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      CHAPTER 7 

 
SUMMARY 

 
 

This chapter summarizes new methods and theory for circular random fields 

(CRF) and circular-spatial data: the circular dataimage for visualization, the empirical 

cosineogram for extraction of spatial correlation, the fitted cosineogram model to provide 

a positive definite estimate of the circular-spatial correlation, a circular kriging solution 

with variance estimate, and possibly the first method to simulate circular random fields. 

Chapter 1,  which is the foundation for subsequent chapters, introduced the 

circular random variable (CRV) and the CRF.  The CRF was defined as a space 

containing spatially correlated CRVs.  With Θ the circular RV and x the location in 2 

dimensional space, the CRF is the set ( ){ }2R, ∈Θ xx .  A CRV takes random directions 

with the total probability of all possible directions distributed on the circular support 

[ )π2,0  or [ )ππ ,− .  Spatial correlation increases as distance between measurement 

locations decreases, i.e.,  the random components of direction tend to be more similar.  

An isotropic CRF was defined as a CRF in which spatial correlation is the same in all 

directions in space.  Circular-spatial methods were summarized in a flow chart. 

Chapter 2 introduced the circular dataimage.  Traditional plots of circular-spatial 

data become less intelligible as random variation, missing data, and data density 

increase.  These issues were resolved by the circular dataimage.  The circular 

dataimage was defined by coding direction as the color at the same angle on a color 

wheel, with the color wheel defined as a sequence of three or more two-color gradients 

with the same color between connecting gradients.  This eliminated color discontinuity at 

the cross over point 0 and π2 (or π−  and π ) resulting in a high resolution continuous 

image of circular-spatial data in which fine detail on a small scale and large-scale 
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structure on a global scale can be simultaneously recognized.  Various suitable color 

wheels were shown and compared to motivate experimentation, the objective being to 

effectively contrast  and highlight interesting circular-spatial structure.  The discrete color 

wheel was constructed from a continuous color wheel by holding color in an angular 

interval to the start color of the interval of the continuous color wheel.  The advantages 

of various color schemes were summarized.  Circular dataimage examples included: 

1) Global and zoomed views of average wind direction 

2) Internal flow of the Space Shuttle solid rocket motor nozzle 

3) Families of circular time series of rocket nozzle vectoring direction angle vs. time 

4) Direction of the Earth main magnetic horizontal (H) field 

5) Deuteranopic (red-green color impairment) simulations 

6) Highlighting a narrow band of directions (focus plot) 

7) Overlay of magnitude as contour curves on circular dataimages 

8) 3D polar plots of Earth main magnetic H field with magnitude as radius, and direction 

coded as color in a color wheel, and magnitude and direction depending on longitude 

and latitude. 

Chapter 3 defined the empirical cosineogram.  The cosineogram expresses the 

spatial correlation in circular-spatial data in a form consistent with the circular kriging 

solution of Chapter 4.  The circular kriging solution requires the mean cosine of the 

angles between the random components of direction as a function of the distance 

between observation locations d.  In the presence of a spatial trend, the random 

component equals the observed direction minus the mean direction at the observation 

location.  In the absence of a spatial trend, the random component equals the observed 

direction.  With ( )dς̂  the mean cosine, ij xx −  the linear distance between observations i 

and j, and ( )dN  the number of pairs of observations of direction 
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separated by a distance within a tolerance ε  of d, the cosineogram is the plot of     
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vs. d.  For a example, a cosineogram was computed from homogeneous ocean wind 

data in a south polar region. 

The cosine model fitted to the cosineogram characterizes the spatial correlation 

as a smooth, continuous, and positive definite function with 

• The mean cosine equals 1 at zero distance 

• A reduction in the mean cosine at distance close to 0, which is called the nugget 

effect 

• The range (scale parameter, which is also the distance CRV are uncorrelated when 

the input spatial covariance function is spherical) 

• The sill (mean cosine at distances where CRV are uncorrelated). 

The theoretical sill was derived as the square of the resultant vector mean length 

parameter of the circular probability distribution underlying the circular-spatial data.  For 

the circular probability distributions uniform ( )0=ρ , cardioid, triangular, von Mises, and 

wrapped Cauchy, it was determined that the resultant vector mean length equals the 

parameter ρ  of circular probability distributions.  The theoretical sill was verified by 

simulation. 

Introductory cosine models for fitting to the empirical cosineogram were adapted 

from covariance functions for linear kriging by shifting and scaling.  With ( )dc  the mean 

cosine of the angle between random components of direction a distance d apart, ρ  the 

resultant vector mean length of the circular probability distribution, 10 <≤ ρ , ng the 

nugget, 210 ρ−≤≤ gn , and ( )dc  the covariance function with a maximum of 1, 
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the general form of the cosine model is 
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The general cosine model was proved to be positive definite for optimum circular kriging. 

Chapter 4 developed a circular kriging solution.  With w a computed vector of 

weights based on the circular-spatial correlation, the estimated direction is the matrix of 

observed directions U (each column is an observation of direction as a unit vector) post 

multiplied by w.  The approach avoided the first order Taylor series approximation of 

McNeill (1993), which results in a nonunit vector estimator.  The solution was derived in 

full detail, and verified to produce a unit vector of maximum fit.  With K the positive 

definite matrix of cosines equal to the cosine model of the matrix of pairwise distances, 

and c the vector of cosines between the estimation location and sample locations, the 

weight vector w is 

    .111
cUKUKccKw

−−−= TT         (7.3) 

A computationally efficient form of the estimator of direction was derived by 

omitting the denominator of (7.3).  With h and v being the horizontal and vertical 

components of the vector cUK
1− , respectively, the estimated direction in [ )π2,0  radians 

at location 0x  is 
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The estimated direction at a sampled location was proven to be the observed direction. 
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An estimate of the circular kriging variance 2ˆCKσ was defined as the mean 

squared length of the error vector between the estimator and the unobserved direction. 

4ˆ0 2 <≤ CKσ .  It was approximated by a first order Taylor’s series.  The circular kriging 

variance approximation is 

          .22ˆ 12
cKc

−−= T
CKσ         (7.5) 

McNeill’s (1993) estimate cKc
12ˆ −= T

CKσ  is actually proportional to concentration, which 

is in a sense opposite to variance, i.e., as concentration about the mean direction 

increases, variance about the mean direction decreases.  The estimate at a sampled 

location is exact and has zero variance. 

In Chapter 5, the CRF was defined as a set of ( )x,θ  of where θ  denotes 

direction and x denotes the location of observation.  In a CRF with spatial correlation, 

the mean cosine of the angle between random components of directions (nonrandom 

component removed) increases as the distance between observation locations 

decreases.  The nonrandom component is removed so spatial correlation is not 

confused with a global or first order trend  The well known inverse cumulative distribution 

function (CDF) method was extended to the simulation of a CRF by applying the inverse 

CDF of a circular probability distribution to the cumulative probabilities of observations of 

the Gaussian random variables (GRV) of a Gaussian random field (GRF).  The inverse 

CDF of a circular distribution is either a closed form expression, or interpolated from the 

CDF.  The set of a CRV transformed from a GRV and the corresponding GRV 

observation location constitute a simulation of the CRF. 

The mathematical properties of the simulated CRF were discussed: 

1) The mean cosine at distance zero is defined as one. 
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2) The cosine at distances where GRV or CRV are uncorrelated is the square of the 

resultant vector mean length parameter of the CRV ρ  as derived in Chapter 3. 

3) At all other distances, correlation varies with distance.  Spatially correlated 

observations of a GRF have spatially correlated cumulative probabilities because the 

CDF is monotonic increasing.  Hence, observations which are close together have 

cumulative probabilities which are close together.  Conversely, spatially correlated 

cumulative probabilities have spatially correlated CRV because the inverse CDF is 

also monotonic increasing.  Depending on which circular distribution is being 

produced, this process involves 1 to 2 non closed form transformations which 

reshape the covariance function of the GRF.  The resultant cosine curves were 

characterized as fitted positive define functions adapted from the R package 

RandomFields (Schlather 2001) function CovarianceFct using the general form of the 

cosine model (7.2). 

The effect of standardizing the observations of the GRF (center by subtracting 

the mean, and scale by dividing by the standard deviation) prior to evaluating the 

cumulative probabilities was considered. The effects of standardization include over 

fitting, bias of the spatial covariance function of the GRF, and inflated type 1 error rates 

in tests based on over fitted circular distributions.  Standardization should not be used 

for analysis or development of tests.  Qualitative evaluations with standardization 

demonstrated that a CRF was produced with very close and consistent distributional fit, 

and range consistent with the input specifications.   The sill was consistent with both 

input specifications and expected value derived in Chapter 3. 

Chapter 6 provides a comprehensive example combining the results of and 

connecting Chapters 2 – 5. 


