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CHAPTER 3 

 
COSINEOGRAM, A MEASURE OF CIRCULAR-SPATIAL CORRELATION 

 
 

3.1  Introduction 

 
This chapter defines the cosineogram, which is a graph expressing the empirical 

correlation of circular-spatial data.  The positive definite cosine model with best fit to the 

cosineogram characterizes the spatial properties of circular-spatial data.  This model will 

be used for circular kriging.  Circular kriging (Chapter 4) is the estimation of circular-

spatial data based on a model of circular-spatial correlation, which is a function of 

distance between measurement locations.  Cosine models were adapted from three 

common covariance models from linear kriging (estimation of data of a continuous linear 

random variable (RV) based on a model of spatial covariance, which is a function of 

distance between measurement locations). 

This chapter is organized as follows: Section 3.2 introduces the cosineogram and 

model with nugget, range, and sill similar to the nugget, range, and sill of the covariance 

model used for linear kriging.  Section 3.3 derives the result that the theoretical sill is the 

square of the length of the mean resultant vector of the circular probability distribution 

underlying the circular-spatial data.  Section 3.4 determines that the length of the mean 

resultant vector is the parameter, ρ , of the circular probability density function (PDF) for 

the selected circular distributions.  Section 3.5  verifies the theoretical sill by simulation.  

Section 3.6 defines some cosine models (similar to covariance models used for linear 

kriging) for fitting to a cosineogram.  Section 3.7 constructs an example cosineogram for 

ocean wind in a south polar region.  Section 3.8 concludes with the summary and future 

work. 
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3.2  The Cosineogram 

 
Circular-spatial data may have an underlying spatial trend where the mean 

direction depends on location.  The random component of direction contains information 

about the spatial correlation.  The empirical cosineogram is defined as the plot of the 

mean cosine of the angular distance (Figure 3-1, right) between the random components 

of direction vs. the Euclidean or linear distance between observation locations (Figure 3-

1, left). 

Let ( )dς̂  be the estimate of the mean cosine, which depends on the Euclidean 

distance d between measurement locations, ix  and jx  vectors of location coordinates 

of observations i and j, respectively, ij xx −
 
the Euclidean distance between 

observation locations, ( )dN  the number of pairs of observations separated by a distance 

ij xx −  within a tolerance ε  of d, and iθ  and jθ  the measured directions at ix  and jx , 

respectively.  The cosineogram is the plot of ( ) ( )( ) ( )∑ <−−
−=

ε
θθς

dij
ijdNd

xx
cosˆ 1  vs. 

d.  The cosine model of spatial correlation underlying the sampling variation in the 

cosineogram are illustrated by Figure 3-2. 

 

 

Figure 3-1.  Euclidean Distance Between Locations  vs. Angular Distance Between 
Observations.  Euclidean and angular distances between observations are indicated by 
red lines. 
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Figure 3-2.  Features of the Cosine Model.  The cosineogram characterizes the 
correlation of random components of direction vs. distance between locations.  For the 
spherical cosine model, the sill is flat at distances beyond the range. 

 
 
The value of the mean cosine of the angle between observations at zero distance 

is defined to be one because the angle between an observation and the same 

observation at the same location is zero.  Measurement error may cause observations at 

locations which are close together (or even at the same location) to be more variable 

resulting in a decrease in the mean cosine.  The difference between 1.0 and the mean 

cosine at distances approximately zero is called the nugget.  As the distance between 

measurement locations increases, the nonrandom or spatial trend component of 

direction may change, and the random component of direction will have less correlation 

resulting in a decrease of the mean cosine of the random components of direction.  For 

the spherical model shown in Figure 3-2, the range is defined as the distance at which 

the random components are no longer correlated.  For other models, the practical range, 

which is a multiple of the range, is the distance at which random components are 

assumed to be uncorrelated.  At distances where observations of direction are 

uncorrelated, the mean cosine is a constant, forming a plateau which is called the sill. 
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The next section will derive the result that the theoretical sill is the square of 

the resultant vector mean length parameter (Chapter 1, Section 1.1) of the circular 

distribution of the CRF (Chapter 1, Section 1.1).  It is based on the new definition that 

the theoretical sill of the CRF is the expectation of the cosines of the small angles 

between pairs of independent CRVs.  This definition parallels the definition of the sill of a 

covariogram in linear kriging.  The covariogram is a plot of the empirical covariance vs. 

distance between observation locations.  At distances where linear RVs are 

uncorrelated, the covariance is zero, forming a sill in the covariogram. 

 
3.3  Derivation of the Sill 

 

 

3.3.1 Review of Circular Probability Distributions and Statistics 

A circular random variable (CRV) takes random directions with the total 

probability of all possible directions distributed on the circular support.  In this chapter, 

direction will be expressed in radian units on the support [ )π2,0  since trigonometric 

functions require angles in radian units.  To determine the properties of a circular 

probability distribution, imagine a point on a unit circle plotting a direction as the 

equivalent unit vector located at the origin of the unit circle with arrow head touching the 

unit circle.  The main properties of a circular probability distribution include the resultant 

vector mean direction µ , which may depend on measurement location, and the resultant 

vector mean length ρ , which is a measure of concentration about the resultant vector 

mean direction and the opposite of variability about the mean, which is a measure of 

spread. 

Let a vector be denoted by a bold lower case letter and a scalar by a nonbolded 

lower case letter.  Let nθθθ ,,, 21 L  be a set of n observations of the corresponding CRVs 
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nΘΘΘ ,,, 21 L  measured in radians.  With ∑ =
=

n

i inC
1
cosθ  and ∑ =

=
n

i inS
1
sinθ , the 

sample mean resultant vector direction θ  is 
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The population resultant vector mean direction is denoted by µ . 

In terms of nC  and nS , the sample resultant vector length is 

      ,22
nnn SCR +=         (3.2) 

and the sample resultant vector mean length is 

         .1
nnn RR =          (3.3) 

If all n observations have the same direction, the variability is zero, the resultant vector 

length nRn =  (the unit vector observations of direction added tail to head are aligned 

and n long), and the resultant vector mean length 11 == nR
nn , which is the theoretical 

maximum.  When direction takes random values, the variability is greater than 0, the 

resultant vector length nRn < , and 1
1

<= nn R
n

R .  If n is even, and the angles 

between all pairs of adjacent observations of direction are equal, the variability (spread) 

is the theoretical maximum, the horizontal and vertical components of the unit vectors 

cancel, 0=nR , 0
1

== nn R
n

R , and the resultant vector mean direction nθ  is undefined.  

The population mean resultant vector length is denoted by ρ .  The circular distributions 

discussed in this dissertation were introduced in Chapter 1, Section 1.1, and are 

characterized in Table 3-1.
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Table 3-1.  Circular Probability Distributions, ,0=µ  πθ 20 <≤ Radians. Circular density 

is plotted as the length of radial between black filled unit circle and outer curve. 
 

Name of 
Distribution 

Circular PDF 
Plot 
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Function 
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3.3.2 Assumptions 

The dimension of the stochastic space is 2.  The circular-spatial model consists 

of a spatial trend, with mean direction dependent on location or constant, plus a circular 

random field (CRF).  With Θ the CRV and x the location in 2R , the CRF is the set 

( ){ }2, R∈Θ xx .  

Spatial correlation increases as distance between measurement locations 

decreases, i.e.,  random components of direction (spatial trend removed) tend to be 

more similar as distance between observation locations decreases.  In the form required 

by the circular kriging of Chapter 4, spatial correlation is the mean cosine of the angle 

between random components of directions  vs. distance between observation locations.  

It is assumed that the spatial correlation is isotropic, i.e., it is independent of the 

geographic direction in which sampling is performed.  If the spatial correlation varied with 

geographic direction (anisotropic) and sampling was performed in directions with 

different spatial correlation, the estimate of spatial correlation (mean cosine vs. distance) 

would be some average over geographic directions, and less accurate for a particular 

direction.  Geometric anisotropy, where the sill is constant and the range varies with the 

spatial direction in which observations are taken, requires a directional cosineogram 

(mean cosine computed within a tolerance of a specified geographic direction) and 

applies to the geographic area over which the directional cosineogram is computed . 

 
3.3.3 The Sill a Function of Expectations 

Let Θ  be the CRV of the circular distribution, iΘ  and jΘ be two random 

directions, π2,0 <ΘΘ≤ ji , with equivalent unit vector denoted by i and j .  Also, let E be 

the expectation operator, and D be the smallest angle in radians between two 

independent random directions of a circular probability distribution, π≤≤ D0 . Define the 
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sill as the ( ){ }DcosE .  The sill will be derived for the cases shown in Figure 3-3.  

Either π<Θ−Θ≤ ij0  (Case 1), or ππ 2<Θ−Θ≤ ij  (Case 2). 

Case 1, :0 π<Θ−Θ≤ ij  
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Case 2, :2ππ <Θ−Θ≤ ij  

 

( ){ } ( ){ }
( ) ( ){ }

{ }ij

ijij

ij

E

E

EE

Θ−Θ=

Θ−Θ+Θ−Θ=

Θ−Θ−=

cos

sin2sincos2cos

2cosDcos

ππ

π

          

   ( ){ }[ ] ( ){ }[ ] 22
above

sincos Θ+Θ= EE  

 

    ( ){ } ( ){ }[ ] ( ){ }[ ] 22
sincosDcos Θ+Θ=⇒ EEE        (3.4) 

 
 
 
 

 
 
Figure 3-3.  Cases of Random Directions.  Directions are expressed  in radian units. 
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Hence, complete evaluation of the sill requires knowledge of ( ){ }ΘcosE  and 

( ){ }ΘsinE . 

 

3.3.4 Expectation of the Sines 

With g the PDF of Θ , for the symmetric circular distributions with 0=µ , the PDF 

( ) ( )θθ −= gg .  Hence, the oppositely signed ( )Θsin  and ( )Θ−sin  cancel when 

integrating over the full range and, hence, ( ){ } 0 for0sin ==Θ µE .  Let ρ~  be the 

population mean resultant vector length.  ( ){ } 0 for0sin ==Θ µE , i.e., the vertical 

component of ρ~  is zero.  Hence 

    ( ){ }.cos~ Θ= Eρ         (3.5) 

 
3.4  Expectation of the Cosines 

 
From (3.5), the population mean resultant vector length ( ){ }Θ= cos~ Eρ  for 0=µ .  

To evaluate ( ){ }ΘcosE , the PDFs for circular distributions summarized in Table 3-1 were 

obtained from Mardia (1972), Fisher (1993), and Jammalamadaka and SenGupta 

(2001).  In the subsections 3.4.1 to 3.4.5, it will be shown that ρ~  is the parameter ρ  of 

the circular PDFs for the selected circular probability distributions.  This step is 

necessary as it is not immediately obvious that the parameter ρ  is the population mean 

resultant vector length for the selected distributions, as claimed by Fisher (1993). 
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3.4.1 Cardioid 
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        ( ){ } ρ=Θ Cardioid|cosE         (3.6) 

 
3.4.2 Triangular 
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3.4.3 Uniform 
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3.4.4 von Mises 
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3.4.5 Wrapped Cauchy 

Jammalamadaka and SenGupta (2001, p. 45) prove the equivalence of the PDF 

from Table 3-1 and the form of the PDF used below. 
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       ( ){ } ρ=Θ WrCauchy|cosE       (3.10) 
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3.4.6 Summary of Individual Results 

In summary, from (3.6) to (3.10) for the selected distributions from Table 3-1, the 

population mean resultant vector length ρ~  equals the parameter ρ  of the circular 

probability distribution.  Let the parameter ρ  also denote the mean resultant vector 

length.  Hence, the theoretical sill is  

    ( ){ } .cos 2ρ=DE       (3.11) 

 Result (3.11) has two implications.  First, two circular distributions of different 

families (Cardioid, Triangular, von Mises, Wrapped Cauchy) with the same population 

mean resultant vector length, ρ , will have the same theoretical sill, 2ρ .  Hence, with the 

exception of the uniform circular distribution, the correspondence between the sill and a 

circular probability distribution is not unique.  For the uniform circular distribution, 0=ρ  

because all directions have equal probability density.  The second implication is that 

zonal anisotropy (sill varies with direction) cannot occur in a pure CRF with one 

underlying circular probability distribution. 

 
3.5  Verification of the Sill by Simulation 

 

    The theoretical sill was computed as 2ρ  for five circular probability 

distributions from Table 3-1.  The results have been summarized in Table 3-2.  The 

function 1A  in the Sill column of the table for the von Mises distribution is given in 

Subsection 3.4.4.  The value of the sill of each distribution was verified by simulation.   

Figures 3-4 to 3-8 were computed using the R code in Appendices K.3 and L.1.  

For each distribution, 1000 simulations were computed.  In each simulation, 100 

independent CRV were computed, the cosines of the angles between all pairs of CRV 

were collected, and the averages were computed for the cumulative collection of 
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Table 3-2.  The Sill of Selected Distributions. 

Distribution 
Parameter 

Range 

Selected 

Parameter Value 

Sill, or ( ){ } 2cos ρ=DE  

(3.11) 

Cardioid 5.00 ≤< ρ  25.0=ρ  062.025.0 22 ==ρ  

Triangular 2/40 πρ ≤<  2/2 πρ =  ( ) 0.041/2
222 == πρ  

Uniform 0=ρ  0=ρ  02 =ρ  

von Mises 
( )10

0

<<

∞<<

ρ

κ
 5=κ  (concentration) ( )( ) 0.7985

2

1
2 == Aρ  

Wrapped 

Cauchy 
10 << ρ  ( )1exp −=ρ  ( )( ) 0.1351exp

22 =−=ρ  

 
 

cosines.  Hence, the size of the collection increases with each simulation.  Figures 3-4 to 

3-8 plot the mean cosine of the angle between independent CRV vs. the number of 

simulations, and show that the mean cosine tends to the theoretical sill as the number of 

simulations increases and is consistent with the theoretical sill.  In Figure 3-6, a slightly 

negative mean cosine developed at about 200 simulations.  After 300 simulations, the 

mean cosine trended toward zero.  With the uniform circular distribution all directions are 

equally likely.  Hence, half of the angles are likely to occur between π5.0 and π5.1 .  

These have negative cosines.  A negative mean cosine means there were more 

negative than positive cosines at the completion of a simulation in the sequence of 

simulations. 
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Figure 3-4.  Mean Cosine of the Angle Between Independent Cardioid CRV, 

062.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-5.  Mean Cosine of the Angle Between Independent Triangular CRV, 

041.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-6.  Mean Cosine of the Angle Between Independent Uniform CRV, 

02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-7.  Mean Cosine of the Angle Between Independent von Mises CRV, 

798.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-8.  Mean Cosine of the Angle Between Independent Wrapped Cauchy CRV, 

135.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
 
 

3.6  Cosine Models 
 
 
3.6.1 Cosine Model Properties 
 

In the previous sections, the mean cosine of the angle between independent 

CRV was determined to be 2ρ .  We now will consider the CRF.  Covariance models 

used for linear kriging were derived from the semivariance models in Bailey and Gatrell 

(1995, pp. 179-180).  These covariance models are monotonic decreasing and positive 

definite.  Cosine models were adapted from covariance models by scaling and shifting to 

conform to the circular-spatial correlation in a CRF:   

� At distance 0, the mean cosine equals 1. 

� At distance not exactly 0, but close to 0, the mean cosine equals 1 minus the nugget.   

� As distance increases, the mean cosine decreases monotonically to the sill. 

� The sill equals the square of the mean resultant vector length parameter ρ of the 

circular probability distribution. 
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� Applying the cosine model to the matrix of pairwise distances produces a 

symmetric and positive definite matrix, which will be proved.  A positive definite 

matrix is required for linear kriging. 

 
3.6.2 Introductory Cosine Models Adapted 
 from Linear Kriging 

Let ρ  be the mean resultant vector length of the circular probability distribution, 

10 <≤ ρ , and ng be the nugget.  Since the minimum value of the mean cosine is 2ρ , 

the maximum nugget (Figure 3-2) is 21 ρ− .  Hence,  210 ρ−<≤ gn .  With ( )dς  the 

mean cosine of the angle between random components of direction a distance d apart 

and r the range, some introductory cosine models adapted from Bailey and Gatrell 

(1995, pp. 179-180 ) by scaling and shifting, are: 

 

• The Exponential Cosine Model 

     ( ) ( ) ( )





>−−−+

=
=

0,3exp1

0,1

22 drdn

d
d

g ρρ
ς      (3.12) 

� The Gaussian Cosine Model 

             ( )
( ) [ ]( )
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
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=
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0,3exp1
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� The Spherical Cosine Model 

   ( ) ( ) [ ] [ ]


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d gg

ρ

ρς     (3.14)  

Note that the symbol ( )dς̂  is used for the empirical version of the model, which is the 

cosineogram (Section 3.2). 
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Figures 3-9 to 3-11 show plots of cosine models for  the selected circular 

distributions with range r = 8 and nugget gn = 0.  Values for the parameters ρ  and κ  

have been chosen in accordance with Table 3-2 and with Figures 3-4 to 3-8.  The 

parameter κ of the von Mises (vM) distribution is a measure of concentration about the 

mean direction equal to one half the log of the ratio of the maximum density at the mean 

to the minimum density at the opposite direction.  The exponential model in Figure 3-9 is 

concave up, the Gaussian model in Figure 3-10 is “S” shaped with an inflexion point, and 

the spherical model in Figure 3-11 has a plateau (sill) at distances beyond the range.  

Additional suitable cosine models are given in Appendix M.  

 

 

 

 

 

Figure 3-9.  The Exponential Cosine Model. 
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Figure 3-10.  The Gaussian Cosine Model. 
 
 
 
 
 
 
 

 

Figure 3-11.  The Spherical Cosine Model. 
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3.6.3 The Adapted Cosine Models Are Positive Definite 

Positive definiteness of the matrix of cosines is required by the circular kriging 

solution (Chapter 4, Section 4.3) for an optimal estimate of direction.  In this subsection, 

it will be proven that the cosine models adapted from the positive definite covariance 

functions of linear kriging are positive definite.  For this proof, the equivalent shifted and 

scaled form of the spherical cosine model in (3.14) is required.   
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With ijji dd = the spatial distance between locations of observations i and j, let 

( ) jiji adf =  be a positive definite function of distance, i.e., a covariance function of linear 

kriging.  Then, with k1 and k2 constants, the cosine models structured such as (3.12), 

(3.13), and (3.15) can be expressed as ( )jidfkk 21 +  with 2
1 ρ=k  and ( )2

2 1 ρ−−= gnk .
  

The circular uniform distribution has ρ = 0, which is the minimum mean resultant vector 
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length parameter of all circular distributions.  The  degenerate distribution has ρ = 1, 

which is the theoretical maximum.  For CRV, the range of 2ρ  is 1010 1
2 <≤⇒<≤ kρ . 

( )2
2 1 ρ−−= gnk  is the multiplier of the covariance function in (3.12), (3.13), and 

(3.15).  ( ) ( ) 22
2 11 ρρ −−=−−= gg nnk  is the change in the mean cosine from the sill to 

the nugget.  If spatial correlation does not exist, i.e., there is a “pure nugget,”  

( ) 01 2
2 =−−= ρgnk , and the mean cosine vs. distance is flat.  If spatial correlation 

exists, ( ) 01 2
2 >−−= ρgnk .  When distance d = 0, 2k  is increased to 21 ρ−  because 

the nugget 0=gn  when d = 0.  A nonzero nugget applies at distances d > 0. 

With n the number of observations and J the square n x n matrix of element 1, 

the n x n matrix of cosines C, resulting from the element-wise application of a cosine 

model of the form ( )jidfkk 21 +  to the matrix of pairwise distances is 
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Now it will be proven that the matrix C is positive definite with y any n-element 

non zero vector. 
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Hence, C is positive definite by Appendix B, Section B.2, point 3. 
 
 

3.7  Cosineogram of Ocean Wind in a South Polar Region 
 
 

In this section, circular-spatial correlation will be extracted from ocean wind of a 

south polar region.  A model was computed for longitude 69.5º E to 109.5º E by latitude 

-59.5º N to -40.5º N in 1º increments by averaging the data of Chapter 2, Subsection 

2.2.1 via R package CircSpatial function CircDataimage (Chapter 2, and Appendices 

J.10 and K.2) with input as in Appendix J, Subsection J.10.6, step 1, and smoothing the 

averages with bandwidth 2.5º in the plane of longitude and latitude (J.10.6, step 8).  The 

smoothed average directions from CircDataimage were output to the R workspace in the 

list object CircDataimageGlobals.  Appendix L, Section L.2 shows usage of the elements 

of CircDataimageGlobals.  Figure 3-12 shows the image of this model.  The spatial 

correlation is expressed in the cosineocloud and cosineogram in Figure 3-13.  The 

cosineocloud (grey points) is here defined as the plot of the cosines of the angles 
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between all pairs of directions vs. distance between measurement locations.  The 

cosineocloud is useful for examination of the individual cosines.  The cosineogram (red 

curve) as defined in Section 3.2,  reduces the cosineocloud to the plot of the mean 

cosine vs. distance.  Between distances of 0 and 1 on the horizontal axis, spatial 

correlation is changing rapidly.  At a distance of about 3.8, the mean cosine tends to be 

constant at about 0.45 indicating that direction is not correlated.  Hence, the range is 3.8 

and the sill is 0.45.     Circular kriging, as described in Chapter 4, requires a cosine 

model which is smooth, continuous, and positive definite.  The shape of the cosineogram 

in Figure 3-13 suggests the exponential cosine model in (3.12), which is overplotted as a 

blue dashed curve over the full range of distances for comparison with the empirical 

cosineogram.  The fit of the model to the cosineogram is adequate.  The exponential 

cosine model characterizes the circular-spatial correlation in this region of ocean wind 

data as asymptotic, but without the inflexion (S shape) of the gaussian cosine model.  

The exponential cosine model is fairly linear near the origin and falls to the sill much 

more quickly than the spherical cosine model. 

 
 

Figure 3-12.  Circular Dataimage of Model of Ocean Wind Direction for South Polar 
Region.  Direction, which is coded by the color wheel, is relatively homogeneous and 
varies about the direction of 0 radians. 
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Figure 3-13.  Cosineocloud, Cosineogram, and Exponential Model of South Polar Ocean 
Wind.  The cosineocloud (grey points) shows the cosines of the angles between all pairs 
of directions vs. distance between measurement locations.  The cosineogram (red solid 
curve) reduces the cosineocloud to the plot of the mean cosine vs. distance.  The sill 
(plateau), where the random components of direction are uncorrelated, occurs at a 
distance of about 3.8 at a mean cosine of about 0.45.  The exponential model (blue 
dashed curve) is overplotted for comparison. 

 
 

3.8  Chapter Summary and Future Work 
 
 

In this chapter, we discussed the cosineocloud, the empirical cosineogram, and 

theoretical cosine models.  The cosineogram plots the empirical spatial correlation in 

circular-spatial data as the mean cosine of the angle between random components of 

direction at locations vs. distance d between observation locations.  With ( )dς̂  the mean 

cosine, ix  and jx  vectors of location coordinates of observations i and j, respectively, 

ij xx − the linear distance between locations of observations i and j, and ( )dN  the 

number of pairs of observations of direction separated by a distance within a tolerance 
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ε  of d, the cosineogram is a plot of ( ) ( ) ( )∑ <−−
−=

ε
θθς

dij
ijdN

d
xx

cosˆ 1  vs. d.  For 

an example, a cosineogram was constructed from homogeneous ocean wind data in a 

south polar region. 

The cosine model fitted to the cosineogram characterizes the spatial correlation 

in a form useful for circular kriging. 

� The mean cosine equals 1 at zero distance. 

� The mean cosine at distances close to 0 may be reduced by measurement error.  

This reduction gn  is called the nugget effect. 

� The range r is a scale parameter.  The range of the spherical cosine model is the 

distance beyond which CRV are uncorrelated.   

� The sill is the mean cosine at distances where CRV are uncorrelated.  The 

theoretical sill is .2ρ  

The theoretical sill was derived as the square of the mean resultant vector length 

of the circular probability distribution underlying the circular-spatial data.  For the circular 

probability distributions cardioid, triangular, uniform ( )0=ρ , von Mises, and wrapped 

Cauchy, the mean resultant vector length equals the parameter ρ  of the underlying 

circular probability distribution.  The theoretical sill was verified by simulation. 

Introductory cosine models, which are required for circular kriging, were adapted 

from the exponential, Gaussian, and spherical covariance functions used for linear 

kriging by shifting and scaling the covariance function.  With d the distance between 

measurement locations, ρ  the mean vector resultant length parameter of the circular 

probability distribution, 10 <≤ ρ , ng the nugget, 210 ρ−<≤ gn , r the range, and c(d, r) 

the covariance function from linear kriging with a maximum of 1, 
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 the general form of the cosine model is  

( ) ( )





>−−+

=
=

.0,),(1

0,1

22 drdcn

d
d

g ρρ
ς  

This form was proven to produce a positive definite cosine matrix. 

Future work includes the development of theoretical foundations of directional 

cosineograms for anisotropic circular-spatial data where the range varies with the 

geographic direction. 


