the true value
of θ to the design matrix.

The next step is to sample from the appropriate multivariate Gaussian distribution:

> jj.mean <- H1.int(two.designs) %*% beta1.TRUE

> jj.sigma <- psi1.TRUE[5] * corr.matrix(two.designs, scales = psi1.TRUE[1:4])

> code.and.obs <- as.vector(rmvnorm(n = 1, mean = jj.mean, sigma = jj.sigma))

> y.int <- code.and.obs[1:n1]

> z.int <- code.and.obs[(n1 + 1):(n1 + n2)]

> names(y.int) <- rownames(D1.int)

> head(y.int)

coderun.1 coderun.2 coderun.3 coderun.4 coderun.5 coderun.6
0.1193273 1.0066465 0.1323027 -0.4866569 0.3248999 2.0319228

Notes

� The mean, jj.mean, is given by the linear combination of the regressor basis as discussed in
section 4

� The model η is a Gaussian process. The mean is specified, the variance matrix given by the
correlation function corr.matrix() of package emulator. The value for σ2

1 is one (ie the
fifth element of psi1.TRUE).

� Function rmvnorm() returns a matrix, which has to be converted to a vector.

� The names of y.int have to be specified explicitly.

� Observe how n=1 in the call to rmvnorm(). We are making a single observation of a multi-
variate Gaussian distribution.

7.1 Observations and model inadequacy

To create reality, we have to generate model observations using the true but unknown parameter
values.

We now have to add the model inadequacy term to z.int. First, specify the parameters and
hyperparameters of the model inadequacy:

> beta2.TRUE <- c(1, 1)

> psi2.TRUE <- c(3, 3, 0.6)

Which give the true values. Now create model inadequacy:

10

> jj.mean <- drop(H2.int(D2.int) %*% beta2.TRUE)

> jj.sigma <- corr.matrix(D2.int, scales = psi2.TRUE[1:2]) * psi2.TRUE[3]

> model.inadequacy <- rmvnorm(n = 1, mean = jj.mean, sigma = jj.sigma)

> z.int <- as.vector(z.int + model.inadequacy)

> names(z.int) <- rownames(D2.int)

Notes

� The overall purpose of the above code fragment is to create observations drawn from the
appropriate multivariate Gaussian distribution. The key is the fourth line, in which the
model observations cond.gp have model inadequacy added.

� Model inadequacy has two components: the mean (jj.mean), generated using the true
coefficients and the basis functions; and the correlated residual.

� The correlated error is added using rmvnorm() with a variance matrix generated by corr.matrix().

� The correlated error is independent of the model runs, and in particular is not a function
of θ.

Now add observational error:

> lambda.TRUE <- 0

> jj.obs.error <- rnorm(n2) * lambda.TRUE

> z.int <- z.int + jj.obs.error

> head(z.int)

obs.1 obs.2 obs.3 obs.4 obs.5 obs.6
2.675398 2.804364 1.028135 3.172953 2.453636 2.310070

Notes

� The observation errors are uncorrelated Gaussian with a mean of 0 and a variance of 0.1.

� Thus λ is 0.1

And finally we need to create a full data vector d.int

> d.int <- c(y.int, z.int)

8 Intermediate results

We now use some functions that are part of the BACCO bundle.
Note that the numbers given above will vary from instantiation to instantiation.
OK, so let’s change the hyperparameter object to contain the true values:

> phi.true <- phi.change(phi.fun = phi.fun.int, old.phi = phi.int,

+ psi1 = psi1.TRUE, psi2 = psi2.TRUE, lambda = 0.1, rho = 1)

and then use these hyperparameters to estimate the coefficients:

> betahat.fun.koh(theta = theta.TRUE, d = d.int, D1 = D1.int, D2 = D2.int,

+ H1 = H1.int, H2 = H2.int, phi = phi.true)

[,1]
const 1.2755562
x -2.1004811
A -1.6040515
Ax 3.1200186
By.sq 2.0126592
h2.x 1.7383768
h2.xy -0.7965033

11

(note the last argument to betahat.fun.koh()).
We know the correct answer should be c(beta1.TRUE,beta2.TRUE)=c(0,0,0,1,1,1,1), so

there is evidently a lot of scatter. Try redefining psi1.TRUE and psi2.TRUE so that the variance
(ie the last element of each vector) is smaller. Or for that matter, using a larger value of n1 in
section 3.

Just as a point of interest, we will estimate the betas but using the wrong parameters (recall
that in practice, the parameters’ true value is not known).

> betahat.fun.koh(theta = c(-5, 5), d = d.int, D1 = D1.int, D2 = D2.int,

+ H1 = H1.int, H2 = H2.int, phi = phi.true)

[,1]
const 0.3798236
x -0.7045016
A 0.1297719
Ax 1.2143164
By.sq 0.7210345
h2.x 9.7365183
h2.xy -2.4028462

This is far from the true values because we have used a very inaccurate value for theta.

8.1 Calibration

As a bit of fun, we can use equation 8 of the supplement, implemented in BACCO by p.eqn8.supp().
This equation gives the probability of theta, given d and psi. Note that this formula is conditional
on the correct hyperparameters psi, so we will use phi.true.

> p.eqn8.supp(theta = c(1, 1), D1 = D1.int, D2 = D2.int, H1 = H1.int,

+ H2 = H2.int, d = d.int, phi = phi.true)

[1] 426967.5

(recall that this function gives a number proportional to the true probability). Now try a different
value for theta:

> p.eqn8.supp(theta = c(5, -6), D1 = D1.int, D2 = D2.int, H1 = H1.int,

+ H2 = H2.int, d = d.int, phi = phi.true)

[1] 442.9185

See how this is lower, because the value of theta is unlikely to be the true one. So we could use
a maximum likelihood estimator (which would have to use numerical optimization techniques) to
estimate theta, if we knew the correct values to use for the hyperparameters.

In practice, the hyperparameters are not known in advance. Estimating them is the subject of
the next section.

9 Estimating the hyperparameters

The BACCO bundle includes two functions to automate the determination of the hyperparameters:
stage1() and stage2(). The bundle also includes a stage3() function which gives a MLE for
theta (but no such stage3 appears in KOH).

The function calls in this section are very computationally intensive and the calls include a
number of timesaving features (such as very short optimization) that degrade the quality of the
predictions.

These features are discussed where appropriate but the user is advised to fiddle with them to
get better results. YMMV.

12

9.1 Stage 1

KOH proposed estimating the hyperparameters in two stages. Stage 1 used just the code output
data y to estimate psi1. In the calibrator bundle, this is accomplished by stage1():

> phi.stage1 <- stage1(D1 = D1.int, y = y.int, H1 = H1.int, maxit = 10,

+ method = "SANN", trace = 0, do.print = FALSE, phi.fun = phi.fun.int,

+ phi = phi.int)

Notes

� Function stage1() returns a hyperparameter object, which contains optimized value for
psi1.

� The method used is simulated annealing, because with maxit=1 it finishes very quickly.

� The function takes a hyperparameter object, in this case phi.int.

� By default, function stage1() maximizes the posterior probability, so the prior (which is
part of the hyperparameter object) makes a difference.

We can examine the output of stage1() directly:

> phi.stage1$psi1

x y A B s1sq
0.09101085 1.52745802 2.28326286 0.56257685 3.02752500

Recall that phi.stage1$psi1 is a vector of free parameters that are used to calculate c1(x,x′).
Further recall that c1 ((x, t), (x′, t′)) = σ2

1 exp
{
−(x− x′)T Ωx(x− x′)− (t− t′)T Ωt(t− t′)

}
where σ2

1 , and Ωx and Ωt are positive definite matrices that are functions of psi1.
In this case we have

> phi.stage1$sigma1squared

s1sq
3.027525

> phi.stage1$omega_x

x y
x 0.09101085 0.000000
y 0.00000000 1.527458

> phi.stage1$omega_t

A B
A 2.283263 0.0000000
B 0.000000 0.5625769

9.2 Stage 2

Stage 2 is the estimation of ρ, λ, and psi2. This is accomplished by function stage().
NB: stage 2 is very computationally intensive!
OK, use stage2():

13

> use1 <- 1:10

> use2 <- 1:11

> phi.stage2 <- stage2(D1 = D1.int[use1,], D2 = D2.int[use2,],

+ H1 = H1.int, H2 = H2.int, y = y.int[use1], z = z.int[use2],

+ extractor = extractor.int, phi.fun = phi.fun.int, E.theta = E.theta.int,

+ Edash.theta = Edash.theta.int, maxit = 1, method = "SANN",

+ phi = phi.stage1)

x y s1sq
0.0000000 0.0000000 0.0000000 0.6931472 1.0986123
[1] -40.86517
sann objective function values
initial value 40.865170
final value 40.865170
sann stopped after 0 iterations

Notes

� This function takes a long long long time to run, and is very computationally slow.

� The function uses only the first 10 code runs and the first 11 field observations. You can
change this by modifying use1 and use2 in the above chunk.

� The above function call is an absolute minimum working model. It uses SANN with only
one function evaluation.

� The start point is the output from stage1(), viz phi.stage1.

� The purpose of function stage2() is to optimize the posterior probability of the hyperpa-
rameters rho, lambda, sigma2squared, and the lengthscales for c2(·, ·).

The modified hyperparameters are

> phi.stage2$rho

1

> phi.stage2$lambda

1

> phi.stage2$sigma2squared

s1sq
3

> phi.stage2$psi2

x y s1sq
1 2 3

(although, given the extremely short optimization run above, these parameters may well not
be different from the original).

14

10 Calibrated prediction

Function EK.eqn10.supp() carries out calibrated prediction as per section 4.2 of KOH2. It should
come as no surprise that

� The R code is complicated and impenetrable

� The function arguments are tedious, error-prone, and complicated

� The mathematics are complicated and impenetrable

� The numerics take an interminably long time to complete

� Even with the simplest case possible, accurate results require more computing power than
is available in the entire universe.

. . . but, it is implemented.
The first step is to read help(EK.eqn10.supp), which gives a working example.
There are two arguments that are not covered above. The first is X.dist and the second is

hbar. These are discussed in the online help pages.
For X.dist, we need to define an uncertainty distribution on the independent variables. Work-

ing from X.dist.toy, we may copy it directly:

> jj.xdist.mean <- rep(0.5, 2)

> names(jj.xdist.mean) <- c("x", "y")

> jj.xdist.var <- 0.05 + diag(c(0.1, 0.1))

> rownames(jj.xdist.var) <- c("x", "y")

> colnames(jj.xdist.var) <- c("x", "y")

> X.dist.int <- list(mean = jj.xdist.mean, var = jj.xdist.var)

thus defining a Gaussian uncertainty distribution for X. We now need a function hbar. The
manpage discusses this and gives an example. Note that the example is excruciatingly simple
because there the basis functions are linear in x. And in the intermediate case they are not.

To write a suitable function, we need to remind ourselves what the basis functions h1.int()
and h2.int() are. Look back at equations 4 and 5.

Take the top bit first. This is ρEX {h1(x,θ)}, that is, expectation with respect to X.dist.
Recall that h1(x,θ) = (1, x, A, Ax, By2)T , so the top bit is

ρEX

(
1, x, A, Ax, By2

)T
= ρ

(
1, x, A,Ax,B

(
y2 + σ2

y

))T
(9)

where the overline refers to expectation with respect to X.dist. The bottom bit is EX {h2(x)},
which is (recall that h2(x) = (x, xy)T):

EX (x, xy)T = (x, x · y + cov(x, y))T (10)

and we can use the fact that X.dist.int specifies zero correlation between the two independent
variables’ uncertainty distribution to reduce this to

(x, x · y)T

OK, using the toy example as a guide, we can define a working hbar.fun.int():

> hbar.fun.int <- function(theta, X.dist, phi) {

+ if (is.vector(theta)) {

+ theta <- t(theta)

+ }

+ first.bit <- phi$rho * H1.int(D1.fun(X.dist$mean, theta))

+ first.bit[, 5] <- first.bit[, 5] + theta[, 2] * X.dist$var[2,

15

+ 2]

+ second.bit <- H2.int(X.dist$mean)

+ jj.names <- colnames(second.bit)

+ second.bit <- kronecker(second.bit, rep(1, nrow(first.bit)))

+ colnames(second.bit) <- jj.names

+ return(t(cbind(first.bit, second.bit)))

+ }

notes

� See how the fifth column of first.bit has to have a component for the variance added, to
match the variance term in equation 9.

� There is no such addition to second.bit because the random variables in X.dist.int have
zero correlation.

� Everything else just follows from hbar.fun.toy().

Now we can conduct a calibrated prediction:

> jj <- EK.eqn10.supp(X.dist = X.dist.int, D1 = D1.int, D2 = D2.int,

+ H1 = H1.int, H2 = H2.int, d = d.int, hbar.fun = hbar.fun.int,

+ lower.theta = c(-3, -3), upper.theta = c(3, 3), extractor = extractor.int,

+ phi = phi.stage2, minpts = 5, maxpts = 51)

> jj

[1] 2.103622

Notes

� We use the optimized value for phi, that is phi.stage2.

� I have set maxpts to 10, as adapt() is very slow with the default settings. We could also
fiddle with the limits of integration, viz theta.lower and theta.upper.

� The above call generates an error, given by adapt() complaining that the minpts argument
has to be changed. Ignore this but note that the warning is well-founded: there are not
enough function evaluations to make for an accurate integration.

Robin K. S. Hankin
National Oceanography Centre, Southampton
European Way
Southampton SO14 3ZH
United Kingdom
E-mail: r.hankin@noc.soton.ac.uk URL: http://www.noc.soton.ac.uk

16

