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1 Introduction

While substantial work has been conducted on methods for diagnostic meta-analysis, it has not
become a routine procedure yet. One of the reasons for this is certainly the complexity of bi-
variate approaches, but another reason is that standard software packages for meta-analysis, for
example Comprehensive Meta-Analysis and RevMan ([Bio06],[Cen11]), do not include software to
fit models appropriate for diagnostic meta-analysis. For the recommended ([LDGB08]) bivariate
approach of Rutter and Gatsonis ([RG01]) meta-analysts can use Bayesian approaches (for exam-
ple in WinBUGS ([LTBS00]) or OpenBUGS ([LSTB09])), the stata module metandi ([HW10]),
or the SAS macro METADAS ([TD11]). So currently available software is either relatively complex
(WinBUGS/OpenBUGS) or proprietary (stata, SAS).

The open source R-package mada provides some established and some current approaches to
diagnostic meta-analysis, as well as functions to produce descriptive statistics and graphics. It is
hopefully complete enough to be the only tool needed for a diagnostic meta-analysis. mada has
been developed with an R user in mind that has used standard model fitting functions already, and
a lot of the output of mada will look familiar to such a user. While this vignette cannot provide
an introduction to R, it is hopefully detailed enough to provide a novice R user with enough hints
to perform diagnostic meta-analysis along the lines of it. Free introductions to R are available
on the homepage of the R project. We assume that the reader is familiar with central concepts
of meta-analysis, like fixed and random effects models (for example [BHHR09]) and ideas behind
diagnostic accuracy meta-analysis and (S)ROC curves (starting points could be [SAJ+00], [Wal02],
[JA05] or [LDGB08]).

2 Obtaining mada

Once R is installed and an internet connection is available, the package can be installed from
CRAN on most systems by typing

> install.packages("mada")

Development of mada is hosted at http://r-forge.r-project.org/projects/mada/; the most
current version is available there1, while only stable versions are available from CRAN. The package
can then be loaded:

> library(mada)

3 Entering data

Primary diagnostic studies observe the result of a gold standard procedure which defines the
presence or absence of a condition, and the result of a diagnostic test (typically some kind of low

1For example by typing install.packages("mada", repos="http://R-Forge.R-project.org") at an R prompt.
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cost procedure, or at least one that is less invasive than the gold standard). Data from such a
primary study could be reported in a 2× 2 table, see Table 1.

Table 1: Data from the ith study in a 2× 2 table

with condition without condition
Test positive yi zi
Test negative mi − yi ni − zi
Total mi ni

The numbers yi and zi are the numbers of true-positives (TP) and false positives (FP), respec-
tively, and mi − yi and ni − zi are the numbers of false negatives (FN) and true negatives (TN).
Often derived measures of diagnostic accuracy are calculated from 2×2 tables. Using the notation
in Table 1, one can calculate

pi = sensitivity of ith study =
yi
mi

(1)

ui = false positive rate of ith study =
zi
ni

(2)

1− ui = specificity of ith study =
ni − zi
ni

. (3)

Basically all functions in the mada package need data from 2×2 tables. One can use R to
calculate the table given specificities or sensitivities if the sample size in each group is known
(sometimes there is insufficient data to reconstruct the 2×2 table). The above formulae for the
sensitivity for example implies that

yi = mipi.

If a primary study reports a sensitivity of .944 and that there were 142 people with the condition,
we can calculate y by

> y <- 142 * .944

> y

[1] 134.048

Since this is not an integer, we need to round it to the nearest integer

> round(y)

[1] 134

Note that mada is a bit paranoid about the input: it demands that the data and the rounded data
are identical to prevent some obvious error. Hence the use of the round function should not be
omitted.

Let us now assume that the number of TP, FP, FN and TN is known for each primary study.
A good way to organise information in R is to use data frames, which can hold different variables.
In our case each row of the data frame corresponds to one primary study. As an example we enter
the data from six studies from a meta-analysis of the AUDIT-C (a short screening test for alcohol
problems, [KHW+08]) into a data frame

> AuditC6 <- data.frame(TP = c(47, 126, 19, 36, 130, 84),

+ FN = c(9, 51, 10, 3, 19, 2),

+ FP = c(101, 272, 12, 78, 211, 68),

+ TN = c(738, 1543, 192, 276, 959, 89))

> AuditC6
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TP FN FP TN

1 47 9 101 738

2 126 51 272 1543

3 19 10 12 192

4 36 3 78 276

5 130 19 211 959

6 84 2 68 89

Note that many central functions in mada also accept four vectors of frequencies (TP, FN, FP,
TN) as input. Nevertheless, it is convenient to store not only the observed frequencies, but also
the study names in the same data frame. The following command shows how to do this for our
shortened example:

> AuditC6$names <- c("Study 1","Study 2","Study 4","Study 4","Study 5","Study 6")

The full data set with 14 studies is part of mada; let’s load the data set and have a look at the
last six studies:

> data(AuditC)

> tail(AuditC)

TP FN FP TN

9 59 5 55 136

10 142 50 571 2788

11 137 24 107 358

12 57 3 103 437

13 34 1 21 56

14 152 51 88 264

In the following we will use the AuditC data set as a running example.

3.1 Zero cells

In the analysis of data in 2×2 tables zero cells often lead to problems or statistical artefacts since
certain ratios do not exist. So called continuity corrections are added to the observed frequencies;
these are small positive numbers. One suggestions in the literature is to use 0.5 as the continuity
correction, which is the default value in mada. All relevant functions in mada allow user specified
continuity corrections and the correction can be applied to all studies, or just to those with zero
cells.

4 Descriptive statistics

Descriptive statistics for a data set include the sensitivity, specificity and false-positive rate of
the primary studies and also their positive and negative likelihood ratios (LR+,LR−), and their
diagnostic odds ratio (DOR; [GLP+03]). These are defined as

LR+ =
p

u
=

sensitivity

false positive rate
,

LR− =
1− p
1− u

,

and

DOR =
LR+

LR−
=

TP · TN

FN · FP
.

All these are easily computed using the madad function, together with their confidence intervals (see
[Dee01] for the formulae used). madad also performs χ2 tests to assess heterogeneity of sensitivities

3



and specificities, the null hypothesis being in both cases, that all are equal. Finally the correlation
of sensitivities and false positive rates is calculated to give a hint whether the cut-off value problem
is present. The following output is slightly cropped.

> madad(AuditC)

Descriptive summary of AuditC with 14 primary studies.

Confidence level for all calculations set to 95 %

Using a continuity correction of 0.5 if applicable

Diagnostic accuracies

sens 2.5% 97.5% spec 2.5% 97.5%

[1,] 0.833 0.716 0.908 0.879 0.855 0.899

[2,] 0.711 0.640 0.772 0.850 0.833 0.866

...

[14,] 0.748 0.684 0.802 0.749 0.702 0.792

Test for equality of sensitivities:

X-squared = 272.3603, df = 13, p-value = <2e-16

Test for equality of specificities:

X-squared = 2204.8, df = 13, p-value = <2e-16

Diagnostic OR and likelihood ratios

DOR 2.5% 97.5% posLR 2.5% 97.5% negLR 2.5% 97.5%

[1,] 36.379 17.587 75.251 6.897 5.556 8.561 0.190 0.106 0.339

...

[14,] 8.850 5.949 13.165 2.982 2.448 3.632 0.337 0.264 0.430

Correlation of sensitivities and false positive rates:

rho 2.5 % 97.5 %

0.677 0.228 0.888

For the AUDIT-C data, the underlying call to prop.test produces a warning which should not
worry us here. The madad function has a range of options with respect to computational details;
for example one can compute 80% confidence intervals:

> madad(AuditC, level = 0.80)

Also note that all the output of madad is available for further computations if one assigns the
output of madad to an object. For example the false positive rates with their confidence intervals
can be extracted using the $ construct (output cropped):

> AuditC.d <- madad(AuditC)

> AuditC.d$fpr

$fpr

[1] 0.12083333 0.15005507 0.06097561 0.22112676 0.18061486 0.43354430

[7] 0.20988806 0.52006770 0.28906250 0.17008929 0.23068670 0.19131238

[13] 0.27564103 0.25070822

$fpr.ci

2.5% 97.5%

[1,] 0.10050071 0.1446182

...

[14,] 0.20834216 0.2984416
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Figure 1: Paired forest plot for AUDIT-C data

4.1 Descriptive graphics

For the AUDIT-C data, the χ2 tests already suggested heterogeneity of sensitivities and specifici-
ties. The corresponding forest plots confirm this:

> forest(madad(AuditC), type = "sens")

> forest(madad(AuditC), type = "spec")

These plots are shown in Figure 1.
Apart from these univariate graphics mada provides a variety of plots to study the data on ROC

space. Note that for exploratory purposes it is often useful to employ color and other features of R’s
plotting system. Two high level plots are provided by mada: crosshair to produce crosshair plots
([PSS10]), and ROCellipse. The following is an example of a call of crosshair that produces
(arbitrarily) colored crosshairs and makes the crosshairs wider with increased sample size; also
only a portion of ROC space is plotted.

> ## calculate weights:

> rs <- rowSums(AuditC)

> rs <- 4 * rs/max(rs)

> crosshair(AuditC, xlim = c(0,0.6), ylim = c(0.4,1), col = 1:14, lwd = rs)

Figure 2 displays this plot and the next descriptive plot. ROCellipse plots confidence regions
which describe the uncertainty of the pair of sensitivity and false positive rate. These regions are
ellipses on logit ROC space, and by back-transforming them to regular ROC space the (sometimes
oddly shaped) regions are produced. By default this function will also plot the point estimates.
The following example is a bit contrived, but showcases the flexibility of ROCellipse: here the
plotting of the point estimates is suppressed manipulating the pch argument, but then points are
added in the next step.

> ROCellipse(AuditC, pch = "")

> points(fpr(AuditC), sens(AuditC))

5



●

●

●

●

●

●

● ●

●

●

●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False Positive Rate

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate
S

en
si

tiv
ity

●

●

●

●

●

●
● ●

●

●

●

●
●

●

Figure 2: A “weighted” crosshair plot with (arbitrary) coloring and a plot with confidence regions
for primary study estimates

5 Univariate Approaches

Before the advent of the bivariate approaches by [RG01] and [RGR+05], some univariate ap-
proaches to the meta-analysis of diagnostic accuracy were more popular. Bivariate approaches
cannot be recommended if the sample size is too small. The bivariate model of [RGR+05] for
example has 5 parameters, which would clearly be too much for a handful of studies. Hence mada

provides some univariate methods. Since pooling sensitivities or specificities can be misleading
([GP06]), options for the univariate meta-analysis of these are not provided. mada does provide
approaches for the DOR ([GLP+03]), the positive and negative likelihood ratios, and θ, the accu-
racy parameter of the proportional hazards model for diagnostic meta-analysis ([HBB12]). In this
vignette we explain the details on the DOR methodology and the methods for θ.

5.1 Diagnostic odds ratio

In analogy to the meta-analysis of the odds ratio (OR) methods for the meta-analysis of the DOR
can be developed ([GLP+03]). For the fixed effects case a Mantel-Haenszel (MH; see for example
[Dee01]) is provided by mada. The underlying fixed effects model has the form

DORi = µ+ εi,

where µ is true underlying DOR and the εi are independent errors with mean 0 and study specific
variance. The MH estimator is a weighted average of DORs observed in the primary studies and
is robust to the presence of zero cells. It takes the form

µ̂ =
∑
i

ωMH
i DORi∑
i ω

MH
i

,

where ωMH
i = zi(mi−yi)

mi+ni
are the Mantel-Haenszel weights.

One obtains an estimator for a random effects model following the approach of DerSimonian
and Laird (DSL; [DL86]). Here the underlying model is in terms of the log DORs. One assumes

log DORi = µ+ εi + δi,
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where µ is the mean of the log DORs, εi and δi are independent with mean 0; the variance σ2
i of

εi is estimated as

σ̂2
i =

1

yi
+

1

mi − yi
+

1

zi
+

1

ni − zi
,

and the variance τ2 of δi is to be estimated. The DSL estimator then is a weighted estimator, too:

µ̂ =
∑
i

ωDSLi DORi∑
i ω

DSL
i

,

where

ωDSLi =
1

σ̂2
i + τ2

.

The variance τ2 is estimated by the Cochran Q statistic trick.
The function madauni handles the meta-analysis of the DOR (and the negative and positive

likelihood ratios). One can use madauni in the following fashion:

> (fit.DOR.DSL <- madauni(AuditC))

Call:

madauni(x = AuditC)

DOR tau^2

26.337 0.311

> (fit.DOR.MH <- madauni(AuditC, method = "MH"))

Call:

madauni(x = AuditC, method = "MH")

DOR

17.93335

Note that the brackets around fit.DOR.DSL <- madauni(AuditC) are a compact way to print
the fits. The print method for madauni objects is not very informative, only the point estimate is
returned along with (in the random effects case) an estimate of the τ2, the variance of the random
effects. Note that estimation in the random effects case is performed on log-DOR scale, so that
τ2 of the above DSL fit is substantial. To obtain more information the summary method can be
used:

> summary(fit.DOR.DSL)

Call:

madauni(x = AuditC)

Estimates:

DSL estimate 2.5 % 97.5 %

DOR 26.337 17.971 38.596

lnDOR 3.271 2.889 3.653

tau^2 0.311 0.000 3.787

tau 0.557 0.000 1.946

Cochran's Q: 19.683 (13 df, p = 0.103)

Higgins' I^2: 33.955%

In addition to the confidence intervals, Cochran’s Q statistic ([Coc54]) can be seen and Higgins I2

([HTDA03]). Producing a forest plot of the (log-)DOR values together with the summary estimate
is straightforward using the forest method for the madauni class:
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> forest(fit.DOR.DSL)

Forest plot

log diagnostic odds ratio

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

Study 11

Study 12

Study 13

Study 14

Summary (DSL)

 3.59 [ 2.87,  4.32]

 2.63 [ 2.28,  2.98]

 3.35 [ 2.41,  4.30]

 3.60 [ 2.48,  4.73]

 3.41 [ 2.91,  3.91]

 3.79 [ 2.49,  5.08]

 6.25 [ 3.46,  9.04]

 7.24 [ 4.46, 10.01]

 3.28 [ 2.35,  4.21]

 2.62 [ 2.29,  2.96]

 2.93 [ 2.45,  3.41]

 4.24 [ 3.14,  5.34]

 4.10 [ 2.39,  5.81]

 2.18 [ 1.78,  2.58]

 3.27 [ 2.89,  3.65]

1.78 5.90 10.01

5.2 Proportional hazards model approach

The proportional hazards model approach (PHM; see [HBB12]) builds on the assumption of a
simple form of the ROC curves. The so called Lehmann model ([Le06]) is assumed. Let pi and ui
denote the ith study’s sensitivity and false positive rate respectively. The relationship of pi and
ui is then assumed to be

pi = uθii ,

where θi > 0 is a diagnostic accuracy parameter. The smaller θ, the larger the area under the
ROC curve and thus the more accurate the diagnostic test. For the meta-analysis of θ the APMLE
estimator is implemented in mada for the case of homogeneity (i.e. fixed effects) and heterogeneity
(i.e. random effects). Again the standard output of the phm function is rather sparse:

> (fit.phm.homo <- phm(AuditC, hetero = FALSE))

Call:

phm.default(x = AuditC, hetero = FALSE)

Coefficients:

theta

0.004586893

> (fit.phm.het <- phm(AuditC))

Call:

phm.default(x = AuditC)

Coefficients:

theta taus_sq

0.084631351 0.003706143

The summary method is more informative:
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> summary(fit.phm.homo)

Call:

phm.default(x = AuditC, hetero = FALSE)

Estimate 2.5 % 97.5 %

theta 0.004586893 0.003508507 0.00566528

Log-likelihood: -61.499 on 1 degrees of freedom

AIC: 125

BIC: 125.6

Chi-square goodness of fit test (Adjusted Profile Maximum Likelihood

under homogeneity)

data: AuditC

Chi-square = 222.4711, df = 1, p-value < 2.2e-16

AUC 2.5 % 97.5 % pAUC 2.5 % 97.5 %

0.995 0.997 0.994 0.994 0.995 0.992

The χ2 test goodness of fit test rejects the assumption of homogeneity, but the fit of the model
for heterogeneity is better:

> summary(fit.phm.het)

Call:

phm.default(x = AuditC)

Estimate 2.5 % 97.5 %

theta 0.084631351 0.047449859 0.121812844

taus_sq 0.003706143 -0.001277798 0.008690085

Log-likelihood: 31.121 on 2 degrees of freedom

AIC: -58.2

BIC: -57

Chi-square goodness of fit test (Adjusted Profile Maximum Likelihood

under heterogeneity)

data: AuditC

Chi-square = 13.7264, df = 2, p-value = 0.3185

AUC 2.5 % 97.5 % pAUC 2.5 % 97.5 %

0.922 0.955 0.891 0.891 0.937 0.848

The estimation of θ results in an SROC curve; plotting this curve together with confidence bands
obtained from the confidence interval of θ in the summary is simple (we also add the original data
on ROC space with confidence regions and only plot a portion of ROC space):

> plot(fit.phm.het, xlim = c(0,0.6), ylim = c(0.4,1))

> ROCellipse(AuditC, add = TRUE)
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Note that the SROC curve is not extrapolated beyond the range of the original data. The area
under the SROC curve, the AUC, is also part of the summary above. For the PHM it is calculated
by

AUC =
1

θ + 1
,

and by the same relation a confidence interval for the AUC can be computed from the confidence
interval for θ. The mada package also offers the AUC function to calculate the AUC of other SROC
curves which uses the trapezoidal rule.

6 A bivariate approach

Typically the sensitivity and specificity of a diagnostic test depend on each other through a cut-off
value: as the cut-off is varied to, say, increase the sensitivity, the specificity often decreases. So
in a meta-analytic setting one will often observe (negatively) correlated sensitivities and specifici-
ties. This observation can (equivalently) also be state as a (positive) correlation of sensitivities
and false positive rates. Since these two quantities are interrelated, bivariate approaches to the
meta-analysis of diagnostic accuracy have been quite successful ([RG01], [VHAS02], [RGR+05],
[HDE+07], [AHVH+08]).

One typically assumes a binomial model conditional on a primary studies true sensitivity and
false positive rates, and a bivariate normal model for the logit-transformed pairs of sensitivities
and false positive rates. There are two ways to cast the final model: as a non-linear mixed model
or as linear mixed model (see for example [AHVH+08]). The latter approach is implemented in
mada’s reitsma function, so we give some more details. We note that more generally the following
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can be seen as a multivariate meta-regression (the package mvmeta ([GAK12]) serves as a basis for
our implementation).

Let pi and ui denote the ith study’s true sensitivity and false positive rate respectively, and
let p̂i and ûi denote their estimates from the observed frequencies. Then, since a binomial model
is assumed conditional on the true pi, the variance of logit(p̂i) can be approximated by

p̂i(1− p̂i)
mi

,

and the variance of logit(ûi) is then
ûi(1− ûi)

ni
.

So on the within study level one assumes, conditional on pi and ui, that the observed variation is
described by these variances and a normal model; let Di denote a diagonal 2×2 matrix with the
two variances on the diagonal. On the study level, one assumes that a global mean

µ = (µ1, µ2)T

and covariance matrix

Σ =

(
σ2
1 σ
σ σ2

2

)
describe the heterogeneity of the pairs (logit(pi), logit(ui)). So the model for the ith study is then

(logit(p̂i), logit(ûi))
T ∼ N(µ,Σ +Di).

Fitting this model in mada is similar to the other model fitting functions:

> (fit.reitsma <- reitsma(AuditC))

Call: reitsma.default(data = AuditC)

Fixed-effects coefficients:

tsens tfpr

(Intercept) 2.0997 -1.2637

14 studies, 2 fixed and 3 random-effects parameters

logLik AIC BIC

31.5640 -53.1279 -46.4669

The print method for reitsma objects has a scarce output. More information is offered by the
summary method:

> summary(fit.reitsma)

Call: reitsma.default(data = AuditC)

Bivariate diagnostic random-effects meta-analysis

Estimation method: REML

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

tsens.(Intercept) 2.0997 0.3379 6.2150 0.0000 1.4376 2.7619

tfpr.(Intercept) -1.2637 0.1743 -7.2488 0.0000 -1.6054 -0.9220

sensitivity 0.8909 - - - 0.8081 0.9406

false pos. rate 0.2203 - - - 0.1672 0.2845
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tsens.(Intercept) ***

tfpr.(Intercept) ***

sensitivity

false pos. rate

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Variance components: between-studies Std. Dev and correlation matrix

Std. Dev tsens tfpr

tsens 1.1746 1.0000 .

tfpr 0.6381 0.8543 1.0000

logLik AIC BIC

31.5640 -53.1279 -46.4669

AUC: 0.894

Partial AUC (restricted to observed FPRs and normalized): 0.87

Note the sensitivity and false positive rate returned in this summary are just the back-transformed
µ1 and µ2. One can then proceed to plot the SROC curve of this model. By default the point
estimate of the pair of sensitivity and false positive rate is also plotted together with a confidence
region. In the following example the SROC curve is plotted a bit thicker using the sroclwd

argument, a caption is added to the plot and also the data and a legend. By default the SROC
curve is not extrapolated beyond the range of the original data.

> plot(fit.reitsma, sroclwd = 2,

+ main = "SROC curve (bivariate model) for AUDIT-C data")

> points(fpr(AuditC), sens(AuditC), pch = 2)

> legend("bottomright", c("data", "summary estimate"), pch = c(2,1))

> legend("bottomleft", c("SROC", "conf. region"), lwd = c(2,1))
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6.1 Using mada to compare SROC curves

We show how to compare SROC curves. [PCT+94] conducted a meta-analysis to (among other
things) investigate the efficacy of self administered and interviewer administered questionnaires to
detect nicotine use. The data sets SAQ and IAQ are the respective subsets of this data. First one
fits bivariate models to the data sets:

> data(IAQ)

> data(SAQ)

> fit.IAQ <- reitsma(IAQ)

> fit.SAQ <- reitsma(SAQ)

Then one plots the SROC curves of these fits, beginning with the fit of the IAQ and adding the
SAQ curve. Note that the lty arguments is used so that the curves can be distinguished.

> plot(fit.IAQ, xlim = c(0,.5), ylim = c(.5,1),

+ main = "Comparison of IAQ and SAQ")

> lines(sroc(fit.SAQ), lty = 2)

> ROCellipse(fit.SAQ, lty = 2, pch = 2, add = TRUE)

> ## add orginal data

> points(fpr(IAQ), sens(IAQ), cex = .5)

> points(fpr(SAQ), sens(SAQ), pch = 2, cex = 0.5)

> legend("bottomright", c("IAQ", "SAQ"), pch = 1:2, lty = 1:2)
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The summary estimates are well separated, though the confidence regions slightly overlap. It
would nevertheless be safe to conclude that IAQ is a more reliable way to measure smoking than
SAQ.

6.2 Using mada for bivariate meta-regression

We demonstrate diagnostic meta-regression also using the data of [PCT+94]. We use the complete
data set, which is loaded by

> data(smoking)

The data.frame contains the same variables as the SAQ and IAQ subsets, but the type is coded
by the fifth variable type:

> summary(smoking$type)

IAQ SAQ

20 31

We use the factor type as a covariate in diagnostic meta-regression:

> fit.smoking <- reitsma(smoking, formula = cbind(tsens, tfpr) ~ type)

Note that the left hand side of the formula object always has to be of the form cbind(tsens,

tfpr), where tsens and tfpr are for transformed sensitivity and false positive rate respectively.
We generate detailed output by:

> summary(fit.smoking)
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Call: reitsma.default(data = smoking, formula = cbind(tsens, tfpr) ~

type)

Bivariate diagnostic random-effects meta-analysis

Estimation method: REML

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

tsens.(Intercept) 3.0073 0.3066 9.8094 0.0000 2.4065 3.6082

tsens.typeSAQ -0.9985 0.3945 -2.5309 0.0114 -1.7718 -0.2253

tfpr.(Intercept) -2.4067 0.2428 -9.9120 0.0000 -2.8826 -1.9308

tfpr.typeSAQ 0.0186 0.3072 0.0605 0.9517 -0.5834 0.6206

tsens.(Intercept) ***

tsens.typeSAQ *

tfpr.(Intercept) ***

tfpr.typeSAQ

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Variance components: between-studies Std. Dev and correlation matrix

Std. Dev tsens tfpr

tsens 1.2856 1.0000 .

tfpr 1.0031 0.5103 1.0000

logLik AIC BIC

126.6221 -239.2442 -220.8694

This output can be interpreted as follows: The z-value for the regression coefficient for the sen-
sitivities is significant, indicating that the interviewer administered questionnaires offer a better
sensitivity. Interestingly the point estimate for the false-positive rates does not indicate any effect.

Note that once meta-regression is used, one cannot reasonably plot SROC curves, since fixed
values for the covariates would have to be supplied to do so. Also (global) AUC values do not
make sense.

6.3 Transformations beyond the logit

All bivariate approaches explained so far use the conventional logit transformation. The reitsma

function offers the parametric tα family ([DHB12]) of transformations as alternatives. The family
is defined by

tα(x) := α log(x)− (2− α) log(1− x), x ∈ (0, 1), α ∈ [0, 2].

For α = 1, the logit is obtained. In many cases the fit of a bivariate meta-regression can be
improved upon by choosing adequate values for α. The rational behind this is, that especially
sensitivities tend to cluster around values like .95 and the symmetric logit transformation does
not necessarily lead to normally distributed transformed proportions. As an example we study
the smoking data again:

> fit.smoking1 <- reitsma(smoking)

> fit.smoking2 <- reitsma(smoking, alphasens = 0, alphafpr = 2)

> AIC(fit.smoking1)

[1] -236.3434

> AIC(fit.smoking2) # fit improved

[1] -242.5598
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7 Further development of mada

In the future mada will support the mixture approach of [HBB11].
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[HBB11] H.˜Holling, W.˜Böhning, and D.˜Böhning. Likelihood-Based Clustering of Meta-
Analytic SROC Curves. Psychometrika, pages 1–21, 2011.
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