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CHAPTER 5 

 
SIMULATION OF CIRCULAR RANDOM FIELDS 

 
 

5.1  Introduction 
 
 

This chapter defines a new method for simulation of a circular random field 

(CRF) by extending the inverse cumulative distribution function (CDF) method of 

generating a random variable (RV).  A random field (RF) is a stochastic process 

operating over a space.  A CRF is defined as a RF containing spatially correlated 

circular random variables (CRV).  A CRV takes random directions on a unit circle with 

the total probability of all possible directions distributed on the unit circle with support 

[ )π2,0  or equivalent support [ )ππ ,−  (Chapter 1, Figure 1-1).  In this chapter, the support 

is [ )ππ ,− .  Spatial correlation, which is the correlation between RVs a distance d apart, 

increases as distance between measurement locations decreases, i.e.,  rotations from 

the mean direction tend to be more similar as distance decreases.  In the form required 

by the circular kriging derivation of Chapter 4, spatial correlation is defined as the mean 

cosine of the angle between random components of directions (non random or trend 

component removed) vs. distance between measurement locations.  An isotropic CRF is 

a CRF in which spatial correlation is the same in all directions of the sample space. 

This chapter is organized as follows: the background is given in Section 5.2, the 

new method is defined in Section 5.3, the mathematical properties are discussed in 

Section 5.4, qualitative evaluations are given in Section 5.5, the method is extended to 

any continuous RV in Section 5.6, and the chapter summary and future work are given in 

Section 5.7. 
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5.2  Background 

 
 
5.2.1 Random Field 

To describe a type of spatial process, Besag (1974) described the RF as a 

stochastic model consisting of “a finite set of sites, each site having associated with it a 

univariate random variable.”  Mathematically, let 

o The dimension of the space be 1≥d  (usually d = 2 or 3), 

o x be a vector of location coordinates of a measurement location in the d-dimensional 

space of real numbers dR , 

o ( )xY  be a RV at location x, 

o ( )xµ  be the non random or trend component of ( )xY , which is the expected value 

of ( )xY  and a constant or a function of location x, and 

o ( )xε  be the random component of ( )xY  with mean zero. 

Then,  ( ) ( ) ( )xxx εµ +=Y , and the RF is the set ( ){ }dY R, ∈xx . 

Let nxxx ,, ,21 K be a set of locations in dR .  Then, ( ) ( ) ( )( )T

nYYY xxxY ,,, 21 K=  

is a vector of RVs which map to nxxx ,, ,21 K  in dR .  In a spatially correlated RF, the 

covariance of ( )iY x  and ( ) njiY j ,,2,1,, K=x , is a function f which depends on the 

distance and direction between RVs and decreases as the distance between RVs 

increases.  With E the expectation operator, the spatial covariance between ( )iY x  and 

( )jY x  in the direction of ij xx −  is  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ){ }=−−=≡ jjiijiji YYcYYc xxxxxxxx µµE,,  ( )ijf xx − .  The 

covariance of the vector Y is the symmetric and positive definite matrix 
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( )( ) ni,jc ji ,,2,1,, L== xxC .  In an isotropic RF, covariance is a function of distance 

only, i.e., ( ) ( )ijji fc xxxx −=, . 

For completeness, the spatial-temporal RV with the additional coordinate of time 

t is introduced.  ( ) ( ) ( )tttY ,,, xxx εµ += .  Hence, the spatial-temporal RF is the set 

( ) ( ){ }+⊗∈ RR,,, dttY xx .  In the remainder of this chapter, RFs will be considered 

without the coordinate t and with d = 2. 

 
5.2.2 Gaussian Random Field 

Worsley (2002, p. 1674) states (with notation changed for consistency in this 

subsection): 

The definition is simple: the Gaussian random field must be multivariate 

Gaussian at all finite sets of points, that is, ( ) ( )nYY xx ,,1 K  must be multivariate 

Gaussian for all n > 0 and all d
i R∈x .  Since the multivariate Gaussian is 

specified uniquely by its mean vector and variance matrix, then the Gaussian 

random field is defined uniquely by its mean function ( ) ( ){ }xx YE=µ  and its 

covariance function ( ) ( ) ( )( )jiji YYc xxxx ,cov, = .   

 

Let ( ) ( ) ( )( )Tnyyy xxxy ,,, 21 K=  be a sample from ( ) ( ) ( )( )TnYYY xxxY ,,, 21 K= , 

with expectation vector ( ) ( )( )Tnxxµ µµ ,,1 K=  and variance-covariance matrix C.  Note 

that Y (the vector of RVs) has an expectation and covariance, and that y (the vector of 

observations) does not.  Then, a Gaussian random field (GRF) is a RF in which the RVs 

follow the multivariate normal distribution with density 

 
( )

( ) ( )[ ]µyCµy
C

−−− −1

2
1exp

2

1

2
1

2

T

n

π
. 

Quimby (1986, p. 21) states that simulation of a GRF is accomplished by finding 

a factorization of the desired variance-covariance matrix C.  Thus, the isotropic GRF can 

be simulated as follows: 
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1) Generate a sequence of regular or random locations { } nii ,,2,1, K=x , and an 

equal length sequence of a standard normal RV, { } ( )1,0~, NiidZzi . 

2) Pair the sequence of realizations of Z with the sequence of locations.  For 

example, 1z  is paired with location 1x , 2z  is paired with location 2x , etc.  Denote 

the result as ( ) ( )21 , xx zz , etc. 

3) With ( ) nixx iii ,,2,1,, 21 K==x , compute the pairwise distances 

( ) ( ) njixxxxd ijijji ,,2,1,,
2

22

2

11 K=−+−= ,  

4) With ( )2,; σrdc ji  the desired covariance function of distance jid  between 

measurements locations, and parameters  r the range and 2σ  the variance, the 

positive definite variance-covariance matrix ( ) njic ji ,,2,1,, K==C  is computed 

with elements ( )2,; σrdcc jiij = .    For example, some introductory covariance 

models are: 

� Exponential: ( ) ( )
r

ddc 3exp2 −= σ  

� Gaussian: ( ) [ ] 





−=

2
2 3exp

r
ddc σ  

� Spherical: ( )
[ ] [ ]









>

≤





 −−

=

.,0

,
3

2
1

2
322

rd

rd
r

d
r

d
dc

σσ
 

These models were derived from Bailey and Gatrell (1995, pp. 179-180).  

The computed covariance values in C plotted vs. the corresponding pairwise 

distance coincides with a plot of the desired covariance model vs. distance.  Two 

RVs are uncorrelated at a distance equal to the range parameter of the spherical 

covariance model, and they are assumed to be uncorrelated at the “practical 
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range,” which is a distance r2=  for the Gaussian model and a distance r3=  

for the exponential model.   

5) The matrix C is factorized such that TCCC
~~

= .  Quimby (1986) states that the 

lower triangular method is computationally fast and numerically stable compared 

to the Cholesky decomposition. 

6) With ( )( ) nii ,,2,1, K== xµ µ , a vector of means, C
~

 a factorization of the desired 

variance-covariance matrix C, 0 the n x n matrix of 0s, I the n x n matrix with 1s 

in the main diagonal and 0 otherwise,  and ( )I0Z =∑, ~ 
n

N  an n-vector of 

independent standard normal RVs, let µZCV +=
~

.  Seber (1977, Theorem 1.1, 

Example 1.8, and Equation 1.4, pp. 8-11) proves that 

� { } { } { } µµ0CµZCµZCV =+=+=+=
~

E
~~

EE , and 

� ( ) ( ) ( ) .
~~~~~

Cov
~~

CovCov CCCCICCZCµZCV ====+= TTT  

7) With the vector ( ) nizi ,,2,1, K==z , containing the realizations of a standard 

normal RV Z from step 1, compute the vector µzCv +=
~

.  Pair the elements of v 

with the ix  such that v1 is paired with location 1x , v2 is paired with location 2x , 

etc.  Let this be denoted as ( ) ( )21 , xx vv , etc.  Then, the set ( ){ }niv i ,,2,1, K=x  

constitutes a simulation or realization of a GRF of mean vector µ  and variance-

covariance matrix C. 

The function grf in the R package geoR (Ribeiro and Diggle 2001) generates 

simulations of GRFs for many covariance models.  The function GaussRF in the R 

package RandomFields (Schlather 2001) generates simulations of GRFs for additional 

covariance models. 
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5.3  New Method of Generating a CRF 

 
Figure 5-1 shows a simulation of a CRF with the von Mises CRV, parameter 

8.=ρ , which was transformed from a GRF with spherical covariance model and range 

10=r .  It was simulated using the R code in Appendices K.5 and L.3 with 

standardization of the realizations of the Gaussian random variable (GRV), ( )1,0~ NZ , 

to mean 0 and standard deviation 1 for demonstration.  Realizations of the GRV, 

( ) niz i ,,2,1, K=x  with support ( )∞+∞− ,  are mapped to the θ  with support [ )ππ +− ,  as 

illustrated in Figure 5-2.  ( )zFZ  the CDF of Z and ( )θΘG  the CDF of Θ .  The mapping of 

Z to Θ is 

o −∞=iz  has cumulative probability ( ) 0=∞−= Zi Fp  and maps to 

( )( ) ( ) πθ −==∞−= −
Θ

−
Θ 011 GFG Zi  radians, 

o 0=iz  has cumulative probability ( ) 5.00 == Zi Fp  and maps to 

( )( ) ( ) 05.00 11 === −
Θ

−
Θ GFG Ziθ  radians, 

o +∞=iz  has cumulative probability ( ) 1=∞+= Zi Fp  and maps to 

( )( ) ( ) πθ +==∞+= −
Θ

−
Θ 111 GFG Zi  radians. 

 
 

Figure 5-1.  Simulated Sample of a von Mises CRF, 8.0=ρ , Range r = 10. 
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Figure 5-2.  Mapping a GRV to a CRV via the CDFs ZF  and ΘG .  Direction of Θ  is 

expressed in radian units. 
 
 

A CRF may be simulated as follows: 

1) Generate a GRF with the desired covariance model and variance 12 =σ .  For 

visualization of a CRF with closer fit to the desired circular distribution, the observations 

( ) niz i ,,2,1, K=x  may be standardized to mean 0 and standard deviation 1.  Figure 5-3 

shows the standardized sample of the GRF with spherical covariance model, range r = 

10, corresponding to Figure 5-1.  Standardization should not be applied for simulation, 

analysis, or testing purposes as it produces undesirable effects (Subsection 5.4.4), but it 

may be used to obtain a single realization of an almost perfect CRF.  Figure 5-3 was 

constructed with the R code in Appendices K.5 and L.4. 

 
 

Figure 5-3.  Simulated GRF with Spherical Covariance Model and Range r = 10 
Corresponding to Figure 5-1. 
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2) For each realization ( ) niz i ,,2,1, K=x , compute the corresponding cumulative 

probability ( )( )iZi zFp x= . 

3) For the desired CRV Θ  with support [ )ππ +− ,  in Table 5-1, compute the inverse 

CDF ( )( ){ }iZi zFG x1−
Θ=θ  per Table 5-2.  Table 5-1 PDFs are derived in Appendix G,  

and Table 5-2 CDFs are derived in Appendices G and H, Equations (G.1) to (G.4), 

and (H.6).  Note that, with exception to the triangular distribution, the PDFs of the 

selected distributions for support [ )ππ +− ,  are identical to the PDFs for support  

[ )π2,0 +  (Chapter 3, Table 3-1). 

• For the uniform CRV, the exact inverse CDF is ii pππθ 2+−= .  

• For the triangular CRV, iθ  is computed by applying the quadratic solution of 

Appendix I , Equations (I.2), (I.3), and (I.4). 

• For CDFs containing trigonometric functions, e.g., the cardioid, von Mises, and 

wrapped Cauchy distributions (Table 5-2), the inverse CDF does not have a 

closed form.  For CDFs containing trigonometric functions, 

a) Compute a table of the desired circular CDF per Table 5-2 using  a 

sequence of θ  from π−  to π . 

b) Interpolate the iθ  on the table of the circular CDF at ip .  Let Lp  and Up  

be the lower and upper cumulative probabilities bounding ( )( )iZi zFp x= , 

and Lθ  and Uθ  be the corresponding directions in radians in [ )ππ +− , .  

Then, ( )LU

LU

Li
Li

pp

pp
θθθθ −

−

−
+= .  The R implementation is given in the 

last page of Section K.5, Appendix K. 
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Table 5-1.  Circular Probability Distributions in R Package CircSpatial, ,0=µ  πθπ <≤−  

Radians. Circular density is plotted as the length of radial between black filled unit circle 
and outer curve. 
 

Name of 
Distribution 

Circular PDF 
Plot 

Circular PDF 
Function 

Range of 
Parameter ρ  

Value of ρ  

in PDF Plot 

Cardioid 
 

 

( )[ ]θρ
π

cos21
2

1
+  

ρ =mean 

resultant 
length, 

 
5.00 ≤< ρ  

ρ = 0.95 x 0.5 

Triangular 

 
πθθπδ

θπθπδ

π

πρδρπ

<≤−=

<≤−+=

+−

0,

0,

8

24 2

 2

4
0

π
ρ ≤<  

2

4
95.

π
ρ ×=  

Uniform 

 

π2

1
 NA NA 

von Mises 

 

( )( )
22

0 !

1

2
2

cosexp

















∑

∞

= j

j

j

κ
π

θκ  

 

κ = 
concentration, 

∞<< κ0  

10.2696=κ  

equivalent 

to 95.=ρ  

  

Wrapped 
Cauchy  

 
( )θρρ

ρ

π cos21

1

2

1
2

2

−+

−
 10 << ρ  ρ = 0.95 x 1 
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Table 5-2.  CDFs and Inverse CDFs for Circular Distributions, πθπµ <≤−= ,0  

Radians. 
 

Distribution CDF Inverse CDF 

Cardioid 
( )

π

θρπθ

2

sin2++
 Interpolate CDF 

Triangular 

πθθ
π

ρπ
θ

ρ

θπθ
π

ρπ
θ

ρ

<≤+
+

+−

<≤+
+

++

0,
2

1

8

4

8

0-,
2

1

8

4

8
2

2

2
2

 
Solution in   
Appendix I 

Uniform 
π

πθ

2

+
 ( )( )iZi zF xππθ 2+−=  

von Mises 

( )( )
φ

κ
π

φκθ

π
d

j

j

j

∫
∑

−
∞

= 















22

0 !

1

2
2

cosexp
 

Interpolate CDF 

Wrapped 
Cauchy 

( ) ( )
( )

( ) ( )
( )

πθ
θρρ

ρθρ

π

θπ
θρρ

ρθρ

π

<≤










−+

−+
+

<≤−










−+

−+
−

−

−

0,
cos21

2cos1
cos

2

1
5.

0,
cos21

2cos1
cos

2

1
5.

2

2
1

2

2
1

 Interpolate CDF 

 
 

4) Let the pair ( )ii θ,x  be denoted ( )ixθ .  Then, the set ( ){ }nii ,,1, K=xθ  is a simulation 

of the desired CRF.  The function SimulateCRF in the R package CircSpatial 

(Appendix J, Section J.2) generates CRFs for the circular probability distributions in 

Table 5-1. 

 
5.4  Mathematical Properties of the CRF 

 
In the following subsections, the distributional and spatial properties of the 

circular-spatial data produced by the method of Section 5.3 will be discussed. 



 

 

113 
5.4.1 Distributional Properties of the CRF 

Let Z be a continuous RV with a CDF ZF , and define the random variable V as 

( )ZFV Z= .  Then, as shown by the CDF method in many textbooks in mathematical 

statistics (Rice 1995, p. 60), ( ) ( )1,0~ UZFV Z= , i.e., V is uniformly distributed.  Also, as 

shown by the inverse CDF method in many textbooks in mathematical statistics (Rice 

1995, p. 61), the distribution of Z can be generated by the inverse transformation 

( )VFZ Z
1−= .  This is a popular method for the generation of a random variable when 1−F  

is known in closed form and fast to calculate. 

Now let Z  be a GRV of a GRF, and ( )θΘG  be the CDF of the desired CRV Θ .  

By the CDF method, ( ) ( )1,0~ UZFZ , and by the inverse CDF method,  

              ( )( ) .~1
Θ

−
Θ GZFG Z         (5.1) 

This is an extension of the inverse CDF method. 

Given that a simulated GRF is a set of realizations of a GRV, it has a 

corresponding sample the uniform distribution equal to the cumulative probabilities of the 

realizations of the GRV.  When this sample from the uniform distribution is input to the 

circular inverse CDF, the result is a  sample from the desired circular distribution ΘG . 

 
5.4.2 Spatial Properties of the CRF 

Let ( )xΘ  be a CRV at the location x in 2-dimensional real space 2R , ( )xµ  be 

the non random or trend component of ( )xΘ , which is the expected value of ( )xΘ  and a 

constant or a function of location,  and ( )xε  be the random component of ( )xΘ , which 

follows a circular probability distribution.  The parameters of the circular probability 

distribution, which are based on the unit vector form of the CRV, are the mean resultant 

direction µ , and the mean resultant length ρ , which is a measure of concentration 
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about the µ  (Chapter 3, Subsection  3.3.1).  Then, ( ) ( ) ( )xxx εµ +=Θ , and  the 

CRF is the set ( ){ }2, R∈Θ xx . 

As required by the circular kriging derivation of Chapter 4 , circular-spatial 

correlation is expressed as the mean cosine of the angle between random components 

of direction ( )dς  as a function of the distance d between measurement locations 

(isotropic CRF).  Let jiD  (Chapter 3, Figure 3-3) be the angle or circular distance 

between the random components of direction of observations i and j, and n the number 

of observations of a sample, 

( ) ( )( ) ( ) ( )( ) ( ) ( ) njiD ijiijjji ,,2,1,, K=−=−Θ−−Θ= xxxxxx εεµµ , and 

( ) ( ){ } ( ) ( )( ){ } dDd ijijji =−−== xxxx ,cosEcosE εες . 

 
5.4.2.1 Mean Cosine at Distance Zero 

When the distance between measurement locations goes to zero, the mean 

cosine ( )0ς  is taken of the angle between a CRV and itself, i.e., ⇒≡→
→

0iiij DD
ij xx

 

( ){ } ( ){ } 10cosEcosE ==iiD .  Thus, the mean cosine at zero distance is one, which is the 

maximum.  The mean cosine is observed to approach one as distance between 

measurement locations approaches zero. 

Measurement error may cause measurements which are located close together 

to be more different, resulting in a cosineogram with a mean cosine less than one for 

distances close to zero.  This reduction in the mean cosine is called the nugget as in the 

kriging of linear RVs. 
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5.4.2.2 Mean Cosine at Distances Where CRV 
 Are Spatially Correlated 

In a GRF with spatial correlation, observations of the GRV tend to be increasingly 

similar as the distance between measurement locations decreases.  Because the CDF 

of the GRV Z is a one to one and strictly increasing function, the corresponding 

cumulative probabilities of the GRV will also tend to be increasingly similar.  Thus,  

spatially correlated GRV map to spatially correlated cumulative probabilities.  

Conversely, by the extended inverse CDF method of Section 5.3, the transformation 

(5.1) of spatially correlated cumulative probabilities via the one to one and strictly 

increasing circular inverse CDF results in spatially correlated CRV.  The measurement 

location coordinates are not transformed.  Hence, the set of untransformed spatial 

coordinates of the GRF and the corresponding computed CRV constitute a simulated 

CRF. 

Figure 5-4 contains two variograms and one cosineogram (Chapter 3).  In the 

kriging of a linear RV, with 2σ  the variance of the RV, r  the scale parameter, and 

( )rdc ,  the covariance model dependent on the distance d  between measurement 

locations, spatial dependence is expressed as the semivariance ( ) ( )rdcd ,2 −= σγ .  

The variogram is a plot of γ̂  vs. d.  It is a robust alternative to the empirical covariance.  

For the cosineogram, spatial correlation is expressed as the mean cosine of the angle 

between random components of directions.  Where the CRV are uncorrelated, the mean 

cosine and the semivariance form a plateau, which is called the sill. 

Figure 5-4 was constructed using the R code in Appendices K.4 and L.5 with 

standardization of the GRF of spherical covariance and range 10=r , and for a  von 

Mises CRF of 8.0=ρ . 
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Figure 5-4.  Similar Shapes of Variograms and Inverted Cosineogram Reflect 
Transformations of the Spatial Correlation of the GRF.  This figure corresponds to 
Figures 5-1 and 5-3. 
 
 

The cosineogram, an analogue of the covariogram (an inverted variogram), was 

inverted vertically to compare its shape to the shapes of the corresponding variograms.  

Note that the cosine axis labels are reversed in the bottom plot.  The grey vertical lines 

are plotted at the value of the range input parameter of the GRF covariance model.  

Figure 5-4, which corresponds to Figures 5-1 and 5-3, shows that the variogram 

of the sample of the GRF, the variogram of the cumulative probabilities of the 
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realizations of the GRV, and the inverted cosineogram of the CRF, are similar in 

shape.  Hence, the computed CRVs have spatial correlation resembling, but not identical 

to the spatial correlation of the cumulative probabilities and of the GRF.  How may the 

circular-spatial correlation be characterized? 

 The mean cosine function of distance is implicit in the relationship between the 

GRF covariance model and the simulated CRV.  Let’s build up an expression of that 

relationship.  With ( )ii yx ,  and ( )jj yx ,  the coordinates of two measurement locations, 

the distance from location ( )ii yx ,  to location ( )jj yx ,  is ( ) ( )22

jijiji yyxxd −+−= .  

Next, with ( )jidc  the covariance model of the GRF, E the expectation operator, and 

( )ii yxZ ,  and ( )jj yxZ ,  mean 0 variance 1 GRVs of the GRF at ( )ii yx ,  and ( )jj yx , , 

respectively, the covariance function of distance is 

 

( ) ( ) ( )

( ) ( ){ } ( ){ } ( ){ }

( ) ( ){ }.,,E

,E,E,,E

00

22

jjii

jjiijjii

jijiji

yxZyxZ

yxZyxZyxZyxZ

yyxxcdc

=

−=







 −+−=

4342143421
. 

Next, with FZ  the CDF of the GRV Z, and ΘG  the CDF of the CRV ,Θ  apply the method 

of simulating a CRF (Section 5.3).  Hence, ( ) ( )( )( )iiZii yxZFGyx ,, 1−
Θ=Θ  and 

( ) ( )( )( )jjZjj yxZFGyx ,, 1−
Θ=Θ .  Conversely, 

( )( )( ) ( )( )( )( )( ) ( )iiiiZZiiZ yxZyxZFGGFyxGF ,,, 111 ==Θ −
ΘΘ

−
Θ

−  and likewise 

( )( )( ) ( )jjjjZ yxZyxGF ,,1 =ΘΘ
− .  Substituting for ( )ii yxZ ,  and ( )jj yxZ ,  in the covariance 

expression, the expression of the general relationship is 

 ( ) ( ) ( )( )( )
( )

( )( )( )
( ) 
















ΘΘ=





 −+− Θ

−
Θ

−

444 3444 21444 3444 21
jjii yxZ

jjZ

yxZ

iiZjiji yxGFyxGFyyxxc

,

1

,

122
,,E . 
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For a specific example, let the covariance function be spherical (Subsection 

5.2.2, step 4), point 3) with range r and 12 =σ .  Then,  

( )









>

≤









+−

=

.,0

,5.05.11

3

rd

rd
r

d

r

d

dc

ji

ji

jiji

ji  

Now let the CRV of the CRF mapping from the GRF have a cardioid circular CDF with 

parameter ρ  (Table 5-2).  Then, ( )( ) ( ) ( )( )
π

ρπ

2

,sin2,
, iiii

ii

yxyx
yxG

Θ++Θ
=ΘΘ  .  Hence, 

the complete expression of the relationship between the spherical covariance of the 

GRF and the cardioid CRV of the CRF is 

( ) ( )( ) ( ) ( )( )



















 Θ++Θ







 Θ++Θ −−

π

ρπ

π

ρπ

2

,sin2,

2

,sin2,
E 11 jjjj

Z
iiii

Z

yxyx
F

yxyx
F  










>

≤









+−

=

.,0

,5.05.11

3

rd

rd
r

d

r

d

ji

ji

jiji

 

The problem is then to transform this nonclosed form relationship into an expression of 

the mean cosine of the angle between CRV vs. distance ( )jidς  and the parameters r and 

ρ . 

As an alternative to the derivation of an approximating expression characterizing 

the mean cosine vs. distance produced by the method of Section 5.3, the cosine curve 

may be described by an approximating covariance model of a GRF with translation and 

scaling (Chapter 3, Subsection 3.6.2).  With ρ  the mean resultant length of the circular 

probability distribution, 10 <≤ ρ , ng the nugget, 210 ρ−<≤ gn , and ( )dc the covariance 

function of distance d from linear kriging with a maximum value of one,  
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the cosine model is 

       ( ) ( ) ( )





>−−+

=
=

.0,1

0,1

22 ddcn

d
d

g ρρ
ς        (5.2) 

Hence, the mean cosine is 1 at zero distance, 1 minus the nugget at distances close to 

0, greater than 2ρ  and less than 1 minus the nugget at distances where CRV are 

correlated, and 2ρ  at distances where CRV are uncorrelated (Chapter 3, Equation 

(3.11)).  Some introductory cosine models were given in Chapter 3, Subsection 3.6.2, 

and additional models are tabulated for a wide range of conditions in Appendix M, 

Section M.5. 

Even though cosine models are not fully specified in the CRF domain as closed 

form expressions, but as transformations from the GRF domain, the cosine models 

acquire practical meaning as they apply to real world data (Chapter 3, Section 3.7, 

Figure 3-13). 

 
5.4.2.3  Mean Cosine at Distances Where CRV 
 Are Uncorrelated 

 Applying the method of Section 5.3, the location coordinates of the GRV are 

untransformed.  At distances at which the GRV are uncorrelated, the transformations of 

the GRV are also uncorrelated.  Thus, the corresponding cumulative probabilities 

( )( )iZ zF x  and simulated CRV ( ) ( )( )( )iZi zFG xx 1−
Θ=θ  are uncorrelated at distances where 

the GRV are uncorrelated.  Hence, the distance at which the computed CRV are 

uncorrelated equals the distance at which the GRV are uncorrelated.  In the example of 

Figure 5-4 with spherical covariance, the distance at which RVs are uncorrelated is 

approximately the range 10=r . 
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In Chapter 3, Section 3.3, the theoretical sill, which is the expectation of the 

cosine of the angle between independent random components of the CRVs was derived.  

The sill is equal to the square of the mean resultant length of the circular probability 

distribution.  In Chapter 3, Section 3.4, it was determined that the vector resultant mean 

length is the parameter ρ  of the circular distributions examined, which are the cardioid, 

triangular, uniform ( )0=ρ , von Mises, and wrapped Cauchy distributions.  Hence, the sill 

is 2ρ .  Hence, the mean cosine will be 2ρ  at distances at which the GRV are 

uncorrelated. 

 
5.4.3 Overfitting Improves Fit of the Output 
 CRV to the Desired CRV 

The QQ (quantile-quantile) plot is a graphical method in which data are plotted 

against the expected values of a comparison distribution.  The QQ plot shows a linear 

pattern when the data come from the comparison distribution.  In Section 5.3, it is stated 

that the realizations of the GRV can be standardized to mean 0 and standard deviation 

1.  This was motivated by the observation that the variation in the mean and standard 

deviation of the GRV transforms to variation in the mean resultant direction and the 

mean resultant length, respectively, of the output CRF.  Hence, standardizing the 

realizations of the GRV results in a closer fit of the output CRV to the desired CRV.  The 

resulting CRF simulation is over fitted, but useful to demonstrate or visualize a closely 

fitting simulation. 

Figure 5-5 was constructed using the R code in Appendices K.13 and L.6.  For 

each of 30 simulations of a GRF (spherical covariance, range=10, variance=1, with 

standardization of the realizations of the GRV), the point coordinates of the QQ standard 

normal plot and the QQ circular uniform plot were accumulated separately.  At the 

conclusion of the simulations, the point density was computed for each set of points. 
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Figure 5-5.  Standardization of the GRV Increases Fit of the GRV and the CRV.  The 
uniform CRV was transformed from a GRF with spherical covariance and range=10.  
Circular quantiles are expressed in radian units.  QQ density plots for other circular 
distributions with ρ  at mid point of the parameter range allowed by the distribution 

showed results similar to Figure 5-5. 
 



 

 

122 
The same simulations were repeated without standardization by setting the 

seed of the random number generating process to the seed value prior to the first set of 

simulations.  Again, the QQ plot points were separately accumulated, and the point 

densities computed for each of the two sets of points.  In Figure 5-5, point density is 

shown as color.  The greater the density about a straight line, the closer the realizations 

of a RV are to the comparison distribution.  In the left plots, realizations of the GRV are 

standardized prior to transformation to the CRV (OverFit = TRUE in R package 

CircSpatial function SimulateCRF, Appendix J, Section J.2).  In the right plots,  

realizations of the GRV are not standardized (OverFit = FALSE).  The point mass in the 

left plots is more concentrated along the straight line of equality than the point mass in 

the right plots.  This indicates that standardization results in a closer fit to the desired 

distributions. 

Figure 5-6, which was constructed using the R code in Appendices K.13 and L.7,  

demonstrates the effect of decreasing ρ  without standardization of the GRV on the fit of 

a CRV.  The triangular CRV (Table 5-1) was arbitrarily selected.  As ρ  is decreased, 

dispersal of the QQ point mass increases.  In the bottom plots with =ρ  25% of the 

maximum ( )2425.0 π× , standardization dramatically reduces dispersal of QQ point 

mass in the right plot.  It is apparent that without standardization, the variability of the fit, 

which is indicated by the QQ point mass dispersal, increases as ρ  decreases.  This 

does not mean in general that standardization is desirable.  In the next section, the 

undesirable effects of standardization are discussed. 
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Figure 5-6.  Variability of Fit of the Simulated Triangular CRV Increases as ρ  

Decreases.  Circular quantiles are expressed in radian units. 
 
 
5.4.4 Overfitting Has Unwanted Effects 

Figure 5-7 was constructed by fitting 400 variograms made from the 400 

simulations of a GRF with spherical covariance, range=10, variance=1.  In the first set of 

simulations, realizations of the GRV were standardized.  The sequence of simulations 

was repeated without standardization by setting the seed of the random number 

generating process to the seed value prior to the first set of simulations.  The right plot 

without standardization has the correct variance of 1 at distance = 10.  The left plot with 

standardization has a biased variance at distance = 10.  If variation in the center and 

scale of the GRV is eliminated by standardization, everything that is derived from the 

CRF is altered.  If a test were constructed based on simulations with standardization, a 

simulation without standardization would more likely appear as unusual and be rejected 

in a test of hypothesis, inflating the type 1 error. 
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Figure 5-7.  Standardization of the GRV Biases the GRF Covariance.  The plots are 
averages of variograms (inverted covariance) of GRF with spherical covariance, 
range=10, and variance=1. 
 
 

In summary, standardization is suitable for demonstration of a CRF with closer fit 

for visualization, but should not be used for the purposes such as simulation, analysis, 

and testing. 

 
5.5  Qualitative Evaluations of Method of Simulating a CRF 

 
 
5.5.1 Review 

 In this section, QQ plots will be used to show agreement with the desired 

probability distributions, and the variogram and the cosineogram will be used to show 

agreement with the desired spatial properties.  In the kriging of a linear RV, with 2σ  the 

variance of the RV and ( )rdc ,  the covariance model with range (scale) parameter r  and 

dependent on the distance d  between measurement locations, spatial dependence is 

expressed as the semivariance ( ) ( )rdcd ,2 −= σγ .  The variogram is a plot of γ̂  vs. d.  

It is a robust alternative to the empirical covariance.  For the cosineogram, spatial 

correlation is expressed as the mean cosine of the angle between random components 
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of directions.  Where the CRV are uncorrelated, the mean cosine and the 

semivariance form a plateau, which is called the sill.   

 
5.5.2 Construction of Figure 5-8 

Figure 5-8 was computed using the R code in Appendices K.6 and L.8.  The von 

Mises CRF, 8.0=ρ , was  transformed from a realization of a GRF with spherical 

covariance, range 10=r , with standardization of the realizations of the GRV to 0 mean 

and standard deviation 1 for close fit.  Figure 5-8, which closely corresponds with and is 

based on the same data as Figures 5-1, 5-3, and 5-4, provides qualitative evaluations of 

the standardized GRF and the CRF. 

Per the R function “ppoints”, with k the index of the order statistic, n the number 

of observations, and 




>

≤
=

10,21

10,83

n

n
cn , the theoretical quantile of the QQ plots is 

computed based on the corresponding cumulative probability ( ) ( )nn cnck 21/ −+−= . 

 
5.5.3 Evaluations 
 

In the QQ plots on the left of Figure 5-8, the degree of fit is indicated by proximity 

of the plotted curve to the straight line of equality  through the origin.  Although the QQ 

plot can show clear departures from the comparison distribution as a structured 

deviation from a straight line, minor departures may be indistinguishable from the typical 

variation of sampling from the comparison distribution. 

The upper left plot is the QQ Standard Normal plot of the realizations of the GRV 

of the GRF.  The blue line through the origin represents the standard normal probability 

distribution.  The standardized realizations of the GRV (black curve) display a high 

degree of fit to the standard normal distribution.  The GRV is over fit as described in 

Subsection 5.4.3. 
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Figure 5-8.  Evaluation of a von Mises CRF, 8.0=ρ , Overfit, Range r = 10.  The CRF, 

which was transformed from a GRF with spherical covariance corresponds to Figures 5-
1, 5-3, and 5-4.  The QQ standard normal (top left) plot, the QQ von Mises plot (middle 
left),  and the QQ uniform plot (bottom left) plots show simulations with close fits.  The 
range of the variogram of the GRF (top right) and of the cosineogram (middle right) of 
the CRF match the input range 10.  The square of the sample mean resultant length 

(blue dashed horizontal line) of the cosineogram is visually indistinguishable from 2ρ  

(grey horizontal line). 
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The middle left plot is the QQ circular plot of the simulated CRV of the CRF.  

The title is automatically generated by the input specifications for subsequent reference.  

Thus, the CRF input specifications are von Mises distribution with 8.0=ρ .  The blue 

line through the origin represents the desired distribution, which is the von Mises 

8.0=ρ .  The simulated CRV (black curve) displays a high degree of fit to the desired 

distribution. 

The bottom left plot is the QQ Uniform plot of the cumulative probabilities of the 

realizations of the GRVs.  The QQ Uniform plot displays a high degree of fit to the 

uniform distribution.  According to the inverse CDF method, the high degree of fit 

predicts a high degree of fit for the CRV.  The subtitle is automatically generated with 

three metrics of fit for evaluation.  By the CDF method, the cumulative probabilities of a 

RV are uniformly distributed.  When [ ]1,0~ UX , { } 5.0=XE and 12/1)( =XVar .  Hence, 

the fit of the cumulative probabilities to the uniform distribution may be measured as the 

mean cumulative probability minus 0.5, and as the variance of cumulative probabilities 

minus 1/12.  Then, if the variance minus 1/12 is negative, data are more concentrated in 

the middle.  If the difference is positive, the data are more concentrated toward the tails. 

The deviation of the mean from 0.5 indicates an off center condition with positive 

deviation indicating a shift towards higher values.  Additionally, “closeness” is defined as 

the mean vertical distance between QQ uniform plot points and the line through the 

origin.  Hence, zero indicates a perfect fit.  These metrics provide information to assess 

fit. 

The upper right plot is a variogram reflecting the spatial properties of the GRF.  

The plot subtitle is generated by the input specifications for subsequent reference.  

Hence, the GRF input specifications are spherical covariance, range = 10, sill = 1, and 

mean=0.  The grey vertical line is located at the input range of 10 and the grey horizontal 
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line is located at the input sill of 1.  The variogram has a sill of about 1.0 and a range 

of about 10 consistent with the input specifications. 

The bottom right plot is the cosineogram of the simulated CRF.  The shape of the 

cosineogram is similar to the shape of the inverted variogram (upper right plot).   The 

grey vertical line is the input range.  The cosineogram matches the range input.  The 

grey horizontal line, which is the theoretical sill 2ρ , is visually indistinguishable from the 

blue dotted horizontal line, which is the square of the sample mean resultant length r.  

Thus, the cosineogram sill, the theoretical sill, and the sample mean resultant length 

squared are all close together.  Hence, these observations evidence that the CRF has 

the correct range and sill. 

Additional examples, with ρ  set to one half of the maximum (Table 5-1), with 

standardization of the realizations of the GRV and selected with regard for fit, are shown 

in Appendix C.  Further examples, with ρ  set to the extremes of 5% and 95% of the 

maximum, with and without standardization of the GRV for comparison, and generated 

sequentially without regard for fit, are shown in Appendix D.  The spatial properties were 

scored, and summarized in Table D-1.  The conclusion was that the QQ plots with 

standardization indicated a high degree of fit.  Standardization of the GRF had no 

apparent effect on agreement of the spatial properties of a simulation with the desired 

spatial properties. 

 
5.6  Extension of the Method 

 
The extension of the inverse CDF method to the simulation of circular random 

fields may be applied to any continuous RV whose CDF can be computed, or whose 

inverse CDF exists in closed form following the method of Section 5.3. 
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5.7  Chapter Summary and Future Work 

 
The CRF was defined as a RF consisting of spatially correlated CRVs.  The well 

known inverse CDF method, i.e., the fact that the inverse CDF of the desired RV 

operating on a uniform RV produces the probability distribution of the desired RV, was 

extended to the production of a CRF.  The GRV component of a GRF with spatial 

correlation has spatially correlated cumulative probabilities.  The inverse CDF of the 

desired circular probability distribution operating on the spatially correlated cumulative 

probabilities produces a spatially correlated CRV.  The combination of the computed 

CRV and the untransformed coordinate locations of the corresponding realizations of the 

GRV is a simulation of the CRF.  This method is applicable to any continuous RV. 

The spatial properties of the simulated CRF were discussed.  The spatial 

correlation of circular-spatial data is expressed as the mean cosine of the angle between 

random components of direction observed at a distance d apart vs. d as required by the 

circular kriging solution of Chapter 4.  These properties include: 

1) The mean cosine at distance zero is one.  A discontinuity may exist near zero due to 

measurement error.  The size of the discontinuity is called the nugget. 

2) The mean cosine behavior between distance zero and the distance at which RVs are 

uncorrelated was characterized by closely fitting shifted and scaled positive define 

covariance functions from linear kriging. 

3) The mean cosine at distances where GRV and CRV are uncorrelated is the square 

of the mean resultant length of the CRV component of the CRF.  For the circular 

probability distributions examined, it is 2ρ , with ρ  the mean resultant length 

parameter of the CRV. 
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Standardization of the realizations of the GRV to mean 0 and standard 

deviation 1 was examined.  Standardization results in bias of the GRF variance, over 

fitting of the desired the CRF, and inflated type 1 error in tests based on simulation of 

over fitted realizations.  Hence, over fitting may be used for the purpose of visualization 

of close fit, but should not be used for simulation, testing, or analysis.  Qualitative 

evaluations of over fitted simulations demonstrated that CRFs produced were correct.  

The CRV  component of the CRF had a close fit to the desired circular distribution, the 

sill matched 2ρ ,  and the similarity of shape of the inverted cosineogram and variogram 

indicated that the range of the output CRF matched the desired range.   

Metrics of fit were introduced based on the realizations of the uniformly 

distributed cumulative probabilities corresponding to the realizations of the GRV.  The 

mean vertical distance between the QQ uniform plot points and the line of perfect fit 

through the origin measured the overall fit of the samples of the GRV and the CRV.  The 

mean minus 1/2 measured shift (+ upward, - downward), and the variance minus 1/12 

measured departure from the variance of the uniform RV generating the GRV and the 

CRV (+ more spread, - more concentrated). 

Future work includes:  Implementation of additional circular probability 

distributions for simulating CRFs; analysis of how the cosine behavior of the simulated 

CRF relates to the input spatial covariance model of the GRF; automatic fitting of the 

cosine models such as in Appendix M to the cosineogram with identification of best fit; 

and determination of what metrics of fit would be considered a good fit.  


