
Wei-Chen Chen i

A Quick Guide for the phyclust Package

Wei-Chen Chen
Iowa State University

Contents

Acknowledgement i

1. Introduction 1

1.1. Installation and quick start . 1

1.2. Getting help . 2

2. Sequence Data Input and Output 2

2.1. Standard coding . 3

2.2. PHYLIP format . 3

2.3. FASTA format . 4

2.4. Save sequences . 5

3. The ms+seqgen Approach 5

3.1. Using the ms() function to generate trees . 5

3.2. Using the seqgen() function to generate sequences 6

3.3. Inputing an ancestral sequence to ms+seqgen . 7

4. Phylogenetic Clustering (Phyloclustering) 9

4.1. Exploring data . 11

4.2. Using the phyclust() function . 13

4.3. Using the .EMControl() function . 15

4.4. The ms+seqgen+phyclust approach . 16

5. Using the haplo.post.prob() function for Hap-Clustering 17

References 20

Acknowledgement

The author thanks Dr. Karin S. Dorman and Dr. Ranjan Maitra in Iowa State University for
their generous support, and is funded by Dr. Maitra’s grand, NSF CAREER DMS-0437555.

Wei-Chen Chen 1

1. Introduction

Warning. This document is written to explain the major functions of phyclust, version 0.1-4.
Every effort will be made to insure future versions are consistent with these instructions, but
new features in later versions may not be explained in this document.

This is a quick guide to the package phyclust. We will cover how to read and write sequence
data, how to use the popular programs ms (Hudson 2002) and seq-gen (Rambaut and Grassly
1997) for generating coalescent trees and molecular sequences from within phyclust, the main
function phyclust() for finding population structure, and Haplo-Clustering (Tzeng 2005).
More information about the theory, other package functions, and any changes in future ver-
sions can be found on our website Phylogenetic Clustering at http://thirteen-01.stat.
iastate.edu/snoweye/phyclust/.

Specifically, in Section 2, we introduce the basic data structures of phyclust and the I/O
functions for reading and writing PHYLIP and FASTA files. In Section 3, we demon-
strate how to simulate molecular data using the “ms+seqgen” approach from within R. In
Section 4, we briefly describe the phylogenetic clustering method, its implementation in
phyclust(), the visualization functions, the auxiliary function .EMControl() for choos-
ing the model, initialization method, optimization method, and the EM algorithm variant,
and propose a “ms+seqgen+phyclust” approach. In Section 5, we demonstrate the function
haplo.post.prob() for Hap-Clustering.

1.1. Installation and quick start

You can install directly from CRAN at http://cran.r-project.org or download the phy-
clust from our website. On most systems, you can install phyclust by typing the following
command into R’s terminal:

> install.packages("phyclust")

When it finishes, you can use library() to load the package as

> library("phyclust")

Note that phyclust requires ape package (Paradis et al. 2004), and the ape also requires other
packages depending on its version. All the required packages will be checked and automatically
loaded when the phyclust is loading.

You can get started quickly with phyclust by using the demo() command in R.

> demo("toy", package = "phyclust")

This demo will produce the three plots shown in Figures 2, 3 and 4, and some of the results
reported in the Section 4.3. This demonstration does the same as the followings, see the next
few section for more details.

Rename the data and obtain classification.
X <- seq.data.toy$org
X.class <- as.numeric(gsub(".*-(.)", "\\1", seq.data.toy$seqname))

A dot plot, Figure 2.

http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://cran.r-project.org

2 Quick Guide for phyclust

windows()
plotdots(X, X.class)

A histogram plot, Figure 3.
windows()
plothist(X, X.class)

A Neighbor-Joining plot, Figure 4.
ret <- phyclust.edist(X, edist.model = .edist.model[3])
ret.tree <- nj(ret)
windows()
plotnj(ret.tree, X.class = X.class)

Fit a EE, JC69 model using emEM, Section ``Use the .EMControl() function''.
EMC.2 <- .EMControl(init.procedure = "emEM")
set.seed(1234)
(ret.2 <- phyclust(X, 4, EMC = EMC.2))
RRand(ret.2$class.id, X.class)

1.2. Getting help

You can look for more examples on the help pages or our website: http://thirteen-01.
stat.iastate.edu/snoweye/phyclust/. Also, you can email the author at phyclust@gmail.com.
All comments are welcome. Bugs will be fixed and suggestions may be implemented in future
versions of phyclust.

2. Sequence Data Input and Output

Two types of sequences are supported in phyclust, nucleotide and SNP. The supported types
are stored in .code.type:

> .code.type
[1] "NUCLEOTIDE" "SNP"

Phyclust accepts three types of input:

1. Data read from a text file in PHYLIP format (Section 2.2).

2. Data read from a text file in FASTA format (Section 2.3).

3. Data simulated by the ms+seqgen approach (Section 3).

The data reading functions read.*() will return a list object of class seq.data (Section 2.2),
named ret for the returned list object. The ret$org.code and ret$org are two main el-
ements in matrix format to store data. The ret$org.code contains the original data, e.g.
A,G,C,T for nucleotide, and ret$org contains the id data, e.g. 0,1,2,3 for nucleotide, which
is transfered from ret$org.code according to the code type and it’s standard coding. The
ret$org is a major data for calculation in most functions of the phyclust package. Phyclust
outputs sequence data in two formats: PHYLIP or FASTA.

http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
mailto:phyclust@gmail.com

Wei-Chen Chen 3

2.1. Standard coding

Genetic data are represented internally using an integer code, and only the integer values get
passed to the C core. The two data frames, .nucleotide and .snp, are used to map between
internal integer code (nid, sid) and the human interpretable code (code, code.l).

> .nucleotide
nid code code.l

1 0 A a
2 1 G g
3 2 C c
4 3 T t
5 4 - -
> .snp
sid code

1 0 1
2 1 2
3 2 -

Note that we use “-” to indicate gaps and other non general syntax. The methods and
functions to deal with gaps are still under development.

2.2. Input PHYLIP format

Some virus data collected from an EIAV-infected pony, #524 (Baccam et al. 2003), named
“Great pony 524 EIAV rev dataset”, is provided as an example of PHYLIP-formatted sequence
data. You can view the file with commands

> data.path <- paste(.libPaths()[1], "/phyclust/data/pony524.phy", sep = "")
> edit(file = data.path)

Below, we show the first 5 sequences and first 50 sites. The first line indicates there are 146
sequences and 405 sites in this file. The sequences are visible starting from the second line,
where the first 10 characters are reserved for the sequence name or id.

146 405
AF314258 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggca
AF314259 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggca
AF314260 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggca
AF314261 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggca
AF314262 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggca

By default, function read.phylip() will read in a PHYLIP file and assume the file con-
tains nucleotide sequences. It will read in sequences and store them in a list object of class
seq.data. The element org.code stores the original data in a character matrix, and the el-
ement org stores the translate data in a numerical matrix (see Section 2.1 for the encoding).
The following example reads the Pony 524 dataset.

4 Quick Guide for phyclust

> data.path <- paste(.libPaths()[1], "/phyclust/data/pony524.phy", sep = "")
> (my.pony.524 <- read.phylip(data.path))
code.type: NUCLEOTIDE, n.seq: 146, seq.len: 405.
> str(my.pony.524)
List of 7
$ code.type: chr "NUCLEOTIDE"
$ info : chr " 146 405"
$ nseq : num 146
$ seqlen : num 405
$ seqname : Named chr [1:146] "AF314258" "AF314259" "AF314260" "AF314261" ...
..- attr(*, "names")= chr [1:146] "1" "2" "3" "4" ...
$ org.code : chr [1:146, 1:405] "g" "g" "g" "g" ...
$ org : num [1:146, 1:405] 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "class")= chr "seq.data"

The sample PHYLIP-formatted SNP dataset from a study of Crohn’s disease (Hugot et al.
2001) can be loaded with the commands

> data.path <- paste(.libPaths()[1], "/phyclust/data/crohn.phy", sep = "")
> (my.snp <- read.phylip(data.path, code.type = .code.type[2]))
code.type: SNP, n.seq: 1102, seq.len: 8.

Notice, the code.type argument must specify the data is of type SNP.

2.3. FASTA format

The sequence data from another pony, #625 (Baccam et al. 2003), named “Great pony 625
EIAV rev dataset”, is provided in FASTA format. Here is full-length first sequence in that
file. It starts with “>” followed by a sequence id and description on the same line. Subsequent
lines contain the actualy sequence until the next line starting with “>”.

>AF512608 Equine infectious anemia virus isolate R93.3/E98.1 gp45 and rev
GATCCTCAGGGCCCTCTGGAAAGTGACCAGTGGTGCAGGGTCCTTCGGCAGTCACTACCT
GAAGAAAAAATTCCATCGCAAACATGCATCGCGAGAAGACACCTGGGACCAGGCCCAACA
CAACATACACCTAGCAGGCGTGACCGGTGGATCAGGGAACAAATACTACAGGCAGAAGTA
CTCCAGGAACGACTGGAATGGAGAATCAGAGGAGTACAACAGGCGGCCAAAGAGCTGGAT
GAAGTCAATCGAGGCATTTGGAGAGAGCTACATTTCCGAGAAGACCAAAAGGGAGATTTC
TCAGCCTGGGGCGGTTATCAACGAGCACAAGAACGGCACTGGGGGGAACAATCCTCACCA
AGGGTCCTTAGACCTGGAGATTCGAAGCGAAGGAGGAAACATTTAT
>AF512609 Equine infectious anemia virus isolate R93.2/E105 ...

By default, function read.fasta() will read in a FASTA file and assume the file contains
nucleotide sequences. It also returns a list object of class seq.data. The following code
example reads the pony #625 dataset.

> data.path <- paste(.libPaths()[1], "/phyclust/data/pony625.fas", sep = "")
> (my.pony.625 <- read.fasta.nucleotide(data.path))
code.type: NUCLEOTIDE, n.seq: 62, seq.len: 406.

Wei-Chen Chen 5

> str(my.pony.625)
List of 6
$ code.type: chr "NUCLEOTIDE"
$ nseq : num 62
$ seqlen : int 406
$ seqname : chr [1:62] "AF512608" "AF512609" "AF512610" "AF512611" ...
$ org.code : chr [1:62, 1:406] "G" "G" "G" "G" ...
$ org : num [1:62, 1:406] 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "class")= chr "seq.data"

2.4. Saving sequences

To save sequences in a file, you can use the functions write.*(), which are analogous to the
functions read.*() but take a data matrix X and a file name filename. With the following
code, we save the two pony datasets in PHYLIP and FASTA formats to the working directory.

> # PHYLIp
> write.phylip(my.pony.625$org, "new.625.txt")
> edit(file = "new.625.txt")
> # FASTA
> write.fasta(my.pony.524$org, "new.524.txt")
> edit(file = "new.524.txt")

3. The ms+seqgen Approach

Phyclust incorporates two popular open source C programs: ms (Hudson 2002) and seq-gen
(Rambaut and Grassly 1997). The original source code and documentation are available on
the authors’ websites. For ms, the pdf file (downloaded from the author’s website) is in
the install directory phyclust/doc/Documents/msdoc.pdf or in the source code directory
phyclust/inst/doc/Documents/msdoc.pdf. For seq-gen, the html file (downloaded from
the author’s website) is in the install directory phyclust/doc/Documents/Seq-Gen.v.1.3.
2/Seq-Gen.Manual.html or in the source code directory phyclust/inst/doc/Documents/
Seq-Gen.v.1.3.2/Seq-Gen.Manual.html.

The ms documentation demonstrates how to use ms to generate coalescent trees, followed by
sequence generation using seq-gen, the popular ms+seqgen approach for simulation molecular
data. Phyclust edits the source code slightly and makes these commands available through
new R functions ms() and seqgen(). This solution eases the burden on the user, bypassing the
need to compile both programs. Moreover, combining these functions with the phyclust()
function produces a ms+seqgen+phyclust approach for simulation and bootstrap studies (see
Section 4.4).

3.1. Using the ms() function to generate trees

Almost all command line options of program ms are available through object opts in ms().
Call the function without arguments to see all the options.

phyclust/doc/Documents/msdoc.pdf
phyclust/inst/doc/Documents/msdoc.pdf
phyclust/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/inst/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/inst/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html

6 Quick Guide for phyclust

> ms()
> ?ms

The following example generates a coalescent tree (-T) with 3 leaves (nsam = 3) and popula-
tion growth rate 0.1 (-G 0.1). Function ms() returns ms text output stored in an array, one
line per element. The third line contains the tree in NEWICK format, which can be read by
the read.tree() function in the ape package (Paradis et al. 2004). Function read.tree()
returns an object of class phylo, which can be drawn by function plot() or plot.phylo()
of the ape package.

> set.seed(1234)
> (ret.ms <- ms(nsam = 3, opts = "-T -G 0.1"))
ms 3 1 -T -G 0.1
//
(1: 0.568774938583,(2: 0.355949461460,3: 0.355949461460): 0.212825477123);
> (tree.anc <- read.tree(text = ret.ms[3]))

Phylogenetic tree with 3 tips and 2 internal nodes.

Tip labels:
[1] "1" "2" "3"

Rooted; includes branch lengths.
> tree.anc$tip.label <- paste("a", 1:3, sep = "")
> plot(tree.anc, type = "c")
> axisPhylo()

3.2. Using the seqgen() function to generate sequences

Almost all options of the command line program seq-gen are available from within R via
the option opts in the seqgen() function. Call the function without arguments to see the
options.

> seqgen()
> ?seqgen

The seqgen() function requires a rooted tree in NEWICK format or an object of class phylo.
In the following, we demonstrate the ms+seqgen approach to generate sequences according a
coalescent tree. The result is a character vector of class seqgen, which contains 5 sequences,
each of 40 bases (-l40). The option -mHKY specifies the HKY85 model of evolution (Hasegawa
et al. 1985). Without further options, HKY85 is equivalent to the JC69 model (Jukes and
Cantor 1969).

> set.seed(123)
> ret.ms <- ms(nsam = 5, nreps = 1, opts = "-T")
> tree.anc <- read.tree(text = ret.ms[3])
> set.seed(123)

Wei-Chen Chen 7

a1

a2

a3

0.5 0.4 0.3 0.2 0.1 0

Figure 1: A diagram of a simple coalescent tree.

> seqgen(opts = "-mHKY -l40", newick.tree = ret.ms[3])
5 40
1 CTCTCATTGGACGCACACTTTAGGGGGGGATTGCACTGCA
5 CTCTCTCTGGACGCACACTTTAAGGGGGGATTGAACTACA
2 CTCTTCGGGCTCGGATAAGTTTGGAGGGTTGTTCTCTACA
3 CTCTGAGTGCTCGGATTAGTTAGGGGGAATGACGTCTACA
4 CTCTTATCTCTCGGATAAGTTGGGGGTGATGGCTTTTACA
> set.seed(123)
> (ret.seq <- seqgen(opts = "-mHKY -l40", rooted.tree = tree.anc))
5 40
1 CTCTCATTGGACGCACACTTTAGGGGGGGATTGCACTGCA
5 CTCTCTCTGGACGCACACTTTAAGGGGGGATTGAACTACA
2 CTCTTCGGGCTCGGATAAGTTTGGAGGGTTGTTCTCTACA
3 CTCTGAGTGCTCGGATTAGTTAGGGGGAATGACGTCTACA
4 CTCTTATCTCTCGGATAAGTTGGGGGTGATGGCTTTTACA
> str(ret.seq)
Class 'seqgen' chr [1:6] " 5 40" "1 CTCTCATTGGACGCACACTTTAGGGGGG ...

The seqgen() function need not take in a tree from ms(), but ms() provides options to
construct trees of different shapes using coalescent theory. Also, you can provide seqgen()
with an ancestral sequence via the option input. The sequence is then evolved along the
given tree (see Section 3.3).

3.3. Inputing an ancestral sequence to ms+seqgen

8 Quick Guide for phyclust

Phyclust provides two functions gen.seq.HKY() and gen.seq.SNP() to implement the ms+seqgen
approach under wide-ranging parameter choices. A rooted tree is required and an ancestral
sequence is an option.

The following example generates a tree, and provides an ancestral sequence anc.HKY. Function
seqgen() will use parameters κ (kappa) and πA, πG, πC , πT (pi.HKY) to evolve the ancestral
sequence (anc.HKY) down the tree. The function read.seqgen() can read the object of
seqgen() and return a new dataset with class seq.data which can be used for the function
phyclust() in the Section 4.2.

> # Generate a tree
> set.seed(1234)
> ret.ms <- ms(nsam = 5, nreps = 1, opts = "-T")
> tree.ms <- read.tree(text = ret.ms[3])
>
> # Generate nucleotide sequences
> (anc.HKY <- rep(0:3, 3))
[1] 0 1 2 3 0 1 2 3 0 1 2 3
> paste(nid2code(anc.HKY, lower.case = FALSE), collapse = "")
[1] "AGCTAGCTAGCT"
> pi.HKY <- c(0.2, 0.2, 0.3, 0.3)
> kappa <- 1.1
> L <- length(anc.HKY)
> set.seed(1234)
> (HKY.1 <- gen.seq.HKY(tree.ms, pi.HKY, kappa, L, anc.seq = anc.HKY))
5 12
1 AGCTTGACCGGC
3 AGCTTCACCGGT
2 ACCTCGCTAGCT
4 ACGACGCTCGCT
5 CCTACGCTAGCT
> (ret <- read.seqgen(HKY.1))
code.type: NUCLEOTIDE, n.seq: 5, seq.len: 12.

Function gen.seq.HKY() may be a good example for advanced users wanting to develop
more complex evolutionary processes, such as recombination, migration and island models. It
passes an option input to seqgen(), which in this case is the ancestral sequence, but could be
other options available in the seq-gen program. The option input takes in a character vector
(including the tree) where each element contains one line, which seqgen() stores/writes to a
temporary file for further processing.

Source code from gen.seq.HKY().
L <- length(anc.seq)
mu <- paste(nid2code(anc.seq, lower.case = FALSE), collapse = "")
seqname <- paste("Ancestor ", collapse = "")
input <- c(paste(" 1", length(anc.seq), sep = " "), paste(seqname,

mu, sep = ""), 1, write.tree(rooted.tree, digits = 12))
opts <- paste("-mHKY", " -t", ts.tv, " -f", paste(pi[c(1,

Wei-Chen Chen 9

3, 2, 4)], collapse = ","), " -l", L, " -s", rate.scale,
" -u", ttips + 1, " -k1", " -q", sep = "")

ret <- seqgen(opts, input = input)

Source code from seqgen().
if (!is.null(newick.tree)) {

write(newick.tree, file = temp.file.ms, sep = "")
}
else if (!is.null(input)) {

write(input, file = temp.file.ms, sep = "\n")
}
else {

stop("A newick or rooted/phylo tree is required.")
}

4. Phylogenetic Clustering (Phyloclustering)

Phylogenetic clustering (phyloclustering) is an evolutionary Continuous Time Markov Chain
(CTMC) model-based approach to identify population structure from molecular data without
assuming linkage equilibrium. The phyclust package provides a convenient implementation of
phyloclustering for DNA and SNP data, capable of clustering individuals into subpopulations
and identifying molecular sequences representative of those subpopulations. It is designed in
C for performance, interfaced with R for visualization, and incorporates other popular open
source software for simulating data and additional analyses. All aspects are intended to make
the software useful to a broad spectrum of biological users.

LetX = (xnl)N×L be the data matrix containing N sequences observed at L sites. Denote the
molecular sequence of individual n as xn = (xn1, . . . , xnL) ∈ X and xnl ∈ S where X contains
all possible sequences of length L from alphabet S, e.g. S = {A,G,C,T} for nucleotide
sequences. A finite mixture model provides a statistical framework for clustering. In this
setting, each individual sequence xn is independent and identically drawn from f(xn|η,Θ) =∑K

k=1 ηkfk(xn|Θk) where fk() is the density for the kth component, η = {η1, . . . , ηK} are
the mixing proportions summing to one, and Θ = {Θ1, . . . ,ΘK} contains parameters for the
components (Fraley and Raftery 2002). Component fk() is modeled as a transition probability
pµk,xn(tk) from a CTMC mutation process (Felsenstein 2004), where a sequence xn evolves
from an ancestor µk = (µk1, . . . , µkL) ∈ X representing the kth cluster. The evolutionary
process is modeled with instantaneous rate matrix Qk and time tk which are allowed to differ
by cluster, so that Θk = {µk,Qk, tk}. The likelihood is maximized by an EM algorithm
(Dempster et al. 1977), sequences are classified by the maximum posterior probabilities, and
the number of clusters is assessed by bootstrap (Maitra and Melnykov 2010).

Available choices for the Qk parameterization in phyclust include JC69 (Jukes and Cantor
1969), K80 (Kimura 1980), and HKY85 (Hasegawa et al. 1985). These choices are listed in
.substitution. In addition, Qk and tk can be constrained across clusters as shown in Table 1
(also see .identifier).

The initialization method (.init.method) for the EM algorithm use pairwise distances, and
the available models for computing the evolutionary distance are listed in .edist.model. The

10 Quick Guide for phyclust

Table 1: Combinations of Models
Identifier Q t

EE Q1 = Q2 = · · · = QK t1 = t2 = · · · = tK
EV Q1 = Q2 = · · · = QK t1 6= t2 6= · · · 6= tK
VE Q1 6= Q2 · · · 6= QK t1 = t2 = · · · = tK
VV Q1 6= Q2 6= · · · 6= QK t1 6= t2 6= · · · 6= tK

model used for computing distances need not match the model used to model evolution in
phylogenetic clustering (in .substitution). There are additional pairwise distance models
available in the ape package (Paradis et al. 2004).

The .show.option() function will list all options available in the phyclust package. These
options can be used in the .EMControl() function to generate a template (such as .EMC) which
describes the fitted identifier and model, initializations, EM algorithms and data type, and
this template is used to control the function phyclust(). All options are explained in the help
pages. The best choices for options may vary with application. In particular, initialization
can be tricky, and you should try several initialization algorithms (see Section 4.3).

> .show.option()
boundary method: ADJUST, IGNORE
code type: NUCLEOTIDE, SNP
edist model: D_JC69, D_K80, D_HAMMING
em method: EM, ECM, AECM
identifier: EE, EV, VE, VV
init method: randomMu, NJ, randomNJ, PAM, K-Medoids, manualMu
init procedure: exhaustEM, emEM, RndEM, RndpEM
standard code:

nid code code.l
[1,] 0 A a
[2,] 1 G g
[3,] 2 C c
[4,] 3 T t
[5,] 4 - -

sid code
[1,] 0 1
[2,] 1 2
[3,] 2 -
substitution model:

model code.type
[1,] JC69 NUCLEOTIDE
[2,] K80 NUCLEOTIDE
[3,] F81 NUCLEOTIDE
[4,] HKY85 NUCLEOTIDE
[5,] SNP_JC69 SNP
[6,] SNP_F81 SNP
[7,] E_F81 NUCLEOTIDE

Wei-Chen Chen 11

[8,] E_HKY85 NUCLEOTIDE
[9,] E_SNP_F81 SNP

4.1. Exploring data

Phyclust has functions to help visualize large datasets. We have prepared a simulated dataset
(seq.data.toy) with 100 nucleotide sequences of length 200 sites from 4 clusters. The ances-
tral sequences were simulated using the HKY85 model (Hasegawa et al. 1985) along a tree of
height 0.15 (expected number of mutations per site). The observed sequences were simulated
from trees descending from the ancestors along independent trees with height 0.09.

We use X to indicate the data, and use X.class to indicate the classification which can be
a result (class.id) of the phyclust() function or specified by simulations (ms+seqgen). In
simulations, phyclust uses the format “class.id-sequence.id” to store the sequence name.
We can apply the R function gsub() (for details, type ?gsub) to obtain the classification of
sequences (class id). In this section, we demonstrate a simulated dataset, and it can be
applied to real dataset analyzed by the phyclust() function.

For example, the following code produces the plot of Figure 2. Each row represents a sequence
in the same order as they appear in the dataset and each column represents a site. By default,
it will show all changes with respect to the reference sequence, the first sequence of the first
cluster, which may not be the first sequence/row of X if the data were not sorted by the
classification id. If the X.class is omitted (i.e. plotdots(X)), then the first sequence/row of
the dataset will be the reference sequence.

> seq.data.toy
code.type: NUCLEOTIDE, n.seq: 100, seq.len: 200.
> X <- seq.data.toy$org
> X.class <- as.numeric(gsub(".*-(.)", "\\1", seq.data.toy$seqname))
> plotdots(X, X.class)

The chosen sequence is fully colored, with green, blue, purple and red representing nucleotides
A, G, C, and T. All other sequences show only mutant sites compared to the chosen refer-
ence sequence. The dashed lines split the clusters; in general we will not know the cluster
membership before running phyclust(). The bottom row indicates the segregating sites, i.e.
those sites containing at least one mutation. The default will draw the segregating sites only,
type ?plotdots for more information.

Next, we may wish to see how many mutations each sequence has relative to a reference
sequence. The following code prepares the plot of Figure 3, showing the number of mutations
of all sequences within each cluster relative to the chosen reference sequence. The top plot is
for the whole dataset. The other plots are for the four clusters.

> plothist(X, X.class)

Next, we may like to visualize clusters on a more traditional diagram of evolutionary relation-
ships, the phylogenetic tree. The following code produces Figure 4. The phyclust.edist()
function takes in a data matrix X, computes and returns pairwise distances for all sequences
using the Hamming distance as a distance measure (.edist.model[3] is D_HAMMING). The

12 Quick Guide for phyclust

0 20 40 60 80 100 120

10
0

80
60

40
20

0

Dots Plot

Sites

S
eq

ue
nc

es

Figure 2: A dot plot for the toy dataset.

neighbor-joining method (Saitou and Nei 1987) is used to build a tree from the distance ma-
trix. The function plotnj() is a function in phyclust for plotting the resulting tree with
branches colored according to the clusters defined in argument X.class. These clusters may
be provided by the user (as is the case here) or as a result of inferring the clusters using
phyclust().

> (ret <- phyclust.edist(X, edist.model = .edist.model[3]))
Class 'dist' atomic [1:4950] 4 3 4 7 2 4 5 5 8 2 ...
..- attr(*, "Size")= int 100
..- attr(*, "Diag")= logi FALSE
..- attr(*, "Upper")= logi FALSE
..- attr(*, "method")= chr "D_HAMMING"

> (ret.tree <- nj(ret))

Phylogenetic tree with 100 tips and 98 internal nodes.

Wei-Chen Chen 13

0 2 4 6 8 10 12

0
4

8
12

0 2 4 6 8 10 12

0
4

8
12

0 2 4 6 8 10 12

0
4

8
12

0 2 4 6 8 10 12

0
4

8
12

0 2 4 6 8 10 12

0
4

8
12

Figure 3: A histogram plot for the toy dataset.

Tip labels:
1, 2, 3, 4, 5, 6, ...

Unrooted; includes branch lengths.
> plotnj(ret.tree, X.class = X.class)

4.2. Using the phyclust() function

We will use the toy dataset to demonstrate the phyclust() function, which requires two
arguments: the data matrix X and the number of clusters K. The optional EMC argument of
phyclust() is used to pass in model and optimization choices. By default, the object .EMC
is passed to phyclust(). See Section 4.3 for more information about changing the defaults.
In the following example, we use the defaults to fit 4 clusters to the toy data.

> set.seed(1234)
> (ret.1 <- phyclust(X, 4))

14 Quick Guide for phyclust

Figure 4: A NJ tree for the toy dataset.

Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: exhaustEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 37 3158 0, convergence: 0, check.param: 1.
eps: 4.851e-13, error: 0.
N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 804, N.seg.site: 127.
logL: -1439, bic: 6581, aic: 4487, icl: 6588
identifier: EE
Eta: 0.4360 0.01149 0.284 0.2700
Tt: 0.003325
n.class: 44 1 28 27

> RRand(ret.1$class.id, X.class)
Rand adjRand Eindex

0.9018 0.7653 0.1655
> class(ret.1)
[1] "phyclust"

A quick glance at the results shows that the default settings did not produce good results.
There is a degenerate cluster (only one member), as indicated by the count of members in each
of the four classes: n.class. The default initialization procedure is exhaustEM and the default
initialization method is randomMu, which means it randomly picks 4 sequences to be the cluster
centers and runs the EM algorithm to convergence. While the EM algorithm is guaranteed
to converge, it may only find a local optimum. It is important to try multiple random
initializations to improve your chances of finding the global maximum. The adjusted Rand

Wei-Chen Chen 15

index (Hubert and Arabie 1985), adjRand, which can be used to compare two clusterings,
is about 0.7653 when comparing the phyclust() solution to the true clusters. It should be
1.000 for perfect agreement.

The reports for the data are N.X.org for the number of sequences, N.X.unique for the number
of unique/distinct sequences, L for the number of sites, and N.seq.site for the number of
segregating sites. The reports for the model are K for the number of clusters, p for the
number of parameters, logL for the likelihood value, bic, aic and icl for BIC, AIC and ICL,
identifier for Qk and tk, Eta for η, and Tt for tk. The default is that EE for identifier
and JC69 (Jukes and Cantor 1969) for Qk.

The phyclust() function returns a list object of class phyclust. You can type str(ret.1)
to have the details of the phyclust class, or type ?phyclust to see the descriptions of all
elements. The Section 4.3 will give more information for controling the phyclust() function.
This object can also be used as input to other functions such as bootstraps and simulation
studies (see Section 4.4).

4.3. Using the .EMControl() function

The .EMControl() function provides a list object that can be used as argument EMC to
phyclust(). With no arguments, it retusn the default values. The internal object .EMC is
a template object holding the defaults. Each element specifies some configuration for the
evolutionary models, phyloclust model, initialization, optimization, and EM algorithm. See
the help page for details and visit our website for examples.

> ?.EMControl
> ?.EMC

You can either modify the template .EMC directly, or use the function .EMControl() to
generate a new control object. The following example modifies an object copied from the
template. It changes the initialization method to “emEM,” which yields a better solution
than our previous attempt (ret.1). The adjusted Rand index is now 1.000, indicating a
perfect match between the truth and inferred structures.

> EMC.2 <- .EMC
> EMC.2$init.procedure <- .init.procedure[2]
> ### The same as
> ### EMC.2 <- .EMControl(init.procedure = "emEM")
> set.seed(1234)
> (ret.2 <- phyclust(X, 4, EMC = EMC.2))
Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: emEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 103 8725 0, convergence: 0, check.param: 1.
eps: 2.753e-14, error: 0.
N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 804, N.seg.site: 127.
logL: -1379, bic: 6461, aic: 4367, icl: 6469
identifier: EE

16 Quick Guide for phyclust

Eta: 0.2700 0.1898 0.2801 0.2602
Tt: 0.003074
n.class: 27 19 28 26

> RRand(ret.2$class.id, X.class)
Rand adjRand Eindex

1.0000 1.0000 0.1209

Now, we use the function .EMControl() to generate a new control that uses “RndEM” for
initialization. It also changes the phyloclustering model to use the “EV” variant (see Table 1).
The data was simulated under “EE” conditions, so this is an over-parameterized model. Such
models may also tend to infer degenerate clusters, and again, more initializations may be
required for good results. From the output, we observe the mixing proprtion Eta of the
second cluster is smaller than others. In addition, the evolutionary time Tt of this cluster is
unusually larger compared to the others. These are both indications of a degenerate cluster,
and indeed, no sequences were assigned to this cluster.

> EMC.3 <- .EMControl(init.procedure = "RndEM", identifier = "EV")
> ### The same as
> ### EMC.3 <- .EMC
> ### EMC.3$init.procedure <- .init.procedure[3]
> ### EMC.3$identifer <- .identifier[3]
> set.seed(1234)
> (ret.3 <- phyclust(X, 4, EMC = EMC.3))
Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: RndEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 104 51836 0, convergence: 0, check.param: 1.
eps: 4.278e-13, error: 0.
N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 807, N.seg.site: 127.
logL: -1453, bic: 6621, aic: 4519, icl: 6627
identifier: EV
Eta: 0.2696 0.01149 0.2844 0.4461
Tt: 0.002230 4.75 0.003663 0.003924
n.class: 27 0 28 45

> RRand(ret.3$class.id, X.class)
Rand adjRand Eindex

0.9002 0.7640 0.1698

There is a convenient function find.best() that is useful for finding the highest likelihood
value fit among multiple calls to phyclust() with varying arguments. This function attempts
to run phyclust() repeatedly on combinations of assigned initialization options by updating
an internal EMC control object in each iteration. Please be patient, as this function may take
some time to complete.

4.4. The ms+seqgen+phyclust approach

Wei-Chen Chen 17

Model selection includes identifying the number of clusters, type of evolutionary model, and
phyloclustering assumptions (Table 1). We could use information criteria to choose among
models, but the parameter space is mixed continuous and discrete so the theory justifying
these critiera does not apply. A more elaborate procedure to assess the number of clusters for
a dataset is based on the parametric bootstrap technique and sequential hypothesis testings
(Maitra and Melnykov 2010).

The basic idea is to resample dataset from the fitted model using the functions ms() and
seqgen(), and refit the resampled dataset by phyclust(). The bootstrap.seq.data()
function is a tool for this procedure by taking in a fitted model, the output of a previous call
to phyclust(). It utilizes the functions ms() and seqgen() to re-sample bootstrap datasets.
The same fitting method is applied to each dataset, producing a distribution of parameter
estimates. The following example bootstraps the toy dataset assuming K = 2 clusters for
only one time.

> set.seed(1234)
> ret.4 <- phyclust(X, 2)
> (seq.data.toy.new <- bootstrap.seq.data(ret.4))
code.type: NUCLEOTIDE, n.seq: 100, seq.len: 200.
> (ret.4.new <- phyclust(seq.data.toy.new$org, 2))
Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: exhaustEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 30 2947 0, convergence: 0, check.param: 1.
eps: 1.41e-14, error: 0.
N.X.org: 100, N.X.unique: 56, L: 200, K: 2, p: 402, N.seg.site: 69.
logL: -685.3, bic: 3222, aic: 2175, icl: 3222
identifier: EE
Eta: 0.48 0.52
Tt: 0.001354
n.class: 48 52

The ret.4 is the result from phyclust(), seq.data.toy.new is a new dataset bootstrapped
from the model in ret.4, and we refit the same model to this new data set and store in
ret.4.new as one bootstrap result. Generally, we need to repeat these steps for several times
to obtain an expected distribution for parameters.

5. Using the haplo.post.prob() function for Hap-Clustering

Haplotype grouping (Tzeng 2005) for SNP datasets can be viewed as an alternative method
to the phyloclustering. The author’s R code has been integrate into phyclust, and the
original function has been renamed haplo.post.prob(). The example used by the au-
thor is the Crohn’s disease dataset (Hugot et al. 2001) which is also built into the phy-
clust package. The original description of the author’s R code is in the install directory
phyclust/doc/Documents/tzeng-Readme.txt or in the source code directory phyclust/
inst/doc/Documents/tzeng-Readme.txt.

phyclust/doc/Documents/tzeng-Readme.txt
phyclust/inst/doc/Documents/tzeng-Readme.txt
phyclust/inst/doc/Documents/tzeng-Readme.txt

18 Quick Guide for phyclust

The following example returns the same results as Tzeng (2005), where the predicted number
of clusters based on her information criterion is 13. The function returns a list object, here
stored in ret. The list element ret$haplo stores information about the SNP sequences,
ret$FD.id and ret$RD.id store the full and reduced dimensional indices, ret$FD.post and
ret$RD.post store the full and reduced dimensional posterior probabilities, and g.truncate
shows the number of clusters, the truncated results as mentioned in Tzeng (2005).

> data.path <- paste(.libPaths()[1], "/phyclust/data/crohn.phy", sep = "")
> my.snp <- read.phylip.snp(data.path)
> ret <- haplo.post.prob(my.snp$org, ploidy = 1)
> str(ret)
List of 6
$ haplo :List of 6
..$ haplotype: num [1:39, 1:8] 0 1 1 0 1 1 0 1 1 0 ...
..$ hap.prob : num [1:39] 0.00454 0.00181 0.11797 0.00635 0.00635 ...
..$ post : num [1:1102] 1 1 1 1 1 1 1 1 1 1 ...
..$ hap1code : int [1:1102] 1 1 1 1 1 2 2 3 3 3 ...
..$ hap2code : int [1:1102] 1 1 1 1 1 2 2 3 3 3 ...
..$ indx.subj: int [1:1102] 1 2 3 4 5 6 7 8 9 10 ...
$ FD.id : int [1:39] 3 9 18 22 27 28 30 31 34 35 ...
$ RD.id : int [1:13] 3 9 18 22 27 28 30 31 34 35 ...
$ FD.post : num [1:1102, 1:39] 0 0 0 0 0 0 0 1 1 1 ...
$ RD.post : num [1:1102, 1:13] 0 0 0 0 0 1 1 1 1 1 ...
$ g.truncate: int 13
> getcut.fun(sort(ret$haplo$hap.prob, decreasing = TRUE),
> nn = my.snp$nseq, plot = 1)

The getcut.fun() produces a plot based on the information criterion, which can be used to
visualize the truncated dimension (see Figure 5) where the horizontal line indicates the cut
point of 13 haplotypes.

References

Baccam P, Thompson R, Li Y, Sparks W, Belshan M, Dorman K, Wannemuehler Y, Oaks J,
Cornette J, Carpenter S (2003). “Subpopulations of Equine Infectious Anemia Virus Rev
Coexist In Vivo and Differ in Phenotype.” J Virol, 77(22), 12122–12131.

Dempster A, Laird N, Rubin D (1977). “Maximum Likelihood Estimation from Incomplete
Data via the EM Algorithm.” J R Stat Soc. B., 39(3), 1–38.

Felsenstein J (2004). Inferring Phylogenies. Sinauer Associates.

Fraley C, Raftery A (2002). “Model-Based Clustering, Discriminant Analysis, and Density
Estimation.” J Am Stat Assoc, 97, 611–631.

Hasegawa M, Kishino H, Yano T (1985). “Dating of the Human-Ape Splitting by a Molecular
Clock of Mitochondrial DNA.” J Mol Evol, 22(2), 160–174.

Wei-Chen Chen 19

0.
00

0.
10

0.
20

Figure 5: A getcut plot for the Crohn’s disease dataset.

Hubert L, Arabie P (1985). “Comparing partitions.” Journal of Classification, 2, 193–218.

Hudson R (2002). “Generating Samples under a Wright-Fisher Neutral Model of Genetic
Variation.” Bioinformatics, 18, 337–338.

Hugot J, Chamaillard M, Zouali H, Lesage S, Cezard J, Belaiche J, Almer S, Tysk C, O’Morain
C, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau
C, Macry J, Colombel J, Sahbatou M, Thomas G (2001). “Association of NOD2 Leucine-
Rich Repeat Variants with Susceptibility to Crohn’s Disease.” Nature, 411.

Jukes TH, Cantor CR (1969). “Evolution of Protein Molecules.” In HN Munro, JB Allison
(eds.), Mammalian Protein Metabolism, volume 3, pp. 21–132. Academic Press, New York.

Kimura M (1980). “A Simple Method for Estimating Evolutionary Rates of Base Substitutions
through Comparative Studies of Nucleotide Sequences.” J Mol Evol, 16, 111–120.

Maitra R, Melnykov V (2010). “Simulating Data to Study Performance of Finite Mixture
Modeling and Clustering Algorithms.” J Comput Graph Stat. (in press).

Paradis E, Claude J, Strimmer K (2004). “APE: analyses of phylogenetics and evolution in
R language.” Bioinformatics, 20, 289–290.

Rambaut A, Grassly N (1997). “Seq-Gen: An Application for the Monte Carlo Simulation of
DNA Sequence Evolution along Phylogenetic Trees.” Comput Appl Biosci, 13(3), 235–238.

20 Quick Guide for phyclust

Saitou N, Nei M (1987). “The Neighbor-Joining Method: A New Method for Reconstructing
Phylogenetic Trees.” Mol Biol Evol, 4(4), 406–425.

Tzeng JY (2005). “Evolutionary-Based Grouping of Haplotypes in Association Analysis.”
Genet Epidemiol, 28, 220–231.

	Acknowledgement
eserved @d = *-0.3cm
	1. Introduction
	1.1. Installation and quick start
	1.2. Getting help
eserved @d = *-0.3cm

	2. Sequence Data Input and Output
	2.1. Standard coding
	2.2. PHYLIP format
	2.3. FASTA format
	2.4. Save sequences
eserved @d = *-0.3cm

	3. The `_12`12`$12=-1 ms+seqgen Approach
	3.1. Using the `_12`12`$12=-1 ms() function to generate trees
	3.2. Using the `_12`12`$12=-1 seqgen() function to generate sequences
	3.3. Inputing an ancestral sequence to `_12`12`$12=-1 ms+seqgen
eserved @d = *-0.3cm

	4. Phylogenetic Clustering (Phyloclustering)
	4.1. Exploring data
	4.2. Using the `_12`12`$12=-1 phyclust() function
	4.3. Using the `_12`12`$12=-1 .EMControl() function
	4.4. The `_12`12`$12=-1 ms+seqgen+phyclust approach
eserved @d = *-0.3cm

	5. Using the `_12`12`$12=-1 haplo.post.prob() function for Hap-Clustering
eserved @d = *-0.3cm
	References

