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1 Introduction

The gnmpackage provides facilities for fittinggeneralized nonlinear models, i.e., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled by thelm andglm functions in R, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of thegnmpackage, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewed in R by, for example,?gnm or help(gnm) , is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Section 2) on ways in which thegnmpackage extends R’s facilities for
specifying, fitting and working with generalizedlinear models. Then (Section 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

Thegnmpackage is installed in the standard way for CRAN packages, for example by usinginstall.packages .
Once installed, the package is loaded into an R session by

> library(gnm)

2 Generalized Linear Models

2.1 Preamble

Central to the facilities provided by thegnmpackage is the model-fitting functiongnm, which interprets a model formula
and returns a model object. The user interface ofgnm is patterned afterglm (which is included in R’s standardstats
package), and indeedgnmcan be viewed as a replacement forglm for specifying and fitting generalized linear models.
In general there is no reason to prefergnm to glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatable bygnm’s eliminatemechanism (see Section 4.4).

While the main purpose of thegnmpackage is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the familiarlm andglm model-fitting functions. These are: two new
data-manipulation functionsDiag andSymm, for setting up structured interactions between homologous factors; a new
family function,wedderburn , for modelling a response variable in[0, 1] with the variance functionV (µ) = µ2(1−µ)2

as in Wedderburn (1974); and a new generic functiontermPredictors which extracts the contribution of each term
to the predictor from a fitted model object. These functions are briefly introduced here, before we move on to nonlinear
models in Section 3.

2.2 Diag and Symm

When dealing withhomologousfactors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The functionsDiag andSymmfacilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear models ofquasi-independence, quasi-symmetryandsymmetry
for a square contingency table. Agresti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

> count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
+ 17819, 270, 63, 176, 286, 10192)
> region <- c("NE", "MW", "S", "W")
> row <- gl(4, 4, labels = region)
> col <- gl(4, 1, length = 16, labels = region)

The comparison of models reported by Agresti can be achieved as follows:

> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)
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Loading required package: gtools

> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparison1 <- anova(independence, quasi.indep, quasi.symm)
> print(comparison1, digits = 7)

Analysis of Deviance Table

Model 1: count ~ row + col
Model 2: count ~ row + col + Diag(row, col)
Model 3: count ~ row + col + Symm(row, col)

Resid. Df Resid. Dev Df Deviance
1 9 125923.29
2 5 69.51 4 125853.78
3 3 2.99 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)
Model 2: count ~ row + col + Symm(row, col)

Resid. Df Resid. Dev Df Deviance
1 6 243.550
2 3 2.986 3 240.564

TheDiag andSymmfunctions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Thewedderburn family

In Wedderburn (1974) it was suggested to represent the mean of a continuous response variable in[0, 1] using a quasi-
likelihood model with logit link and the variance functionµ2(1 − µ)2. This is not one of the variance functions made
available as standard in R’squasi family. Thewedderburn family provides it. As an example, Wedderburn’s analysis
of data on leaf blotch on barley can be reproduced as follows:

> data(barley)
> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)
> print(sum((barley$y - fit)^2/(fit * (1 - fit))^2))

[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Nelder (1989), which differs slightly from
Wedderburn’s reported value.

2.4 termPredictors

The generic functiontermPredictors extracts a term-by-term decomposition of the predictor function in a linear,
generalized linear or generalized nonlinear model.

As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))
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(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums(temp) - quasi.symm$linear.predictors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups
of terms.

3 Nonlinear Terms

Thegnmpackage provides a flexible framework for the specification and estimation of generalized models with nonlinear
terms. Multiplicative interaction terms can be estimated using the in-built capability of thegnmfunction and are specified
in the model formula using the symbolic functionMult . Other nonlinear terms can be estimated using plug-in functions
for gnmand are specified usingNonlin .

There are two plug-in functions currently made available in thegnmpackage:MultHomog for fitting multiplicative
interaction terms with homogeneous effects andDref for fitting diagonal reference terms. Users ofgnmcan define their
own custom plug-in functions to specify other types of nonlinear term.

3.1 Multiplicative Interaction Terms using Mult

Multiplicative interaction terms can be included in the formula argument tognmby using the symbolic wrapper function
Mult . Constituent multipliers1 in the interaction are passed as unspecified arguments toMult and are expressed by
symbolic linear formulae. An intercept is automatically added to each constituent multiplier unless otherwise specified.
For example, to fit the row-column association model

log µrc = αr + βc + γrδc,

also known as the Goodman RC model (Goodman, 1979), theformulaargument ofgnmwould be

mu ~ R + C + Mult(-1 + R, -1 + C)

whereRandCare row and column factors respectively.
Mult has one specified argumentmultiplicity, which is1 by default. This argument determines the number of times

that the specified multiplicative structure appears in the model. For example,

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable — in R.
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mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2)

would give the RC(2) model (Goodman, 1979)

log µrc = αr + βc + γrδc + θrφc.

In some contexts, it may be desirable to constrain one or more of the constituent multipliers so that it is always
nonnegative. This may be achieved by specifying the multiplier as an exponential, as in the following ‘uniform difference’
model (Xie, 1992; Erikson and Goldthorpe, 1992)

log µrct = αrt + βct + eγtδrc.

Exponentiated constituent multipliers are specified ingnmmodels using the symbolic functionExp; for example, the
uniform difference model above would be specified by the formula

mu ~ R:T + C:T + Mult(Exp(-1 + T), R:C)

3.2 Other Nonlinear Terms usingNonlin

Nonlinear terms which can not be specified usingMult may be specified usingNonlin . This symbolic function indicates
a term which requires a plug-in function to estimate the associated parameters. There are two arguments toNonlin : a call
to the relevant plug-in function and if necessary, adata.frameobject containing any variables that are required uniquely
by specified arguments of the plug-in function.

For example, in the formula

mu ~ x + A + B + Nonlin(PlugInFunction(A, B, arg1 = x, arg2 = C),
data = data.frame.of.C)

the call toNonlin is used to specify a term that requires the plug-in functionPlugInFunction . As the factorC only
appears in the specified arguments of the call toPlugInFunction , a data frame containing factorChas been passed to
thedataargument ofNonlin . Note that this would not be necessary ifCcould be found in an environment on the search
path (given bysearch() ), howeverCwould only be added to the model frame if it was passed toNonlin .

The two plug-in functions already included in thegnmpackage are described below, followed by a guide to writing
custom plug-in functions.

3.2.1 MultHomog

TheMultHomog function provides the tools required to fit multiplicative interaction terms with one component in which
the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal
when the factor levels are equal. The arguments ofMultHomog are the factors in the interaction, which are assumed to
be objects of classfactor.

As an example, consider the following association model with homogeneous row-column effects:

log µrc = αr + βc + θrI(r = c) + γrγc.

To fit this model, with response variable namedmu, the formula argument tognmwould be

mu ~ R + C + Diag(R, C) + Nonlin(MultHomog(R, C))

If the factors passed toMultHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.
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3.2.2 Dref

Dref is a plug-in function to fit diagonal reference terms involving two or more factors with a common set of levels. A
diagonal reference term comprises an additive component for each factor. The component for factorf , is given by

wfγl

for an observation with levell of factorf , wherewf is the weight for factorf andγl is the “diagonal effect” for levell.
The weights are constrained to be nonnegative and to sum to one so that a “diagonal effect”, sayγl, is the value of the

diagonal reference term for data points with levell across the factors.Dref constrains the weights by defining them as

wf =
eδf∑
i eδi

and estimating theδf .
Factors in the interaction are passed to unspecified arguments ofDref . For example, the following diagonal reference

model for a contingency table classified by the row factorRand the column factorC,

µrc =
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc,

would be specified by the formula

mu ~ -1 + Nonlin(Dref(R, C))

Dref has one specified argumentformula, which is a symbolic description of the dependence ofδf on any covariates.
For example, the formula

mu ~ -1 + x + Nonlin(Dref(R, C, formula = ~ 1 + x))

specifies the following diagonal reference model

µrc = βXx +
eξ1+β1x

eξ1+β1x + eξ2+β2x
γr +

eξ2+β2x

eξ1+βx + eξ2+β2x
γc,

The default value offormula is ~1, so that constant weights are estimated. The coefficients returned bygnm are those
that are directly estimated, i.e. theδf or theξf andβf , rather than the implied weightswf .

3.2.3 Custom Plug-in Functions

Custom plug-in functions may be written to enablegnm to fit nonlinear terms that can not be specified byMult or the
plug-in functions provided by thegnmpackage.

There are no constraints on the arguments that a plug-in function may have. However it should not be assumed
that model variables exist in an environment on the search path, sincegnm does not assume this. Rather, the function
getModelFrame should be used to get the model frame used bygnm, which will have all the model variables and also
attributes useful formodel.matrix etc.

For example, the first few lines of theMultHomog function are

MultHomog <- function(...){
labelList <- as.character((match.call(expand.dots = FALSE))[[2]])
gnmData <- getModelFrame()
designList <- lapply(gnmData[, labelList], class.ind)

...

The names of the factors in the interaction are assigned tolabelList , and the model frame used bygnm is assigned to
gnmData . The factors can then be accessed by name fromgnmData , as in the call tolapply .

The plug-in function should return a list with at least the following three components:
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labels a character vector of labels for the parameters (to whichgnmwill prefix the call to the plug-in function).

predictor a function which takes a vector of parameter estimates and returns either a vector of fitted values or a matrix
whose columns are additive components of the fitted values.

localDesignFunction a function which takes the specified argumentscoef (a vector of parameter estimates) and
predictor (the result of the predictor function), and returns the local design matrix.

and optionally one further component

start either a vector of default starting values for the parameters or a function which takes the number of parameters
and returns a vector of default starting values. See Section 4.2 for details of how these values will be used if
provided and the generic default values that will be used otherwise.

As an example of astart component,Dref simply returns

rep(0.5, length(labels))

wherelabels is the vector of parameter labels to be returned as thelabels component, for instance

c("A", "B", "1", "2", "3", "4", "5", "6", "7")

TheMultHomog function provides a simple example of apredictor component:

predictor <- function(coef) {
do.call("pprod", lapply(designList, "%*%", coef))

}

which computes the product of the vectors found by multiplying the design matrix for each factor in the interaction
(held indesignList ) by the homogeneous coefficients (incoef ). This function takes advantage oflexical scoping:
designList is an object defined inMultHomog , which predictor is able to find becausepredictor is also
defined inMultHomog and henceMultHomog is the enclosing environment ofpredictor .

The localDesignFunction created byMultHomog is slightly more complicated:

localDesignFunction <- function(coef, ...) {
productList <- designList
for (i in seq(designList))

productList[[i]] <- designList[[i]] *
drop(do.call("pprod", lapply(designList[-i], "%*%", coef)))

do.call("psum", productList)
}

This function only uses the argumentcoef, but since the local design function returned by a plug-in function must also
accept the argumentpredictor, further arguments are allowed by the use of the special argument ‘... ’.

4 Controlling the Fitting Procedure

The gnm function has a number of arguments which affect the way a model will be fitted. Basic control parameters
and starting values can be set bycontrol andstart respectively. Parameters can be constrained to zero by specifying a
constrainargument. Finally parameters of a stratification factor can be handled more efficiently by specifying the term in
aneliminateargument. These options are described in more detail below.
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4.1 Usingcontrol with gnmControl

Thecontrol argument provides a way to specify the tolerance level for convergence, the number of starting iterations and
the maximum number of main iterations, as well as the option to trace the deviance throughout the fitting process. By
default, thecontrol argument is a call tognmControl using any arguments passed on fromgnm. ThegnmControl
function creates a list of the control parameters, including any at their default values. For example

gnm(mu ~ R + C + Mult(-1 + R, -1 + C), tolerance = 1e-6,
iterStart = 3)

is equivalent to

gnm(mu ~ R + C + Mult(-1 + R, -1 + C),
control = gnmControl(tolerance = 1e-6, iterStart = 3))

which is the same as

gnm(mu ~ R + C + Mult(-1 + R, -1 + C),
control = list(tolerance = 1e-6, iterStart = 3, iterMax = 500,
trace = FALSE))

4.2 Usingstart

In some contexts, the default starting values may not be appropriate and the algorithm will fail to converge, or perhaps
only converge after a large number of iterations. Alternative starting values may be passed on tognmby specifying astart
argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated
parameters, see Section 4.4), however missing starting values (NAs) are allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

model1 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C))
model2 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2),

start = c(coef(model1), rep(NA, 10))

Thegnmcall can be made withmethod = "coef" to identify the parameters of a model prior to estimation, to assist
with the specification of arguments such asstart.

The starting procedure used bygnm is as follows

1. Generate starting valuesθi for all parametersi = 1, . . . , p from the Uniform(−0.1, 0.1) distribution. Shift these
values away from zero as follows

θi =

{
θi − 0.1 if θi < 1
θi + 0.1 otherwise

2. Replace generic starting values with any starting values specified by plug-in functions.

3. Replace default starting values with any starting values specified by thestart argument ofgnm.

4. Compute theglm estimate of any parameters in linear terms that were not specified bystart, offsetting the contri-
bution to the predictor of any parameters specified bystart or a plug-in function.

5. Run starting iterations: update any parameters in nonlinear terms that were not specified bystart or a plug-in
function one at a time, updatingall linear terms after each round of nonlinear updates.

Note that no starting iterations (step 5) will be run if all parameters are specified bystart or a plug-in function.
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4.3 Usingconstrain

By default,gnm only imposes identifiability constraints on any linear terms in the model to be fitted. For these terms,
the constraints are determined in the same way as they would be inglm . Any nonlinear terms will usually be over-
parameterized unless constraints are imposed by the defining plug-in function (as in the case ofDref , for example). For
a model with nonlinear terms that are over-parameterized,gnmwill return a random parameterisation.

To illustrate this point, consider the following application ofgnm, discussed later in Section 6.1:

> data(occupationalStatus)
> set.seed(1)
> RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Nonlin(MultHomog(origin, destination)), family = poisson,
+ data = occupationalStatus)

Running start-up iterations..
Running main iterations.......
Done

Running the analysis again from a different seed

> set.seed(2)
> RChomog2 <- eval(RChomog1$call)

Running start-up iterations..
Running main iterations......
Done

gives a different representation of the same model:

> compareCoef <- cbind(coef(RChomog1), coef(RChomog2))
> colnames(compareCoef) <- c("RChomog1", "RChomog2")
> compareCoef

RChomog1 RChomog2
(Intercept) 0.01031358 0.10631042
origin2 0.52684390 0.51997443
origin3 1.65525382 1.62956305
origin4 1.99636593 1.95230159
origin5 0.77767542 0.73307058
origin6 2.85898522 2.79827815
origin7 1.54820728 1.47440621
origin8 1.29563149 1.21416423
destination2 0.94585703 0.93898798
destination3 1.99966968 1.97397893
destination4 2.28479944 2.24073545
destination5 1.67709218 1.63248789
destination6 3.16246317 3.10175638
destination7 2.29980341 2.22600286
destination8 1.87100856 1.78954180
Diag(origin, destination)1 1.52666556 1.52666846
Diag(origin, destination)2 0.45600920 0.45600795
Diag(origin, destination)3 -0.01597343 -0.01598066
Diag(origin, destination)4 0.38918303 0.38918427
Diag(origin, destination)5 0.73851492 0.73851696
Diag(origin, destination)6 0.13474284 0.13474352
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Diag(origin, destination)7 0.45763249 0.45763821
Diag(origin, destination)8 0.38847753 0.38846397
MultHomog(origin, destination).1 -1.54111773 -1.50965033
MultHomog(origin, destination).2 -1.32282516 -1.29135537
MultHomog(origin, destination).3 -0.72465413 -0.69319228
MultHomog(origin, destination).4 -0.14077778 -0.10930985
MultHomog(origin, destination).5 -0.12361117 -0.09214108
MultHomog(origin, destination).6 0.38814928 0.41961438
MultHomog(origin, destination).7 0.80429340 0.83575531
MultHomog(origin, destination).8 1.04785874 1.07933252

Even though the linear terms are constrained, the parameter estimates for these terms still change, because these terms are
aliased with the higher order multiplicative interaction, which is unconstrained.

Additional constraints may be specified through theconstrainargument ofgnm. This argument indicates parameters
that are to be constrained to zero in the fitting process. Parameters can be indicated by a logical vector, a vector of indices
or, if constrain = "pick" they can be selected through aTk dialog.

In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomog1)[grep("Mult", names(coef(RChomog1)))]
> set.seed(1)
> RChomogConstrained1 <- update(RChomog1, constrain = 31, start = c(rep(NA,
+ 23), multCoef - multCoef[8]))

Running main iterations.
Done

> set.seed(2)
> RChomogConstrained2 <- eval(RChomogConstrained1$call)

Running main iterations.
Done

> identical(coef(RChomogConstrained1), coef(RChomogConstrained2))

[1] TRUE

gives the same results regardless of the random seed set beforehand.
It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However, the

simple constraints imposed byconstrainare often sufficient to make particular coefficients of interest identifiable. The
functionscheckEstimable or getContrasts , described in Section 5, may be used to check whether particular
contrasts are estimable.

4.4 Usingeliminate

Sometimes a model will include a “stratification” factor which identifies units for which a unit-specific intercept should
be estimated. It is often the case that such factors have a large number of levels and though they are required in the model,
are not of direct interest in themselves.

The eliminateargument ofgnm can be used to specify a stratification factor in a model, so that the factor can be
handled more efficiently. The factor should be specified as a formula with a single term, for example

gnm(mu ~ -1 + unitID + A + B + Mult(A, B), eliminate = ~ unitID)

The use ofeliminatemakes the specification of a stratification factor in the model formula redundant, so the above call is
equivalent to
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gnm(mu ~ A + B + Mult(A, B), eliminate = ~ unitID)

or even

gnm(mu ~ -1 + A + B + Mult(A, B), eliminate = ~ unitID)

Specifying a stratification factor througheliminatehas two advantages. First, computational speed is improved —
substantially so if the number of eliminated parameters is large. Second, the eliminated parameters are excluded from the
returned vector of coefficients, so that summaries of the model focus on the coefficients of interest.

Theeliminatefeature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves
a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an example see Section 6.6 below.

Theeliminatefeature as implemented ingnmextends the earlier work of Hatzinger and Francis (2004) to a broader
class of models and to over-parameterized model representations.

5 Methods and Accessor functions

The gnm function returns an object of classc("gnm", "glm", "lm") . There are several methods that have been
written for objects of classglm or lm to facilitate inspection of fitted models. Out of the generic functions in thebase,
statsandgraphicspackages for which methods have been written forglm or lm objects, Figure 1 shows those that can be
used to analysegnmobjects, whilst Figure 2 shows those that are not implemented forgnmobjects.

case.names hatvalues print
coef influence residuals
cooks.distance labels rstandard
deviance logLik summary
extractAIC model.frame variable.names
family model.matrix vcov
formula plot weights

Figure 1: Generic functions in thebase, statsandgraphicspackages that can be used to analysegnmobjects.

add1 drop1
alias dummy.coef
anova effects
confint kappa
dfbeta predict
dfbetas proj

Figure 2: Generic functions in thebase, statsandgraphicspackages for which methods have been written forglm or lm
objects, but which arenot implemented forgnmobjects.

In addition to the accessor functions shown in Figure 1, thegnmpackage provides a new generic function called
termPredictors that has methods for objects of classgnm, glmandlm. This function returns the additive contribution
of each term to the predictor. See Section 2 for an example of its use.

Most of the methods listed in Figure 1 can be used as they would be forglmor lm objects, however care must be taken
with vcov, as the variance-covariance matrix will depend on the parameterisation of the model. In particular, standard
errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable!

ThecheckEstimable function can be used to check the estimability of contrasts. Consider the following model,
that is described later in Section 6.3:
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> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +
+ Mult(Exp(election - 1), religion:vote - 1) + Mult(Exp(election -
+ 1), class:vote - 1), family = poisson, data = cautres)

Running start-up iterations..
Running main iterations.......
Done

The effects of the first constituent multiplier in the first multiplicative interaction are identified when the estimate of one
of these effects is constrained to zero, say for the effect of the last level. The parameters to be estimated are then the
differences between each effect and the effect of the last level. These differences can be represented by a contrast matrix
as follows:

> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("Mult1.Factor1", coefs)]
> contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs,
+ contrCoefs))
> contrMatrix[contrCoefs, 1:(ncol(contrMatrix) - 1)] <- contr.sum(contrCoefs)
> contrMatrix[contrCoefs, 1:(ncol(contrMatrix) - 1)]

Mult1.Factor1.election1 Mult1.Factor1.election2
Mult1.Factor1.election1 1 0
Mult1.Factor1.election2 0 1
Mult1.Factor1.election3 0 0
Mult1.Factor1.election4 -1 -1

Mult1.Factor1.election3
Mult1.Factor1.election1 0
Mult1.Factor1.election2 0
Mult1.Factor1.election3 1
Mult1.Factor1.election4 -1

Then their estimability can be checked usingcheckEstimable

> checkEstimable(doubleUnidiff, contrMatrix)

Mult1.Factor1.election1 Mult1.Factor1.election2 Mult1.Factor1.election3
TRUE TRUE TRUE

Mult1.Factor1.election4
NA

which confirms that the effects for the other three levels are estimable when the effect for the last level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to

make the parameters in that multiplier estimable:

> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("Mult1.Factor2", coefs)]
> contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs,
+ contrCoefs))
> contrMatrix[contrCoefs, 1:(ncol(contrMatrix) - 1)] <- contr.sum(contrCoefs)
> checkEstimable(doubleUnidiff, contrMatrix)

Mult1.Factor2.religion1:vote1 Mult1.Factor2.religion2:vote1
FALSE FALSE

Mult1.Factor2.religion3:vote1 Mult1.Factor2.religion4:vote1
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FALSE FALSE
Mult1.Factor2.religion1:vote2 Mult1.Factor2.religion2:vote2

FALSE FALSE
Mult1.Factor2.religion3:vote2 Mult1.Factor2.religion4:vote2

FALSE NA

To investigate simple “sum to zero” contrasts such as those above, it is easiest to use thegetContrasts function,
which checks the estimability of the contrasts and returns the parameter estimates with their standard errors. Returning
to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between each
election and the last can be obtained as follows:

> coefs.of.interest <- grep("Mult1.Factor1", names(coef(doubleUnidiff)))
> getContrasts(doubleUnidiff, coefs.of.interest)

[[1]]
estimate se

Mult1.Factor1.election1 0.32834637 0.12213023
Mult1.Factor1.election2 0.24052784 0.09116483
Mult1.Factor1.election3 0.06682575 0.09906919
Mult1.Factor1.election4 0.00000000 0.00000000

Attempting to obtain the equivalent contrasts for the second (religion-vote association) multiplier produces the following
result:

> coefs.of.interest <- grep("Mult1.Factor2", names(coef(doubleUnidiff)))
> getContrasts(doubleUnidiff, coefs.of.interest)

Mult1.Factor2.religion1:vote1 Mult1.Factor2.religion2:vote1
FALSE FALSE

Mult1.Factor2.religion3:vote1 Mult1.Factor2.religion4:vote1
FALSE FALSE

Mult1.Factor2.religion1:vote2 Mult1.Factor2.religion2:vote2
FALSE FALSE

Mult1.Factor2.religion3:vote2 Mult1.Factor2.religion4:vote2
FALSE NA

Note: not all of the specified contrasts in this set are estimable
[[1]]

estimate se
Mult1.Factor2.religion4:vote2 0 0

6 Examples

This section provides some examples of the wide range of models that may be fitted using thegnmpackage. Sections
6.1, 6.2 and 6.3 consider various models for contingency tables; Section 6.4 considers AMMI and GAMMI models which
are typically used in agricultural applications, and Section 6.6 considers the stereotype model, which is used to model an
ordinal response.

6.1 Row-column Association Models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman (1979). The examples shown use data from two-way contingency tables, but thegnmpackage can also be used
to fit the equivalent models for higher order tables.
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6.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed byr and the columns byc, then the log-
multiplicative form of the RC(1) model for the cell meansµrc is given by

log µrc = αr + βc + γrδc.

We shall fit this model to thementalHealth data set taken from Agresti (2002) page 381, which is a two-way con-
tingency table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although
both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the
contrasts attribute of these factors to“treatment” :

> set.seed(1)
> data(mentalHealth)
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)

Thegnmmodel is then specified as follows, using the poisson family with a log link function:

> RC1model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS),
+ family = poisson, data = mentalHealth)

Running start-up iterations..
Running main iterations.....
Done

> RC1model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS), family = poisson,
data = mentalHealth)

Coefficients:
(Intercept) SESB

3.831001 -0.067413
SESC SESD

0.109938 0.404937
SESE SESF

0.025196 -0.200766
MHSmild MHSmoderate

0.713248 0.205317
MHSimpaired Mult1.Factor1.SESA

0.252311 0.341189
Mult1.Factor1.SESB Mult1.Factor1.SESC

0.343966 0.115341
Mult1.Factor1.SESD Mult1.Factor1.SESE

-0.005967 -0.305568
Mult1.Factor1.SESF Mult1.Factor2.MHSwell

-0.551688 0.934517
Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate

0.094601 -0.056957
Mult1.Factor2.MHSimpaired
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-0.754612

Deviance: 3.570562
Pearson chi-squared: 3.568094
Residual df: 8

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be
normalized as in Agresti’s eqn (9.15):

> rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
> colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
> rowScores <- coef(RC1model)[10:15]
> colScores <- coef(RC1model)[16:19]
> rowScores <- rowScores - sum(rowScores * rowProbs)
> colScores <- colScores - sum(colScores * colProbs)
> beta1 <- sqrt(sum(rowScores^2 * rowProbs))
> beta2 <- sqrt(sum(colScores^2 * colProbs))
> assoc <- list(beta = beta1 * beta2, mu = rowScores/beta1, nu = colScores/beta2)
> assoc

$beta
[1] 0.1664870

$mu
Mult1.Factor1.SESA Mult1.Factor1.SESB Mult1.Factor1.SESC Mult1.Factor1.SESD

1.11234361 1.12145891 0.37108476 -0.02706533
Mult1.Factor1.SESE Mult1.Factor1.SESF

-1.01039041 -1.81818542

$nu
Mult1.Factor2.MHSwell Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate

1.6774975 0.1404000 -0.1369601
Mult1.Factor2.MHSimpaired

-1.4137095

6.1.2 RC(2) model

The RC(1) model can be extended to an RC(m) model withm components of the multiplicative interaction. For example,
the RC(2) model is given by

log µrc = αr + βc + γrδc + θrφc.

Extra instances of the multiplicative interaction can be specified by themultiplicity argument ofMult , so the RC(2)
model can be fitted to thementalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS,
+ multiplicity = 2), family = poisson, data = mentalHealth)

Running start-up iterations..
Running main iterations.......
Done

> RC2model

Call:
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gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS, multiplicity = 2),
family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB

3.85511 -0.06447
SESC SESD

0.11139 0.38471
SESE SESF

0.01090 -0.18477
MHSmild MHSmoderate
0.69870 0.17003

MHSimpaired Mult1.Factor1.SESA
0.22888 0.94938

Mult1.Factor1.SESB Mult1.Factor1.SESC
0.99486 0.33903

Mult1.Factor1.SESD Mult1.Factor1.SESE
-0.17301 -0.91537

Mult1.Factor1.SESF Mult1.Factor2.MHSwell
-1.39141 0.35835

Mult1.Factor2.MHSmild Mult1.Factor2.MHSmoderate
0.03799 -0.02140

Mult1.Factor2.MHSimpaired Mult2.Factor1.SESA
-0.28068 -0.17737

Mult2.Factor1.SESB Mult2.Factor1.SESC
-0.25127 -0.16575

Mult2.Factor1.SESD Mult2.Factor1.SESE
0.29054 0.22753

Mult2.Factor1.SESF Mult2.Factor2.MHSwell
-0.45487 0.30770

Mult2.Factor2.MHSmild Mult2.Factor2.MHSmoderate
0.09770 -0.25568

Mult2.Factor2.MHSimpaired
0.06702

Deviance: 0.5225353
Pearson chi-squared: 0.5233306
Residual df: 3

6.1.3 Homogeneous effects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogeneous effects, that is

log µrc = αr + βc + γrγc.

For example, theoccupationalStatus data set from Goodman (1979) is a contingency table classified by the oc-
cupational status of fathers (origin) and their sons (destination). Goodman (1979) fits a row-column association model
with homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal effects by a separateDiag term:

> data(occupationalStatus)
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
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+ Nonlin(MultHomog(origin, destination)), family = poisson,
+ data = occupationalStatus)

Running start-up iterations..
Running main iterations..........
Done

> RChomog

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus)

Coefficients:
(Intercept) origin2

-0.11931 0.53590
origin3 origin4
1.68913 2.05448
origin5 origin6
0.83650 2.93904
origin7 origin8
1.64554 1.40307

destination2 destination3
0.95492 2.03355

destination4 destination5
2.34291 1.73591

destination6 destination7
3.24252 2.39713

destination8 Diag(origin, destination)1
1.97844 1.52667

Diag(origin, destination)2 Diag(origin, destination)3
0.45601 -0.01598

Diag(origin, destination)4 Diag(origin, destination)5
0.38918 0.73852

Diag(origin, destination)6 Diag(origin, destination)7
0.13474 0.45764

Diag(origin, destination)8 MultHomog(origin, destination).1
0.38847 -1.58261

MultHomog(origin, destination).2 MultHomog(origin, destination).3
-1.36432 -0.76615

MultHomog(origin, destination).4 MultHomog(origin, destination).5
-0.18227 -0.16511

MultHomog(origin, destination).6 MultHomog(origin, destination).7
0.34665 0.76279

MultHomog(origin, destination).8
1.00637

Deviance: 32.56098
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneous effects on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:
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> data(occupationalStatus)
> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)

Running start-up iterations..
Running main iterations.........
Done

> RChomog$dev - RCheterog$dev

[1] 3.411823

> RChomog$df.residual - RCheterog$df.residual

[1] 6

In this case there is little gain in allowing heterogeneous effects.

6.2 Diagonal Reference Models

Diagonal reference models, proposed by Sobel (1981, 1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall use thevoting data from Clifford and Heath (1993). The data
come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of household (destination ) and the class of their father (origin ). In order to weight these percentages
by the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

> set.seed(1)
> data(voting)
> count <- with(voting, percentage/100 * total)
> yvar <- cbind(count, voting$total - count)

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal
effects for the corresponding origin and destination classes. This model may be expressed as

µod =
eδ1

eδ1 + eδ2
γo +

eδ2

eδ1 + eδ2
γd.

See Section 3.2.2 for more detail on the parameterisation.
The basic diagonal reference model may be fitted usinggnmas follows

> classMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination)),
+ family = binomial, data = voting)

Running main iterations.......
Done

> classMobility

Call:

gnm(formula = yvar ~ Nonlin(Dref(origin, destination)), family = binomial,
data = voting)
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Coefficients:
(Intercept) Dref(origin, destination).origin

-1.6055 0.3738
Dref(origin, destination).destination Dref(origin, destination).1

0.6262 -0.5723
Dref(origin, destination).2 Dref(origin, destination).3

0.4729 -0.3494
Dref(origin, destination).4 Dref(origin, destination).5

1.0272 1.6459

Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below

> prop.table(exp(coef(classMobility)[2:3]))

Dref(origin, destination).origin Dref(origin, destination).destination
0.4372474 0.5627526

This model is slightly different from that reported by Clifford and Heath (1993). The reason for this is unclear: we are
confident that the above results are correct for the data as given in Clifford and Heath (1993), but have not been able to
confirm that the data as printed in the journal were exactly as used in Clifford and Heath’s analysis.

Clifford and Heath (1993) suggest that movements in and out of the salariat (class 1) should be treated differently
from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they
propose the following model

µod =



eδ1

eδ1+eδ2
γo + eδ2

eδ1+eδ2
γd if i = 1

eδ3

eδ3+eδ4
γo + eδ4

eδ3+eδ4
γd if j = 1

eδ5

eδ5+eδ6
γo + eδ6

eδ5+eδ6
γd if i 6= 1 andj 6= 1

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,
+ formula = ~1 + downward + upward)), family = binomial, data = voting)

Running main iterations.......
Done

> socialMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +

downward + upward)), family = binomial, data = voting)
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Coefficients:
(Intercept)

-1.5844
Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)

0.3066
Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE

0.9054
Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE

0.4699
Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)

0.6934
Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE

0.0946
Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE

0.5301
Dref(origin, destination, formula = ~1 + downward + upward).1

-0.4732
Dref(origin, destination, formula = ~1 + downward + upward).2

0.4717
Dref(origin, destination, formula = ~1 + downward + upward).3

-0.4104
Dref(origin, destination, formula = ~1 + downward + upward).4

1.0153
Dref(origin, destination, formula = ~1 + downward + upward).5

1.6420

Deviance: 18.97407
Pearson chi-squared: 17.07495
Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> prop.table(exp(coef(socialMobility)[c(4, 7)] + coef(socialMobility)[c(2,
+ 5)]))

Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.3900752

Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.6099248

> prop.table(exp(coef(socialMobility)[c(3, 6)] + coef(socialMobility)[c(2,
+ 5)]))

Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.6044571

Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
0.3955429

> prop.table(exp(coef(socialMobility)[c(2, 5)]))

Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
0.4045022

Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
0.5954978
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Again, the results differ slightly from those reported by Clifford and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile groups than for the other groups. The weights for the
upwardly mobile groups are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile groups:

> downwardMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,
+ formula = ~1 + downward)), family = binomial, data = voting)

Running main iterations.......
Done

> downwardMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +

downward)), family = binomial, data = voting)

Coefficients:
(Intercept)

-1.58578
Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)

0.29561
Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE

0.90538
Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)

0.70439
Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE

0.09462
Dref(origin, destination, formula = ~1 + downward).1

-0.48409
Dref(origin, destination, formula = ~1 + downward).2

0.47924
Dref(origin, destination, formula = ~1 + downward).3

-0.40588
Dref(origin, destination, formula = ~1 + downward).4

1.01270
Dref(origin, destination, formula = ~1 + downward).5

1.64207

Deviance: 18.99389
Pearson chi-squared: 17.09983
Residual df: 18

> prop.table(exp(coef(downwardMobility)[c(3, 5)] + coef(downwardMobility)[c(2,
+ 4)]))

Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.5991644

Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
0.4008356

> prop.table(exp(coef(downwardMobility)[c(2, 4)]))
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Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
0.3992041

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.6007959

Dref example 2: Conformity to parental rules

Another application of diagonal reference models is given by van der Slik et al. (2002). The data from this paper are not
publicly available2, but we shall show how the models presented in the paper may be estimated usinggnm.

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father’s conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

µrc = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 +
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc.

The baseline model can be fitted as follows:

> set.seed(1)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF

0.06364 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM

-0.06430 -0.06043 0.34389
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2

0.65611 4.95123 4.86328
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5

4.86458 4.72342 4.43516
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7

4.18873 4.43379

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

Due to the constraints imposed on the weights in the diagonal reference term, the coefficients of modelA are the unique
solutions. Therefore these estimates should correspond to those reported in Table 4 of van der Slik et al. (2002). The
weights in the diagonal reference term can be evaluated as follows:

2 We thank Frans van der Slik for his kindness in sending us the data.
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> prop.table(exp(coef(A)[6:7]))
Dref(MOPLM, FOPLF).MOPLM Dref(MOPLM, FOPLF).FOPLF

0.4225734 0.5774266

giving the values reported by van der Slik et al. (2002). All the other coefficients of model A are the same as those
reported by van der Slik et al. (2002) except the coefficients of the mother’s gender role (MRMM) and the father’s gender
role (FRMF). van der Slik et al. (2002) reversed the signs of the coefficients of these factors since they were coded in the
direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficents does not
give the same model, since the estimates of these coefficients are not independent of the estimates of the diagonal effects.
For consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows:

> MRMM2 <- as.numeric(!conformity$MRMM)
> FRMF2 <- as.numeric(!conformity$FRMF)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM2 FRMF2

0.06364 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM

-0.06430 -0.06043 0.34389
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2

0.65611 4.37373 4.28578
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5

4.28708 4.14593 3.85766
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7

3.61123 3.85629

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are now as reported by van der Slik et al. (2002), but the diagonal effects have been
adjusted appropriately.

van der Slik et al. (2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they
consider incorporates an interaction of the weights with the mother’s conflict score as follows:

µrc = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 +
eξ1+β1x

eξ1+β1x + eξ2+β2x
γr +

eξ2+β2x

eξ1+β1x + eξ2+β2x
γc.

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Nonlin(Dref(MOPLM, FOPLF, formula = ~ 1 + MFCM)), family = gaussian,
+ data = conformity, verbose = FALSE)
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> F

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Nonlin(Dref(MOPLM, FOPLF, formula = ~1 + MFCM)), family = gaussian,
data = conformity, verbose = FALSE)

Coefficients:
AGEM

0.05818
MRMM

-0.32701
FRMF

-0.25772
MWORK

-0.07847
MFCM

-0.01694
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.(Intercept)

1.03516
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM

-1.77703
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)

-0.03516
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM

2.77703
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).1

4.82477
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).2

4.88066
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).3

4.83969
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).4

4.74849
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).5

4.42019
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).6

4.17956
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).7

4.40819

Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

> prop.table(exp(coef(F))[c(6,8)])
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.(Intercept)

0.7446585
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.(Intercept)

0.2553415
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> prop.table(exp(coef(F)[c(7,9)] + coef(F)[c(6,8)]))
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM

0.02977851
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM

0.97022149

giving the same weights as in Table 4 of van der Slik et al. (2002).

6.3 Uniform Difference (UNIDIFF) Models

Uniform difference models (Xie, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference
model for a three-way contingency table, also known as the UNIDIFF model, is given by

µijk = αik + βjk + exp(δk)γij .

Theγij represent a pattern of association that varies in strength over the dimension indexed byk, andexp(δk) represents
the relative strength of that association at levelk.

This model can be applied to theyaish data set (Yaish, 1998), which is a contingency table cross-classified by
father’s social class (orig ), son’s social class (dest ) and son’s education level (educ ). In this case, we can consider
the importance of the association between the social class of father and son across the education levels:

> set.seed(1)
> data(yaish)
> unidiff <- gnm(Freq ~ educ:orig + educ:dest + Mult(Exp(-1 + educ),
+ orig:dest), family = poisson, data = yaish)

Running start-up iterations..
Running main iterations..................................
Done

> coefs.of.interest <- grep("Mult1.Factor1", names(coef(unidiff)))
> coef(unidiff)[coefs.of.interest]

Mult1.Factor1.educ1 Mult1.Factor1.educ2 Mult1.Factor1.educ3 Mult1.Factor1.educ4
1.08253469 0.86578329 0.35129963 0.05241102

Mult1.Factor1.educ5
-1.15532711

The coefs.of.interest are the multipliers of the association between the social class of father and son. We can
contrast each multiplier to that of the highest education level and obtain the standard errors for these parameters as follows:

> getContrasts(unidiff, coefs.of.interest)

[[1]]
estimate se

Mult1.Factor1.educ1 2.237862 0.9411152
Mult1.Factor1.educ2 2.021110 0.9435045
Mult1.Factor1.educ3 1.506627 0.9535672
Mult1.Factor1.educ4 1.207738 0.9780882
Mult1.Factor1.educ5 0.000000 0.0000000

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

µijkl = αil + βjkl + exp(δl)γij + exp(φl)θik,
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where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. Thecautres data set, from Cautres et al. (1998), can be used to illustrate the application of the double
UNIDIFF model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF
model, we can see how the association between class and vote, and the association between religion and vote, differ
between the most recent election and the other elections:

> set.seed(1)
> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +
+ Mult(Exp(-1 + election), religion:vote) + Mult(Exp(-1 + election),
+ class:vote), family = poisson, data = cautres)

Running start-up iterations..
Running main iterations........
Done

> getContrasts(doubleUnidiff, grep("Mult1.Factor1", names(coef(doubleUnidiff))))

[[1]]
estimate se

Mult1.Factor1.election1 0.32834578 0.12213024
Mult1.Factor1.election2 0.24052783 0.09116478
Mult1.Factor1.election3 0.06682591 0.09906915
Mult1.Factor1.election4 0.00000000 0.00000000

> getContrasts(doubleUnidiff, grep("Mult2.Factor1", names(coef(doubleUnidiff))))

[[1]]
estimate se

Mult2.Factor1.election1 -0.36182804 0.2534753
Mult2.Factor1.election2 0.31990886 0.1320022
Mult2.Factor1.election3 0.08754582 0.1446833
Mult2.Factor1.election4 0.00000000 0.0000000

6.4 Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) Models

Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column main effects plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell meansµrc a GAMMI-K model has the form

g(µrc) = αr + βc +
K∑

k=1

σkγkrδkc,

in which g is a link function,αr andβc are the row and column main effects,γkr andδkc are the row and column scores
for multiplicative componentk andσk is the singular value for componentk. The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the main effects.

The row-column association models discussed in Section 6.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use thewheat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of Vargas et al. (2001):
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> set.seed(1)
> data(wheat)
> yield.scaled <- wheat$yield * sqrt(3/1000)
> treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
+ wheat$N, sep = "")

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from the
wheat dataset:

> bilinear1 <- gnm(yield.scaled ~ year + treatment + Mult(year,
+ treatment), family = gaussian, data = wheat)

Running start-up iterations..
Running main iterations.................
Done

and compare the AMMI-1 model to the main effects model

> mainEffects <- glm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)
> anova(mainEffects, bilinear1)

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment
Model 2: yield.scaled ~ year + treatment + Mult(year, treatment)

Resid. Df Resid. Dev Df Deviance
1 207 279515
2 176 128383 31 151133

giving the same results as in Table 1 of Vargas et al. (2001) (up to error caused by rounding).

6.5 Biplot Models

Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the firstn components of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model withn components of the multiplicative interaction.

To illustrate the use of biplot models, we shall use thebarley data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Wedderburn, 1974; Gabriel, 1998). The biplot model is fitted as follows:

> data(barley)
> set.seed(1)
> biplotModel <- gnm(y ~ -1 + Mult(site, variety, multiplicity = 2),
+ family = wedderburn, data = barley)

Running start-up iterations..
Running main iterations.........................................................
.........................
Done

using thewedderburn family function introduced in Section 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:
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> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9))
> A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2]
> A

[,1] [,2]
[1,] 4.1945581 -0.39203762
[2,] 2.7643876 -0.33933197
[3,] 1.4250932 -0.04652144
[4,] 1.8463184 0.33364399
[5,] 1.2704687 0.15780901
[6,] 1.1563616 0.40053626
[7,] 1.0171974 0.72728762
[8,] 0.6451498 1.46162874
[9,] -0.1471004 2.13232959

> B

[,1] [,2]
[1,] -2.0675116 -0.9742098
[2,] -3.0597870 -0.5068344
[3,] -2.9595994 -0.3318903
[4,] -1.8087092 -0.4976057
[5,] -1.5580232 -0.0844504
[6,] -1.8940658 1.0845658
[7,] -1.1790575 0.4068721
[8,] -0.8490158 1.1467214
[9,] -0.9704780 1.2655639

[10,] -0.6036867 1.3965960

These matrices are essentially the same as in Gabriel (1998). From these the biplot can be produced, for sitesA . . . I and
varieties1 . . . 9, X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data")
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The product of the matricesA andB is unaffected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parellel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly

> a <- pi/5
> rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,
+ byrow = TRUE)
> rA <- (2 * A/3) %*% rotation
> rB <- (3 * B/2) %*% rotation
> plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data")
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In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e

αT
i =

√
(d)(u1i, u2i)

βT
j =

√
(d)(v1j , v2j)

The rotated and scaled biplot suggests the simpler model

αT
i = (γi, 1)

βT
j = (δj , τj)

which implies the following model for the logits of the leaf blotch incidence:

αT
i βj = γiδj + τj .

Gabriel (1998) describes this as a double additive model, which we can fit as follows:

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >
+ 0, labels = c("rest", "2,3,6"))
> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)

Running start-up iterations..
Running main iterations.....................
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

> biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2)
> doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2)
> c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual -
+ biplotModel$df.residual)
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[1] 9.515599 15.000000

6.6 Stereotype Model

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional category main effect or category-specific intercept:

log µic = β0c + γc

∑
r

βrcxir.

This model can be estimated by re-expressing the categorical data as counts and using agnmmodel with a log link and
poisson variance function.

For example, thebackPain data set from Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:

> set.seed(1)
> data(backPain)
> backPain[1:2, ]

x1 x2 x3 pain
1 1 1 1 same
2 1 1 1 marked.improvement

> library(nnet)
> .incidence <- class.ind(backPain$pain)
> .counts <- as.vector(t(.incidence))
> .rowID <- factor(t(row(.incidence)))
> backPain <- backPain[.rowID, ]
> backPain$pain <- C(factor(rep(levels(backPain$pain), nrow(.incidence)),
+ levels = levels(backPain$pain), ordered = TRUE), treatment)
> cbind(.rowID[1:12], .counts[1:12], backPain[1:12, 4:1])

.rowID[1:12] .counts[1:12] pain x3 x2 x1
1 1 0 worse 1 1 1
1.1 1 1 same 1 1 1
1.2 1 0 slight.improvement 1 1 1
1.3 1 0 moderate.improvement 1 1 1
1.4 1 0 marked.improvement 1 1 1
1.5 1 0 complete.relief 1 1 1
2 2 0 worse 1 1 1
2.1 2 0 same 1 1 1
2.2 2 0 slight.improvement 1 1 1
2.3 2 0 moderate.improvement 1 1 1
2.4 2 1 marked.improvement 1 1 1
2.5 2 0 complete.relief 1 1 1

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(.counts ~ pain + Mult(pain - 1, x1 + x2 +
+ x3 - 1), eliminate = ~.rowID, family = "poisson", data = backPain,
+ iterStart = 3)

Running start-up iterations...
Running main iterations.............
Done
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> oneDimensional

Call:
gnm(formula = .counts ~ pain + Mult(pain - 1, x1 + x2 + x3 -

1), eliminate = ~.rowID, family = "poisson", data = backPain,
iterStart = 3)

Coefficients:
painsame painslight.improvement

16.1574 15.6844
painmoderate.improvement painmarked.improvement

12.4558 19.9140
paincomplete.relief Mult1.Factor1.painworse

21.6652 -4.0617
Mult1.Factor1.painsame Mult1.Factor1.painslight.improvement

0.3283 0.0916
Mult1.Factor1.painmoderate.improvement Mult1.Factor1.painmarked.improvement

-0.9458 1.3958
Mult1.Factor1.paincomplete.relief Mult1.Factor2.x1

2.2954 -0.8450
Mult1.Factor2.x2 Mult1.Factor2.x3

-0.4847 -0.4267

Deviance: 303.1003
Pearson chi-squared: 433.3728
Residual df: 493

usingeliminateto handle the.rowID so that these structural parameters do not appear in the returned coefficients. This
model is one dimensional since it involves only one function ofx = (x1, x2, x3). We can compare this model to one with
category-specific coefficents of thex variables, as may be used for a qualitative categorical response:

> threeDimensional <- gnm(.counts ~ pain + pain:(x1 + x2 + x3),
+ eliminate = ~.rowID, family = "poisson", data = backPain)

Running main iterations.
Done

> threeDimensional

Call:
gnm(formula = .counts ~ pain + pain:(x1 + x2 + x3), eliminate = ~.rowID,

family = "poisson", data = backPain)

Coefficients:
painsame painslight.improvement

39.3495 38.9688
painmoderate.improvement painmarked.improvement

35.8513 43.0519
paincomplete.relief painworse:x1

45.4999 16.9234
painsame:x1 painslight.improvement:x1

1.7421 2.0717
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painmoderate.improvement:x1 painmarked.improvement:x1
2.3351 0.5119

paincomplete.relief:x1 painworse:x2
0.0000 3.2750

painsame:x2 painslight.improvement:x2
0.6009 0.7236

painmoderate.improvement:x2 painmarked.improvement:x2
1.6029 0.4311

paincomplete.relief:x2 painworse:x3
0.0000 2.9407

painsame:x3 painslight.improvement:x3
1.7852 1.6486

painmoderate.improvement:x3 painmarked.improvement:x3
2.1944 1.2491

paincomplete.relief:x3
0.0000

Deviance: 299.0152
Pearson chi-squared: 443.0044
Residual df: 485

This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Anderson (1984) we need to adjust for the extra parameters introduced to formulate the models
as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model
and the three dimensional model:

> logLikMultinom <- function(model) {
+ object <- get(model)
+ if (inherits(object, "gnm")) {
+ l <- logLik(object) + object$eliminate
+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = l)
+ }
+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)
+ }
> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom))

nParameters logLikelihood
oneDimensional 12 -151.5501
threeDimensional 20 -149.5076

which show that theoneDimensional model is adequate.
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A User-level Functions

We list here, for easy reference, all of the user-level functions in thegnmpackage. For full documentation see the package
help pages.

Model Fitting

gnm fit generalized nonlinear models
gnmControl set control parameters for fittinggnmmodels

Model Specification

Diag create factor differentiating diagonal elements
Symm create symmetric interaction of factors
Mult specify a multiplicative interaction in agnm formula
Exp specify an exponentiated constituent multiplier in aMult term
Nonlin specify a special nonlinear term in agnm formula
Dref gnm plug-in function to fit diagonal reference terms
MultHomog gnm plug-in function to fit multiplicative interactions with homogenous effects
wedderburn specify the Wedderburn quasi-likelihood family

Methods and Accessor Functions

summary.gnm summarizegnmfits
getContrasts estimate contrasts and their standard errors for parameters in a gnm model
checkEstimable check whether one or more parameter combinations in agnmmodel is identified
se get standard errors of linear parameter combinations ingnmmodels
termPredictors (generic) extract term contributions to predictor

Auxiliary Functions

getModelFrame get the model frame in use bygnm
MPinv Moore-Penrose pseudoinverse of a real-valued matrix
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