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1 Introduction

The gRain package implements propagation in [gra]phical [i]ndependence [n]etworks
(hereafter abbreviated grain). Such networks are also known as probabilistic
networks and Bayesian networks. More information about the package might
be available from the webpage http://gbi.agrsci.dk/~shd/.

2 A worked example: chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter
(1988) (illustrated in Figure 1) and shows one way of specifying the model in
gRain. Lauritzen and Spiegelhalter (1988) motivate the chest clinic example as
follows:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung
cancer or bronchitis, or none of them, or more than one of them. A
recent visit to Asia increases the chances of tuberculosis, while smok-
ing is known to be a risk factor for both lung cancer and bronchitis.
The results of a single chest X–ray do not discriminate between lung
cancer and tuberculosis, as neither does the presence or absence of
dyspnoea.”
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Figure 1: Chest clinic example from LS.

2.1 Building a grain

A Bayesian network is a special case of graphical independence networks. In
this section we outline how to build a Bayesian network. The starting point is
a probability distribution factorising accoring to a DAG with nodes V . Each
node v ∈ V has a set pa(v) of parents and each node v ∈ V has a finite set of
states. A joint distribution over the variables V can be given as

p(V ) =
∏
v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that∑
v∗ p(v = v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v),

the sum over the levels of v equals one. Hence p(v|pa(v)) becomes the conditional
distribution of v given pa(v). In practice p(v|pa(v)) is specified as a table called
a conditional probability table or a CPT for short. Thus, a Bayesian network
can be regarded as a complex stochastic model built up by putting together
simple components (conditional probability distributions).

Thus the DAG in Figure 1 dictates a factorization of the joint probability func-
tion as

p(V ) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ε|τ, λ)p(δ|ε, β)p(ξ|ε). (2)

In (2) we have α = asia, σ = smoker, τ = tuberculosis, λ = lung cancer, β =
bronchitis, ε = either tuberculosis or lung cancer, δ = dyspnoea and ξ = xray.
Note that ε is a logical variable which is true if either τ or λ are true and false
otherwise.
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2.2 Queries to grains

Suppose we are given the finding (evidence) that a set of variables E ⊂ V have
a specific value e∗. For example that a person has recently visited Asia and
suffers from dyspnoea, i.e. α = yes and δ = yes.

With this finding, we are often interested in the conditional distribution p(v|E =
e∗) for some of the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E.

In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or
possibly in the joint (conditional) distribution p(λ, τ, β|e∗).
Interest might also be in calculating the probability of a specific event, e.g. the
probability of seeing a specific finding, i.e. p(E = e∗).
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A simple way of specifying the model for the chest clinic example is as follows.

1. Specify conditional probability tables (with values as given in Lauritzen
and Spiegelhalter (1988)):

> yn <- c("yes", "no")

> a <- cptable(~asia, values = c(1, 99), levels = yn)

> t.a <- cptable(~tub + asia, values = c(5, 95, 1, 99), levels = yn)

> s <- cptable(~smoke, values = c(5, 5), levels = yn)

> l.s <- cptable(~lung + smoke, values = c(1, 9, 1, 99), levels = yn)

> b.s <- cptable(~bronc + smoke, values = c(6, 4, 3, 7), levels = yn)

> e.lt <- cptable(~either + lung + tub, values = c(1, 0, 1, 0, 1,

+ 0, 0, 1), levels = yn)

> x.e <- cptable(~xray + either, values = c(98, 2, 5, 95), levels = yn)

> d.be <- cptable(~dysp + bronc + either, values = c(9, 1, 7, 3, 8,

+ 2, 1, 9), levels = yn)

2. Create the grain from the conditional probability tables:

> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

> in1 <- grain(plist)

> in1

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" ...

3. The grain can be queried to give marginal probabilities:

> querygrain(in1, nodes = c("lung", "bronc"), type = "marginal")
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$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

Likewise, a joint distribution can be obtained.

> querygrain(in1, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes 0.0315 0.0235
no 0.4185 0.5265

4. Findings can be entered as:

> in12 <- setFinding(in1, nodes = c("asia", "dysp"), states = c("yes",

+ "yes"))

5. The grain can be queried again:

> querygrain(in12, nodes = c("lung", "bronc"))

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygrain(in12, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

6. Zero probabilities

Consider setting the finding
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> in13 <- setFinding(in1, nodes = c("either", "tub"), states = c("no",

+ "yes"))

Under the model, this finding has zero probability;

> pFinding(in13)

[1] 0

Therefore, all conditional probabilities are (under the model) undefined;

> querygrain(in13, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes NaN NaN
no NaN NaN

References

Steffen Lilholt Lauritzen and David Spiegelhalter. Local computations with
probabilities on graphical structures and their application to expert systems.
J. Roy. Stat. Soc. Ser. B, 50(2):157–224, 1988.

5


