INTRODUCTION TO POMP:
INFERENCE FOR PARTIALLY-OBSERVED MARKOV PROCESSES

AARON A. KING, EDWARD L. IONIDES, CARLES BRETO, STEPHEN P. ELLNER, BRUCE E. KENDALL,
MATTHEW FERRARI, MICHAEL L. LAVINE, AND DANIEL C. REUMAN

CONTENTS
1. Partially-observed Markov processes 1
2. A first example: a simple discrete-time population model. 3
3. Defining a partially observed Markov process in pomp. 3
4. Simulating the model: simulate 6
5. Computing likelihood using particle filtering: pfilter 7
6. Interlude: utility functions for extracting and changing pieces of a pomp object 10
7. Transforming parameters 11
8. Estimating parameters using iterated filtering: mif 13
9. Trajectory matching: traj.match 16
10. Probe matching: probe.match 18
11. Nonlinear forecasting: nlf 22
12. Bayesian sequential Monte Carlo: bsmc 22
13. Particle Markov chain Monte Carlo: pmcmc 22
14. A more complex example: a seasonal epidemic model 23
References 27

1. PARTIALLY-OBSERVED MARKOV PROCESSES

Partially-observed Markov process models are also known as state-space models or stochastic dynamical
systems. The R package pomp provides facilities for fitting such models to uni- or multi-variate time series,
for simulating them, for assessing model adequacy, and for comparing among models. The methods
implemented in pomp are all “plug-and-play” in the sense that they require only that one be able to
simulate the process portion of the model. This property is desirable because it will typically be the
case that a mechanistic model will not be otherwise amenable to standard statistical analyses, but will
be relatively easy to simulate. Even when one is interested in a model for which one can write down an
explicit likelihood, for example, there are probably models that are “nearby” and equally interesting for

Date: May 5, 2011, pomp version 0.36-7.

2 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

which the likelihood cannot explicitly be written. The price one pays for this flexibility is primarily in
terms of computational expense.

A partially-observed Markov process has two parts. First, there is the true underlying process which is
generating the data. This is typically the thing we are most interested in: our goal is usually to better
understand this process. Specifically, we may have various alternate hypotheses about how this system
functions and we want to see whether time series data can tell us which hypotheses explain the data
better. The challenge, of course, is that the data shed light on the system only indirectly.

pomp assumes that we can translate our hypotheses about the underlying, unobserved process into a
Markov process model: That is, we are willing to assume that the system has a true state process, X
that is Markovian. In particular, given any sequence of times tg, t1, ..., t,,, the Markov property allows
us to write

th+1 ~ f(th,tg), (1)
for each k = 1,...,n, where f is some density. [In this document, we will be fairly cavalier about abusing
notation, using the letter f to denote a probability distribution function generically, assuming that the
reader will be able to unambiguously tell which probability distribution we’re talking about from the
arguments to f and the context.] That is, we assume that the state at time ¢;11 depends only on the
state at time t; and on some parameters 6.

In addition to the state process X, there is some measurement or observation process Y; which models
the process by which the data themselves are generated and links the data therefore to the state process.
In particular, we assume that

Y ~ f(Xt,0) (2)

for all times ¢t. That is, that the observations Y; are random variables that depend only on the state at
that time as well as on some parameters.

So, to specify a partially-observed Markov process model, one has to specify a process (unobserved or
state) model and a measurement (observation) model. This seems straightforward enough, but from the
computational point of view, there are actually two aspects to each model that may be important. On
the one hand, one may need to evaluate the probability density of the state-transition X;, — Xy, ..,
i.e., to compute f(Xy,,, | Xy, ,0). On the other hand, one may need to simulate this distribution, i.e., to
draw random samples from the distribution of X3, ., | X;,. Depending on the model and on what one
wants specifically to do, it may be technically easier or harder to do one of these or the other. Likewise,
one may want to simulate, or evaluate the likelihood of, observations Y;. At its most basic level pomp
is an infrastructure that allows you to encode your model by specifying some or all of these four basic
components:

rprocess: a simulator of the process model,

dprocess: an evaluator of the process model probability density function,
rmeasure: a simulator of the measurement model, and

dmeasure: an evaluator of the measurement model probability density function.

Once you’ve encoded your model, pomp provides a number of algorithms you can use to work with it. In
particular, within pomp, you can:

(1) simulate your model easily, using simulate,

(2) integrate your model’s deterministic skeleton, using trajectory,

(3) estimate the likelihood for any given set of parameters using sequential Monte Carlo, implemented
in pfilter,

(4) find maximum likelihood estimates for parameters using iterated filtering, implemented in mif,

(5) estimate parameters using a simulated quasi-maximum-likelihood approach called nonlinear fore-
casting, implemented in nlf,

(6) estimate parameters using trajectory matching, as implemented in traj.match,

(7) estimate parameters using probe matching, as implemented in probe.match,

INTRODUCTION TO POMP 3

(8) print and plot data, simulations, and diagnostics for the foregoing algorithms,
(9) build new algorithms for partially observed Markov processes upon the foundations pomp provides,
using the package’s applications programming interface (API).

In this document, we’ll see how all this works using relatively simple examples.

2. A FIRST EXAMPLE: A SIMPLE DISCRETE-TIME POPULATION MODEL.

We’ll demonstrate the basics of pomp using a very simple discrete-time model. The plug-and-play meth-
ods in pomp were designed to work on more complicated models, and for our first example, they’ll be
extreme overkill, but starting with a simple model will help make the implementation of more gen-
eral models clear. Moreover, our first example will be one for which plug-and-play methods are not
even necessary. This will allow us to compare the results from generalizable plug-and-play methods
with exact results from specialized methods appropriate to this particular model. Later we’ll look at a
continuous-time model for which no such special tricks are available.

Consider the discrete-time Gompertz model of population growth. Under this model, the density, X¢ya¢,
of a population of plants or animals at time ¢ + At depends on the density, Xy, at time ¢ according to

—rA —rA

Xppar =K' ' Xy ' Et, (3)
where K is the so-called “carrying capacity” of the population, r is a positive parameter, and the €; are
independent and identically-distributed lognormal random variables. In different notation, this model is

t

X
log Xiyat ~ normal(log K + log (K) e A 5), (4)

where 02 = Var[loge;]. We'll assume that we can measure the population density only with error. In
particular, we’ll assume that errors in measurement are lognormally distributed:

logY; ~ normal(log Xy, 7). (5)

As we noted above, for this particular model, it isn’t necessary to use plug-and-play methods: one can
obtain exact maximum likelihood estimates of this model’s parameters using the Kalman filter. We will
demonstrate this below and use it to check the results of plug-and-play inference. For now, let’s approach
this model as we would a more complex model for which no such exact estimation is available.

3. DEFINING A PARTIALLY OBSERVED MARKOV PROCESS IN POMP.

In order to fully specify this partially-observed Markov process, we must implement both the process
model (i.e., the unobserved process) and the measurement model (the observation process). As we saw
before, we would like to be able to:

(1) simulate from the process model, i.e., make a random draw from X a; | X; = « for arbitrary z
and t (rprocess),

(2) compute the probability density function (pdf) of state transitions, i.e., compute f(Xiiar =
x| Xy = x) for arbitrary x, 2, t, and At (dprocess),

(3) simulate from the measurement model, i.e., make a random draw from Y; | X; = « for arbitrary
x and t (rmeasure),

(4) compute the measurement model pdf, i.e., f(Y; = y | X; = z) for arbitrary x, y, and ¢ (dmeasure),
and

(5) compute the deterministic skeleton. In discrete-time, this is the map z — E[X;a¢ | X¢ =] for
arbitrary x.

4 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

For this simple model, all this is easy enough. More generally, it will be difficult to do some of these
things. Depending on what we wish to accomplish, however, we may not need all of these capabilities
and in particular, to use any particular one of the algorithms in pomp, we need never specify
all of 1-5. For example, to simulate data, all we need is 1 and 3. To run a particle filter (and hence to
use iterated filtering, mif), one needs 1 and 4. To do MCMC, one needs 2 and 4. Nonlinear forecasting
(n1f) and probe matching (probe.match) require 1 and 3. Trajectory matching (traj.match) requires
4 and 5.

Using pomp, the first step is always to construct an R object that encodes the model and the data.
Naturally enough, this object will be of class pomp. The key step in this is to specify functions to do
some or all of 1-5, along with data and (optionally) other information. The package provides a number
algorithms for fitting the models to the data, for simulating the models, studying deterministic skeletons,
and so on. The documentation (?pomp) spells out the usage of the pomp constructor, including detailed
specifications for all its arguments and a worked example.

Let’s see how to implement the Gompertz model in pomp. Here, we’ll take the shortest path to this goal.
In the “advanced topics in pomp” vignette, we show how one can make the codes much more efficient
using compiled native (C or FORTRAN) code.

First, we write a function that implements the process model simulator. This is a function that will
simulate a single step (t — ¢ + At) of the unobserved process (3).

require (pomp)

gompertz.proc.sim <- function (x, t, params, delta.t, ...) {
unpack the parameters:
r <- params["r"]
K <- params["K"]
sigma <- params["sigma"]
the state at time t:
X <= x["X"]
generate a log-normal random variable:
eps <- exp(rnorm(n=1,mean=0,sd=sigma))
compute the state at time t+1:
S <- exp(-r*delta.t)
xnew <- c(X=unname (K~ (1-S)*X"S*eps))
return (xnew)

}

The translation from the mathematical description (3) to the simulator is straightforward. When this
function is called, the argument x contains the state at time t. The parameters (including K, r, and o)
are passed in the argument params. Notice that x and params are named numeric vectors and that the
output must be also be a named numeric vector. In fact, the names of the output vector (here xnew)
must be the same as those of the input vector x. The algorithms in pomp all make heavy use of the
names attributes of vectors and matrices. The argument delta.t tells how big the time-step is. In this
case, our time-step will be 1 unit; we’ll see below how that gets specified.

Next, we’ll implement a simulator for the observation process (5).

gompertz.meas.sim <- function (x, t, params, ...) {
unpack the parameters:
tau <- params["tau"]
state at time t:
X <= x["X"]
generate a simulated observation:
y <= c(Y=unname (rlnorm(n=1,meanlog=log(X),sd=tau)))

INTRODUCTION TO POMP 5

return(y)
}

Again the translation from the model (5) is straightforward. When gompertz.meas.sim is called, the
unobserved states at time t will be in the named numeric vector x and the parameters in params as
before. The function returns a named numeric vector that represents a single draw from the observation
process (5).

Complementing the measurement model simulator is the corresponding measurement model density,
which we can implement as follows:

gompertz.meas.dens <- function (y, x, t, params, log, ...) {
unpack the parameters:
tau <- params["tau"]
state at time t:

X <- x["X"]
observation at time t:
Y <- y[uyn_']

compute the likelihood of Y|X,tau
f <- dlnorm(x=Y,meanlog=log(X),sdlog=tau,log=log)
return(f)

}

We’ll need this later on for likelihood-based inference. Note that gompertz.meas.dens is closely related
to gompertz.meas.sim.

6 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN
4. SIMULATING THE MODEL: SIMULATE

With the two functions above, we already have all we need to simulate the full model. The first step is
to construct an R object of class pomp which will serve as a container to hold the model and data. This
is done with a call to pomp:

gompertz <- pomp(
data=data.frame (
time=1:100,
=NA
),
times="time",
rprocess=discrete.time.sim(
step.fun=gompertz.proc.sim,

delta.t=1

),
rmeasure=gompertz.meas.sim,
t0=0

)

The first argument (data) specifies a data-frame that holds the data and the times at which the data
were observed. Since this is a toy problem, we have no data. In a moment, however, we’ll simulate
some data so we can explore pomp’s various fitting methods. The second argument (times) specifies
which of the columns of data is the time variable. The third argument (rprocess) specifies that the
process model simulator will be in discrete time, one step at a time. The function discrete.time.sim
belongs to the pomp package. It takes the argument step.fun, which specifies the particular function
that actually takes the step. Its second argument, delta.t, specifies the duration of the time step (by
default, delta.t=1). The argument rmeasure specifies the measurement model simulator function. t0
fixes o for this model; here we have chosen this to be one time unit before the first observation.

Before we can simulate the model, we need to settle on some parameter values. We do this by speci-
fying a named numeric vector that contains at least all the parameters needed by the functions gom-
pertz.proc.sim and gompertz.meas.sim. The parameter vector needs to specify the initial conditions
X(to) = xo as well.

theta <- c(
r=0.1,K=1,sigma=0.1,
tau=0.1,

X.0=1
)

In addition to the parameters r, K, o, and 7, note that we’ve specified the initial condition X.0 in the
vector theta. The fact that the initial condition parameter’s name ends in “.0” is significant: it tells
pomp that this is the initial condition of the state variable X. This use of the “.0” suffix is the default
behavior of pomp: one can also parameterize initial conditions in an arbitrary way using the optional
initializer argument to pomp. See the documentation (?pomp) for details.

Now we can simulate the model:
gompertz <- simulate(gompertz,params=theta)
Now gompertz is identical to what it was before, but the data that were there before have been replaced

by simulated data. The parameters (theta) at which the simulations were performed have also been
saved internally to gompertz. We can plot the simulated data via

INTRODUCTION TO POMP 7

gompertz

1.6 1.8

14

1.0

0.8

0.6
|

0 20 40 60 80 100

time

FIGURE 1. Simulated data and unobserved states from the Gompertz model (Egs. 3-5).
This figure shows the output of the command plot(gompertz,variables="Y").

plot (gompertz,variables="Y")

Fig. 1 shows the results of this operation.

5. COMPUTING LIKELIHOOD USING PARTICLE FILTERING: PFILTER

Some parameter estimation algorithms in the pomp package only require rprocess and rmeasure. These
include the nonlinear forecasting algorithm nlf and the probe-matching algorithm probe.match. If we
want to work with likelihood-based methods, however, we will need to be able to compute the likelihood
of the data Y; given the states X;. Above, we wrote an R function, gompertz.meas.dens, to do this.
We haven'’t yet used it all. To do so, we’ll need to incorporate it into the pomp object. We can do this
by specifying the dmeasure argument in another call to pomp:

dat <- as(gompertz, "data.frame")

theta <- coef (gompertz)

gompertz <- pomp (
data=dat [c("time","Y")],
times="time",

8 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

rprocess=discrete.time.sim(gompertz.proc.sim),
rmeasure=gompertz.meas.sim,
dmeasure=gompertz.meas.dens,
t0=0
)

coef (gompertz) <- theta

Note that we’ve first extracted the data from our old gompertz and set up the new one with the same
data and parameters. The calls to coef and coef<- in the lines above make sure the parameters have
the same values they had before.

To compute the likelihood of the data, we can use the function pfilter. This runs a plain vanilla particle
filter (AKA sequential Monte Carlo) algorithm and results in an unbiased estimate of the likelihood. See
Arulampalam et al. (2002) for an excellent tutorial on particle filtering and Ionides et al. (2006) for a
pseudocode description of the algorithm implemented in pomp. We must decide how many concurrent
realizations (particles) to use: the larger the number of particles, the smaller the Monte Carlo error but
the greater the computational effort. Let’s run pfilter with 1000 particles to estimate the likelihood
at the true parameters:

pf <- pfilter(gompertz,params=theta, Np=1000)
loglik.truth <- logLik(pf)
loglik.truth

[1] 31.05209

Since the true parameters (i.e., the parameters that generated the data) are stored within the pomp
object gompertz and can be extracted by the coef function, we could have done

pf <- pfilter(gompertz,params=coef (gompertz) ,Np=1000)
or even just
pf <- pfilter(gompertz,Np=1000)

which would have worked since the parameters are stored in the pomp object gompertz. Now let’s
compute the log likelihood at a different point in parameter space, one for which r, K, and o are 50%
higher than their true values.

theta.true <- coef (gompertz)

theta.guess <- theta.true

theta.guess[c("r","K", "sigma")] <- 1.5*theta.truelc("r","K","sigma")]
pf <- pfilter(gompertz,params=theta.guess,Np=1000)

loglik.guess <- logLik(pf)

As we mentioned before, for this particular example, we can compute the likelihood exactly using the
Kalman filter, using this as a check on the validity of the particle filtering algorithm. An implementation
of the Kalman filter is given in Box 1. Let’s run the Kalman filter on the example data we generated
above:

y <- obs(gompertz)

x0 <- init.state(gompertz)

r <- coef (gompertz, "r")

K <- coef(gompertz, "K")

sigma <- coef (gompertz, "sigma")

INTRODUCTION TO POMP 9

Box 1 Implementation of the Kalman filter for the Gompertz model.

kalman.filter <- function (Y, X0, r, K, sigma, tau) {
ntimes <- length(Y)
sigma.sq <- sigma”2
tau.sq <- tau~2
cond.loglik <- numeric(ntimes)
filter.mean <- numeric(ntimes)
pred.mean <- numeric(ntimes)
pred.var <- numeric(ntimes)

m <- log(X0)
v <-0
S <- exp(-r)

for (k in seq_len(ntimes)) {
pred.mean[k] <- M <- (1-S)*log(K) + S*m
pred.var[k] <- V <- S*v*S+sigma.sq
q <- V+tau.sq
r <- log(Y[k])-M
cond.loglik[k] <- dnorm(x=log(Y[k]),mean=M,sd=sqrt(q),log=TRUE)
q <- 1/V+1/tau.sq
filter.mean[k] <- m <- (log(Y[k])/tau.sq+M/V)/q
v <- 1/q
}
list(
pred.mean=pred.mean,
pred.var=pred.var,
filter.mean=filter.mean,
cond.loglik=cond.loglik,
loglik=sum(cond.loglik)
)

tau <- coef (gompertz, "tau")
kf <- kalman.filter(y,x0,r,K,sigma,tau)

In this case, the Kalman filter gives us a log likelihood of 31.2, while the particle filter with 1000 particles
gives 31.05. Since the particle filter gives an unbiased estimate of the likelihood, the difference is due to
Monte Carlo error in the particle filter. One can reduce this error by using a larger number of particles
and/or by re-running pfilter multiple times and averaging the resulting estimated likelihoods. The
latter approach has the advantage of allowing one to estimate the Monte Carlo error itself.

10 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN
6. INTERLUDE: UTILITY FUNCTIONS FOR EXTRACTING AND CHANGING PIECES OF A POMP OBJECT

The pomp package provides a number of functions to extract or change pieces of a pomp-class object. One
can read the documentation on all of these by doing class?pomp and methods?pomp. For example, as
we’ve already seen, one can coerce a pomp object to a data frame:

as(gompertz, "data.frame")

and if we print a pomp object, the resulting data frame is what is shown, together with the call that
created the pomp object. One has access to the data and the observation times using

obs (gompertz)
obs (gompertz, "Y")
time (gompertz)

The observation times can be changed using
time (gompertz) <- 1:10
One can respectively view and change the zero-time by

timezero(gompertz)
timezero(gompertz) <- -10

and can respectively view and change the zero-time together with the observation times by doing, for
example

time (gompertz, t0=TRUE)
time (gompertz,t0=T) <- seq(from=0,to=10,by=1)

Alternatively, one can construct a new pomp object with the same model but with data restricted to a
specified window:

window (gompertz, start=3, end=20)

Note that window does not change the zero-time. One can display and modify model parameters using,
e.g.,

coef (gompertz)
coef (gompertz,c("sigma", "tau")) <- c(1,0)

Finally, one has access to the unobserved states via, e.g.,

states (gompertz)
states(gompertz, "X")

INTRODUCTION TO POMP 11

7. TRANSFORMING PARAMETERS

The parameters in the Gompertz model above are constrained to be positive. When we estimate these
parameters using numerical search algorithms, we must find some way to ensure that these constraints
will be honored. A straightforward way to accomplish this is to transform the parameters so that
they become unconstrained. The following codes re-implement the Gompertz model using transformed
parameters.

gompertz.proc.sim <- function (x, t, params, delta.t, ...) {

}

unpack and untransform the parameters:
r <- exp(params["log.r"])

K <- exp(params["log.K"])

sigma <- exp(params["log.sigma"])

the state at time t:

X <- x["X"]

generate a log-normal random variable:
eps <- exp(rnorm(n=1,mean=0,sd=sigma))
compute the state at time t+1:

S <- exp(-r*delta.t)

xnew <- c(X=unname (K~ (1-S)*X"S*eps))
return (xnew)

gompertz.meas.sim <- function (x, t, params, ...) {

}

unpack and untransform the parameters:

tau <- exp(params["log.tau"])

state at time t:

X <- x["X"]

generate a simulated observation:

y <- c(Y=unname (rlnorm(n=1,meanlog=log(X),sdlog=tau)))
return(y)

gompertz.meas.dens <- function (y, x, t, params, log, ...) {

}

unpack and untransform the parameters:
tau <- exp(params["log.tau"])
state at time t:

X <- X[IIXHJ
observation at time t:
Y <- y[uyu_']

compute the likelihood of Y|X,tau
f <- dlnorm(x=Y,meanlog=log(X),sdlog=tau,log=log)
return(f)

Note that, in each of the above functions, we untransform the parameters before we do any computations.

dat <- as(gompertz, "data.frame")
theta <- c(

log(coef (gompertz,c("r","K", "tau", "sigma"))),
coef (gompertz, "X.0")
)

names (theta) <- c("log.r","log.K","log.tau","log.sigma","X.0")

12 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

gompertz <- pomp (
data=dat[c("time","Y")],
times="time",
rprocess=discrete.time.sim(gompertz.proc.sim),
rmeasure=gompertz.meas.sim,
dmeasure=gompertz.meas.dens,
t0=0
)

coef (gompertz) <- theta

A pomp object corresponding to the one just created (but with the rprocess, rmeasure, and dmeasure
bits coded in C for speed) can be loaded by executing data(gompertz).

INTRODUCTION TO POMP 13
8. ESTIMATING PARAMETERS USING ITERATED FILTERING: MIF

Tterated filtering is a technique for maximizing the likelihood obtained by filtering. In pomp, it is the
particle filter that is iterated. Iterated filtering is implemented in the mif function. For a description of
the algorithm and a description of its theoretical basis, see Tonides et al. (2006). A more complete set of
proofs is provided in Ionides et al. (in press).

The key idea of iterated filtering is to replace the model we are interested in fitting—which has time-
invariant parameters—with a model that is just the same except that its parameters take a random walk
in time. As the intensity of this random walk approaches zero, the modified model approaches the original
model. Adding additional variability in this way has three positive effects: (i) it smooths the likelihood
surface, which makes optimization easier, (ii) it combats particle depletion, the fundamental difficulty
associated with the particle filter, and (iii) the additional variability can be exploited to estimate of
the gradient of the (smoothed) likelihood surface with no more computation than is required to estimate
of the value of the likelihood. Tterated filtering exploits these effects to optimize the likelihood in a
computationally efficient manner. As the filtering is iterated, the additional variability is decreased
according to a cooling schedule. The cooling schedule can be adjusted in mif, as can the intensity of the
parameter-space random walk and the other algorithm parameters. See the documentation (?mif) for
details.

Let’s use iterated filtering to obtain an approximate MLE for the data in gompertz. We’ll initialize the
algorithm at several starting points around theta.true and just estimate the parameters r, 7, and o:

estpars <- c("log.r","log.sigma", "log.tau")
mf <- replicate(
n=10,
{
theta.guess <- theta.true
theta.guess[estpars] <- rnorm(
n=length (estpars),
mean=theta.guess[estpars],
sd=1
)
mif (
gompertz,
Nmif=100,
start=theta.guess,
pars=estpars,
rw.sd=c(
log.r=0.02,10g.sigma=0.02,1log.tau=0.05
Js
Np=2000,
var.factor=4,
ic.lag=10,
cooling.factor=0.999,
max.fail=10
)
}
)
##mf <- lapply (mf,continue,Nmif=50)

Each of the 10 mif runs ends up at a different place. In this case (but by no means in every case),
we can average across these parameter estimates to get an approximate maximum likelihood estimate.

14 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

30
|

log L
25

20

logr
-3.0
1

-4.0
1

-1

logo
-2

-3

-2.0
1

logt

-3.0
1

MIF iteration

FI1GURE 2. Convergence plots can be used to help diagnose convergence of the iterated
filtering algorithm. This shows part of the output of compare.mif (mf).

We'll evaluate the likelihood several times at this estimate to get an idea of the Monte Carlo error in
our likelihood estimate.

theta.mif <- apply(sapply (uf,coef),1,mean)

loglik.mif <- replicate(n=10,logLik(pfilter(mf[[1]],params=theta.mif,Np=10000)))
loglik.mif.sd <- sd(loglik.mif)

bl <- mean(loglik.mif)

loglik.mif <- bl+log(mean(exp(-bl+loglik.mif)))

loglik.true <- replicate(n=10,logLik(pfilter (gompertz,params=theta.true,Np=10000)))
loglik.true.sd <- sd(loglik.true)

loglik.true <- bl+log(mean(exp(-bl+loglik.true)))

NA

mle truth
log.r -2.68 -2.3
log.sigma -2.41 -2.3
log.tau -2.20 -2.3

loglik 31.70 31.5

loglik.sd 0.10

0.2

INTRODUCTION TO POMP

15

16 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN
9. TRAJECTORY MATCHING: TRAJ.MATCH

The idea behind trajectory matching is a simple one. One attempts to fit a deterministic dynamical
trajectory to the data. This is tantamount to assuming that all the stochasticity in the system is in the
measurement process. In pomp, the trajectory is computed using the trajectory function, which in turn
uses the skeleton slot of the pomp object. The skeleton slot should be filled with the deterministic
skeleton of the process model. In the discrete-time case, this is the map

T]E[Xt+1 ‘ Xt :.’E,e]
In the continuous-time case, this is the vectorfield

Xiyar —
— | Xy =2a,0].
At ’ e }

Our discrete-time Gompertz has the deterministic skeleton
x — K799, (6)

and At is the time-step. This can be implemented in the R function

z +— lim E
At —0

where § = e "4t
gompertz.skel <- function (x, t, params, ...) {

delta.t <- 1

r <- exp(params["log.r"])

K <- exp(params["log.K"])

X <- x["Xx"]

S <- exp(-r*delta.t)

xnew <- c(X=unname (K~ (1-S)*X"S))

return(xnew)

}
We can incorporate the deterministic skeleton into a new pomp object via the skeleton.map argument:

new.gompertz <- pomp(
data=data.frame (time=1:200,Y=NA),
times="time",
rprocess=discrete.time.sim(gompertz.proc.sim),
rmeasure=gompertz.meas.sim,
dmeasure=gompertz.meas.dens,
skeleton.map=gompertz.skel,
t0=0
)

coef (new.gompertz) <- theta

coef (new.gompertz,"X.0") <- 0.1

coef (new.gompertz, "log.r") <- 1log(0.1)

coef (new.gompertz, "log.tau") <- 1log(0.05)

coef (new.gompertz, "log.sigma") <- log(0.05)

new.gompertz <- simulate(new.gompertz,seed=88737400L)

We use the skeleton.map argument for discrete-time processes and skeleton.vectorfield for continuous-
time processes.

The pomp function traj.match calls the optimizer optim to minimize the discrepancy between the
trajectory and the data. The discrepancy is measured using the dmeasure function from the pomp
object. Fig. 3 shows the results of this fit.

tm <- traj.match(
new.gompertz,

INTRODUCTION TO POMP

1.2

1.0

0.8

0.6

0.4

0.2

0 50 100 150 200
time

F1GURE 3. Illustration of trajectory matching. The points show data simulated from
new.gompertz. The solid line shows the trajectory of the best-fitting model, obtained
using traj.match. Fitting by trajectory matching is tantamount to the assumption
that the data-generating process has no process noise but only measurement error.

start=coef (new.gompertz),
est=c("log.r","log.K","log.tau","X.0"),
method="Nelder-Mead",

maxit=1000,

reltol=1e-8

)

17

18 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN
10. PROBE MATCHING: PROBE.MATCH

In probe matching, we fit a model to data using a set of summary statistics. We evaluate these statis-
tics on the data and compare them to the distribution of values they take on simulations, then adjust
model parameters to maximize agreement between model and data according to some criterion. Fol-
lowing Kendall et al. (1999), we refer to the summary statistics as probes. In probe-matching, one has
unrestricted choice of probes, and there are a great many probes that one might sensibly choose. This
introduces a degree of subjectivity into the inference procedure but has the advantage of allowing the
investigator to identify a priori those features of a data set he or she believes to be informative.

In this section, we’ll illustrate probe matching using a stochastic version of the Ricker map. In this
discrete-time model, N; represents the (true) size of a population at time ¢ and obeys

Nip1 =1 Ny exp(—Ni: + e;), e¢ ~normal(0, o).
In addition, we assume that measurements y; of N; are themselves noisy, according to
yi ~ Poisson(¢ Ny).

As before, we’ll begin by writing an R function that implements a simulator (rprocess) for the Ricker
model. It will be convenient to work with log-transformed parameters logr, log o, log ¢. Thus

ricker.sim <- function (x, t, params, delta.t, ...) {
e <- rnorm(n=1,mean=0,sd=exp(params["log.sigma"]))
xnew <- c(
exp (params["log.r"]+log(x["N"])-x["N"]+e),
e
)
names (xnew) <- c("N","e")
xnew

}

Note that, in this implementation, e is taken to be a state variable. This is not strictly necessary, but
it might prove useful, for example, in a posteriori diagnostic checking of model residuals. Now we can
construct a pomp object; in this case, we use the discrete.time.sim plug-in. Note how we specify the
measurement model.

ricker <- pomp(
data=data.frame (time=seq(0,50,by=1),y=NA),
times="time",
t0=0,
rprocess=discrete.time.sim(
step.fun=ricker.sim

),
measurement .model=y pois(lambda=N*exp(log.phi))
)
coef (ricker) <- c(
log.r=3.8,

log.sigma=1og(0.3),
log.phi=log(10),
N.0=7,
e.0=0
)
ricker <- simulate(ricker,seed=73691676L)

INTRODUCTION TO POMP 19

A pre-built pomp object implementing this model is included with the package. Its rprocess, rmeasure,
and dmeasure components are written in C and are thus a bit faster than the R implementation above.
Do

data(ricker)

to load this pomp object.

In pomp, probes are simply functions that can be applied to an array of real or simulated data to
yield a scalar or vector quantity. Several functions that create commonly-useful probes are included
with the package. Do ?basic.probes to read the documentation for these probes. In this illustration,
we will make use of several probes recommended by Wood (2010): probe.marginal, probe.acf, and
probe.nlar. probe.marginal regresses the data against a sample from a reference distribution; the
probe’s values are those of the regression coefficients. probe.acf computes the auto-correlation or auto-
covariance of the data at specified lags. probe.nlar fits a simple nonlinear (polynomial) autoregressive
model to the data; again, the coefficients of the fitted model are the probe’s values. We construct our
set of probes by specifying a list

plist <- list(
probe.marginal ("y",ref=obs (ricker),transform=sqrt),
probe.acf ("y",lags=c(0,1,2,3,4),transform=sqrt),
probe.nlar("y",lags=c(1,1,1,2),powers=c(1,2,3,1),transform=sqrt)
)

An examination of the structure of plist reveals that it is a list of functions of a single argument. Each
of these functions can be applied to the ricker’s data or to simulated data sets. A call to pomp’s function
probe results in the application of these functions to the data, their application to each of some large
number, nsim, of simulated data sets, and finally to a comparison of the two. To see this, we’ll apply
probe to the Ricker model at the true parameters and at a wild guess.

pb.truth <- probe(ricker,probes=plist,nsim=1000,seed=1066L)
guess <- c(log.r=1og(20),log.sigma=log(1),log.phi=1og(20),N.0=7,e.0=0)
pb.guess <- probe(ricker,params=guess,probes=plist,nsim=1000, seed=1066L)

Results summaries and diagnostic plots showing the model-data agreement and correlations among the
probes can be obtained by

summary (pb. truth)
summary (pb.guess)
plot (pb.truth)
plot(pb.guess)

An example of a diagnostic plot (using a simplified set of probes) is shown in Fig. 4. Among the quantities
returned by summary is the synthetic likelihood (Wood, 2010). It is this synthetic likelihood that pomp
attempts to maximize in probe matching.

Let us now attempt to fit the Ricker model to the data using probe-matching.

pm <- probe.match(
pb.guess,
est=c("log.r","log.sigma","log.phi"),
method="Nelder-Mead",
maxit=2000,
seed=1066L,
reltol=1e-8,

20 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

-0.005 0.015
11 o
marg.1 -
p=0.24
[ee)
[}
<t
o [}
-
S arg.2
© H pE0.541
- -0816 m
0 -
o
-k il
[}
! <
o
S
[}
-0.951 0.92
N
o
o
[=}
1
o |
N
_| -0.306 0.555
v |
—
b
-0.875 0.551
e
|
acf.3.
n p=0.13:
© 7 o0.266 -0.301 -0.283 -0.243 -0.342
o
=
|
meay -
p=0312 | 19
0.37 -0.548 —-0.553 -0.789 -0.42 0.268 |
L}
T T T L L 1 @
04 08 1.2 -0.002 0.004 -8 -4 35 45

FIGURE 4. Results of plot on a probed.pomp-class object. Above the diagonal, the
pairwise scatterplots show the values of the probes on each of 1000 data sets. The red
lines show the values of each of the probes on the data. The panels along the diagonal
show the distributions of the probes on the simulated data, together with their values on
the data and a two-sided p-value. The numbers below the diagonal indicate the Pearson
correlations between the corresponding probes.

trace=3

)

summary (pm)

This code runs a Nelder-Mead optimizer from the starting parameters guess in an attempt to maximize
the synthetic likelihood based on the probes in plist. Both the starting parameters and the probes
are stored internally in pb.guess, which is why we don’t specify them explicitly here; if we wanted to
change these, we could do so by specifying the params and/or probes arguments to probe.match. See
?probe.match for full documentation.

By way of putting the synthetic likelihood in context, let’s compare the results of estimating the Ricker
model parameters using probe-matching and using iterated filtering, which is based on likelihood. The
following code runs 600 MIF iterations starting at guess:

INTRODUCTION TO POMP 21

mf <- mif(
ricker,
start=guess,
Nmif=100,
Np=1000,
cooling.factor=0.99,
var.factor=2,
ic.lag=3,
max.fail=50,
rw.sd=c(log.r=0.1,log.sigma=0.1,log.phi=0.1)
)
mf <- continue(mf,Nmif=500,max.fail=20)

The following code compares parameters, likelihoods, and synthetic likelihoods (based on the probes
in plist) at each of (1) the wild guess, (2) the truth, (3) the MLE from mif, and (4) the maximum
synthetic likelihood estimate from probe.match.

pf.truth <- pfilter(ricker,Np=1000,max.fail=50,seed=1066L)
pf.guess <- pfilter(ricker,params=guess,Np=1000,max.fail=50,seed=1066L)
pf.mf <- pfilter (mf,Np=1000,seed=1066L)
pf.pm <- pfilter (pm,Np=1000,max.fail=10,seed=1066L)
pb.mf <- probe(mf,nsim=1000,probes=plist,seed=1066L)
res <- rbind(
cbind (guess=guess, truth=coef (ricker) ,MLE=coef (mf) , PM=coef (pm)),
loglik=c(
pf.guess$loglik,
pf.truth$loglik,
pf.mf$loglik,
pf.pm$loglik
),
synth.loglik=c(
summary (pb. guess) $synth. loglik,
summary (pb. truth) $synth. loglik,
summary (pb.mf) $synth.loglik,
summary (pm) $synth.loglik

)

)
print(res,digits=3)

guess truth MLE PM
log.r 3.0 3.8 3.78 3.74
log.sigma 0.0 -1.2 -1.74 -1.12
log.phi 3.0 2.3 2.33 2.41
N.O 7.0 7.0 7.00 7.00
e.0 0.0 0.0 0.00 0.00
loglik -230.9 -139.5 -136.83 -143.33
synth.loglik -12.3 17.5 17.36 20.34

22 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN
11. NONLINEAR FORECASTING: NLF

Ellner et al. (1998); Kendall et al. (1999, 2005). To be added.
12. BAYESIAN SEQUENTIAL MONTE CARLO: BSMC
Liu and West (2001). To be added.
13. PARTICLE MARKOV CHAIN MONTE CARLO: PMCMC

Andrieu et al. (2010). To be added.

INTRODUCTION TO POMP 23
14. A MORE COMPLEX EXAMPLE: A SEASONAL EPIDEMIC MODEL

The SIR model is a mainstay of theoretical epidemiology. It has the deterministic skeleton

= — (N — —
i w(S) 5(t)N5
dI I

- = STl —pul
T ﬁ(t)NS yI—p

dR

o] =

5 = p R

Here N = S+ I + R is the (constant) population size and /3 is a time-dependent contact rate. We’ll
assume that the contact rate is periodic and implement it as a covariate. As an additional wrinkle, we’ll
assume that the rate of the infection process 8 I/N is perturbed by white noise.

As in the earlier example, we need to write a function that will simulate the process. We can use
gillespie.sim to implement this using the exact stochastic simulation algorithm of Gillespie (1977).
This will be quite slow and inefficient, however, so we’ll use the so-called “tau-leap” algorithm, one version
of which is implemented in pomp using Euler-multinomial processes. Before we do this, we’ll first define
the basis functions that will be used for the seasonality. It is convenient to use periodic B-splines for
this purpose. The following codes set up this basis.

tbasis <- seq(0,25,by=1/52)
basis <- periodic.bspline.basis(tbasis,nbasis=3)
colnames(basis) <- paste("seas",1:3,sep='")

Now we’ll define the process model simulator. Since we have covariates now, our function will have one
additional argument, covars, which will contain the value of each covariate at time t, established using
linear interpolation if necessary.

sir.proc.sim <- function (x, t, params, covars, delta.t, ...) {
params <- exp(params)
with(
as.list(c(x,params,covars)),
{
beta <- exp(sum(log(c(betal,beta2,betal))*c(seasl,seas2,seas3)))
beta.var <- beta.sd"2
dWw <- if (beta.var>0)
rgamma (n=1, shape=delta.t/beta.var,scale=beta.var)
else
delta.t
foi <- (iotatbeta*I*dW/delta.t)/pop
trans <- c(
rpois(n=1,lambda=mu*pop*delta.t),
reulermultinom(n=1,size=S,rate=c(foi,mu),dt=delta.t),
reulermultinom(n=1,size=I,rate=c(gamma,mu),dt=delta.t),
reulermultinom(n=1,size=R,rate=c(mu),dt=delta.t)
)
c(
S=S+trans[1]-trans[2]-trans[3],
I=I+trans[2]-trans[4]-trans[5],
R=R+trans[4]-trans[6],
cases=cases+trans (4],
W=if (beta.sd>0) W+(dW-delta.t)/beta.sd else W
)

24 KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

—~

Let’s look at this definition in a bit of detail. We will be log-transforming the parameters: the first line
untransforms them. Here, we use with to make the codes a bit easier to read. The variable beta will
be the transmission rate: the time-dependence of this rate is parameterized using the basis functions,
the current values have been passed via the covars argument. The next lines make a draw, dW, from a
Gamma random variable which will model environmental stochasticity as white noise in the transmission
process (Bret6 et al., 2009; He et al., 2010). The next line computes the force of infection, foi. trans
is next filled with random draws of all the transitions between the S, I, and R compartments. Births
are modeled using a Poisson distribution, the number of births is stored in trans[1]. Individuals leave
the S class through either death or infection: trans[2] will contain the number infected, trans[3] the
number dead. The number leaving the I and R classes are handled similarly. See the documentation on
reulermultinom for a more thorough explanation of how this function works. Finally, a named vector
is returned that contains the new values of the state variables, each of which is the old value, adjusted
by the transitions. Note that the state variable cases accumulates the number of IR transitions and
W accumulates the (standardized) white noise.

Now we're ready to construct the pomp object.
pomp (

data=data.frame(
time=seq(1/52,4,by=1/52),

reports=NA

Js
times="time",
t0=0,

tcovar=tbasis,
covar=basis,
rprocess=euler.sim(
step.fun=sir.proc.sim,
delta.t=1/52/20
),
measurement .model=reports~binom(size=cases, prob=exp(rho)),
zeronames=c("cases"),
initializer=function(params, t0O, comp.names, ...){
p <- exp(params)
snames <- c("S","I","R","cases","W")
fracs <- plpaste(comp.names, "0",sep=".")]
x0 <- numeric(length(snames))
names (x0) <- snames
x0[comp.names] <- round(p['pop']*fracs/sum(fracs))
x0
},
comp.names=c ("S","I","R")
) -> sir

The specification of data, times, and tO should be familiar. The covariates are specified using the
arguments tcovar and covar. We use euler.sim to specify the process simulator (rprocess). We
are approximating the continuous-time process using an Euler simulator with a time-step of 1/20 of a
week. Both rmeasure and dmeasure can be specified at once using the measurement.model argument.

INTRODUCTION TO POMP 25

Here, we model the observation process using a binomial process, where the reporting rate, rho, is the
probability that a case is reported.

As we noted before, the state variable cases accumulates the number of cases (i.e., the number of I-R
transitions). However, the data are not the cumulative number of cases, but the number of cases that
have occurred since the last report. Specifying cases in the zeronames argument has the effect of
re-setting the state variable cases to zero after each observation.

Finally, in this example, we do not use the default parameterization of the initial states. Instead, we
specify a custom initializer argument. We want instead to parameterize the initial states in terms
of the fractions of the total population contained in each compartment. In particular, as we see in the
initializer argument to pomp, we normalize so that the sum of $.0, I.0, and R.0 is 1, then multiply
by the initial population size, and then round to the nearest whole number. Note that the initializer we
have specified needs an argument comp.names (the names of the S, I, and R state variables). This is set
in the last line. More generally, one can give any number or kind of additional arguments to pomp: they
will be passed to the initializer, rprocess, dprocess, rmeasure, dmeasure, and skeleton functions,
if these exist. This feature aids in the writing of customized pomp objects.

Now we’ll simulate data using the parameters

theta <- c(
gamma=26,mu=1/50,iota=10,
betal=1200,beta2=1500, beta3=900,
beta.sd=1le-2,
pop=5e5,
rho=0.6,
S$.0=26/1200,1.0=0.001,R.0=1-0.001-26/1200
)

sir <- simulate(sir,nsim=1,params=log(theta), seed=329348545L)

Figure 5 shows the simulated data and state variable trajectories.

26

reports

KING, IONIDES, BRETO, ELLNER, KENDALL, FERRARI, LAVINE, AND REUMAN

SIr
o
o
o]
-
[}
<
° _
S
™
-
o
- o _|
Q x 3
<
o
g
— —
o
3
8 3
=] g
- [}
o
o -
8
— (%] S
- o 9
8 @ _
=l o o
— S
- N
o -
o _J
o
[} o
0
T o
8
- o
=1 S
o
3] = o
S
- |
o -
S
N
o
o - o
T T T T T | T T T T T
0 1 2 3 4 0 1 2 3 4
time time

FI1GURE 5. Results of plot(sir).

INTRODUCTION TO POMP 27

REFERENCES

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society, Series B 72:269-342 (2010).

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for Online
Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50:174 — 188
(2002).

C. Bretd, D. He, E. L. Tonides, and A. A. King. Time series analysis via mechanistic models. Annals of
Applied Statistics 3:319-348 (2009).

S. P. Ellner, B. A. Bailey, G. V. Bobashev, A. R. Gallant, B. T. Grenfell, and D. W. Nychka. Noise and
nonlinearity in measles epidemics: Combining mechanistic and statistical approaches to population
modeling. American Naturalist 151:425-440 (1998).

D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical
Chemistry 81:2340-2361 (1977).

D. He, E. L. Ionides, and A. A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7:271-283 (2010).

E. L. Tonides, A. Bhadra, Y. Atchadé, and A. A. King. Iterated filtering. Annals of Statistics (in press).

E. L. Tonides, C. Bret6, and A. A. King. Inference for nonlinear dynamical systems. Proceedings of the
National Academy of Sciences of the U.S.A. 103:18438-18443 (2006).

B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet,
and S. N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80:1789-1805 (1999).

B. E. Kendall, S. P. Ellner, E. McCauley, S. N. Wood, C. J. Briggs, W. M. Murdoch, and P. Turchin.
Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. FEcological
Monographs 75:259-276 (2005).

J. Liu and M. West. Combining Parameter and State Estimation in Simulation-Based Filtering. In
A. Doucet, N. de Freitas, and N. J. Gordon, eds., Sequential Monte Carlo Methods in Practice, pp.
197-224 (Springer, New York, 2001).

S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102-1104
(2010).

A. A. KING, DEPARTMENTS OF ECOLOGY & EVOLUTIONARY BIOLOGY AND MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN
ARBOR, MICHIGAN 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http://pomp.r-forge.r-project.org

