1. Hansen, J., Dechêne, A., & Wänke, M. (2008). Discrepant fluency increases subjective truth. Journal of Experimental Social Psychology, 44(3), 687–691. doi:10.1016/j.jesp.2007.04.005
2. Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8(4), 364–382. doi:10.1207/s15327957pspr0804_3
3. Schwarz, N. (2004). Metacognitive experiences in consumer judgment and decision making. Journal of Consumer Psychology, 14(4), 332–348. doi:10.1207/s15327663jcp1404_2
4. Graf, L. K. M., & Landwehr, J. R. (2015). A dual-process perspective on fluency-based aesthetics: The pleasure-interest model of aesthetic liking. Personality and Social Psychology Review, 19(4), 395–410. doi:10.1177/1088868315574978
5. Winkielman, P., & Cacioppo, J. T. (2001). Mind at ease puts a smile on the face: Psychophysiological evidence that processing facilitation elicits positive affect. Journal of Personality and Social Psychology, 81(6), 989. doi:10.1037//0022-3514.81.6.989
6. Alter, A. L., & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13(3), 219–235. doi:10.1177/1088868309341564
7. Joye, Y., Steg, L., Ünal, A. B., & Pals, R. (2016). When complex is easy on the mind: Internal repetition of visual information in complex objects is a source of perceptual fluency. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 103–114. doi:10.1037/xhp0000105
8. Mayer, S., & Landwehr, J. R. (2018). Quantifying visual aesthetics based on processing fluency theory: Four algorithmic measures for antecedents of aesthetic preferences. Psychology of Aesthetics, Creativity, and the Arts, 12(4), 399–431. doi:10.1037/aca0000187
9. Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology, 13(2), 144–149. doi:10.1016/S0959-4388(03)00047-3
10. Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America A, 7(10), 2032–2040. doi:10.1364/JOSAA.7.002032
11. Frazor, R. A., & Geisler, W. S. (2006). Local luminance and contrast in natural images. Vision Research, 46(10), 1585–1598. doi:10.1016/j.visres.2005.06.038
13. Landwehr, J. R., Labroo, A. A., & Herrmann, A. (2011). Gut liking for the ordinary: Incorporating design fluency improves automobile sales forecasts. Marketing Science, 30(3), 416–429. doi:10.1287/mksc.1110.0633
14. Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216. doi:10.1146/annurev.neuro.24.1.1193
15. Mayer, S., & Landwehr, J. R. (2014). When complexity is symmetric: The interplay of two core determinants of visual aesthetics. In J. Cotte & S. Wood (Eds.), Advances in Consumer Research (Vol. 42, pp. 608–609). Duluth, MN: Association for Consumer Research.
16. Perrett, D. I., May, K. A., & Yoshikawa, S. (1994). Facial shape and judgements of female attractiveness. Nature, 368(6468), 239–242. doi:10.1038/368239a0
17. Mayer, S., & Landwehr, J. R. (2018). Objective measures of design typicality. Design Studies, 54, 146–161. doi:10.1016/j.destud.2017.09.004