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The C++ library stattools is a collection of tools for statistical inference. It implements the
Markov Chain Monte Carlo (MCMC) algorithm, the Expectation Maximization (EM) algorithm,
the Baum-Welch algorithm for Hidden Markov Models (HMM), as well as several optimization
methods such as Newton-Raphson, Nelder-Mead and line search. In the following sections, we
will provide a detailed description of the implementation of these algorithms in stattools. The
algorithms themselves are only described in the light of what is necessary for an understanding of
stattools. For further details, derivations and explanations, we refer to the excellent chapters
in Wegmann and Leuenberger (2019), Barber (2012), and Murphy (2012).

1 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is a widely used algorithm to approximate a
distribution by generating samples from it (Barber, 2012; Murphy, 2012). In Bayesian inference,
it is commonly used to approximate the posterior distribution P(θ|x) of a parameter θ. The idea
in MCMC is to set up an irreducible, aperiodic Markov chain where the stationary distribution
is equal to the distribution of interest.
Various algorithm exist that construct such a chain, most importantly the Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970):

1. Choose initial values θ0 and set i = 0.

2. Propose a move θi → θ′
i according to some proposal kernel q(θ,θ′).

3. Accept move and set θi+1 = θ′
i with probability given by the Hastings ratio

h = min

(
1,

P(θ′)q(θ′
t,θt)

P(θ)q(θt,θ
′
t)

)
,

else reject move and set θi+1 = θi.

4. Increment i and go back to step 2.

A special case of the Metropolis-Hastings algorithm is Gibbs sampling. Gibbs sampling circum-
vents the problem of sampling from a complicated joint distribution P(θ) by sampling from the
conditional distribution P(x|θ−i), where θ−i denotes all parameters except the ith element θi. For
discrete parameters, Gibbs sampling is straightforward to implement. Denoting by P(D|θi,θ−i)
the likelihood and by P(θi|π) the prior probability, let ϕθi be the product of likelihood and prior:

ϕθi = P(D|θi,θ−i)P(θi|π).

The posterior distribution can be calculated analytically, since the integral for normalization
turns into a sum in case of discrete parameters:

P(θi|D, π,θ−i) =
ϕθi∑
γ ϕγ

. (1)

where the sum in the denominator integrates over all possible values of θi. In addition, Gibbs
sampling is commonly used when the prior distribution is conjugate with respect to the likelihood,
such that the posterior distribution can be calculated analytically (Murphy, 2012).
In a typical setup, multiple parameters are inferred in an MCMC, and Metropolis-Hastings or
Gibbs sampling algorithm can be mixed depending on the particular choice of prior distributions.
The handling of these parameters - be it the choice of a proposal kernel, prior distribution,
updating scheme, initialization, file handling etc. - can be cumbersome to implement. stattools
provides a powerful and flexible implementation of the MCMC algorithm that makes it easy and
efficient to program MCMCs without needing to start from scratch every time.
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1.1 Statistical model

A statistical model defines the vector of parameters θ that are estimated from a vector of ob-
servations, D and the joint probability distribution P(D,θ). Because a MCMC is a Bayesian
method, we define P(D,θ) = P(D|θ)P(θ), where P(D|θ) is the likelihood and P(θ) is the prior
probability. The classes of stattools are based on this definition of a statistical model:

• Two fundamental classes are TParameter and TObservation. Class TParameter imple-
ments a standard MCMC parameter θ where the goal is to obtain posterior samples from.
Class TObservation implements an observation D that stores observed data.

• The relationship between observations and parameters (as well as between parameters
in a hierarchical model) are given by probability distributions or deterministic functions.
Classes deriving from the base class prior::TBase implement common probability distri-
butions and deterministic functions.

A statistical model can be visualized graphically with using a so-called directed acyclic graph
(DAG). In a DAG, the parameters and observations are shown as nodes, and directed edges
connecting two nodes represent an assumption about non-independence. We will extend the
concept of a DAG to illustrate the relationship between the stattools classes, as shown in
Figure 1. In line with this graphical representation, we will refer to parameters and observations
as nodes and to the relationship between the nodes as boxes.

Di

µ σ

I

D

µ σ

Figure 1: Directed acyclic graph (DAG) of a simple model where the data Di with i = 1, . . . , I
follows a normal distribution Di ∼ N (µ, σ). The shaded nodes represent observations. Shown
on the left is the classic representation of this model using a DAG. Shown on the right is the
stattools representation of this model. The red boxes represent the probability distributions,
with the large box around µ and σ being the normal distribution and the two small boxes on
top being two prior distributions P(µ) and P(σ). The edges represent memory pointers in two
directions, pointing from the box above to the node below and vice-versa.

1.2 Nodes

Class TNodeTyped is a pure virtual base class for TObservation and TParameter and defines the
common interface of observations and parameters. The most important member variables are:

• _storage: A storage object. This stores the current and old values of the parameter and
manages its dimensions.

• _boxAbove: A pointer to the box above.
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Importantly, TNodeTyped is templated with a typename Type. This allows an efficient and flexible
memory management. In most cases, the pre-defined types from the library coretools are used,
e.g. Probability, StrictlyPositive etc. However, a developer is free to implement custom
types. In addition, TNodeTyped is also templated by the number of dimensions. Note that this
does not correspond to the size of the parameter (which might not be known at compile time),
but to the dimensionality, e.g. two-dimensional. TNodeTyped inherits from a non-templated base
class, TNodeBase, which implements the interface needed to interact with the parameters/obser-
vations from the “outside”, e.g. for file handling or coordinating the MCMC updates.
We will now go through the different member variables and functions and describe them in more
detail. Often, the member variables themselves are classes that contain objects of other classes.
We will therefore start at the most basic classes and then explain how other classes make use of
them.
First of all, it it obvious that every parameter and observation must store its value(s).

1.2.1 TValueUpdated

The class TValueUpdated is used to store values of parameters. It is templated with Type and
stores the current (_value) and old (_value_old) value of the parameter in order to compute the
Hastings ratio. It overloads the assignment operator=(), which swaps _value_old and _value
and then sets _value to the value provided. It further overloads the cast operator Type() to
return the current value.
In constrast to parameters, observations do not need to store old and new value since they are
not updated. Observations simply store instances of Type. The interface for getting and setting
however is the same regardless which value type is used: The assignment operator=() and the
cast operator Type() are defined for both.

1.2.2 TMultiDimensionalStorage

Parameters and observations can be single values, one-dimensional vectors or n-dimensional
matrices. All these data structures can be stored as a linear vector by transforming a linear
index to a multi-dimensional coordinate and vice versa. For example, a 2-dimensional matrix
is stored in a linear fashion by pasting row by row together (row-major layout). The main
advantages of this design are that 1) this scales to any dimension, as we know how to linearize a
n-dimensional index and back, 2) this provides a coherent interface, independent of the dimension
and 3) if a smart layout is chosen (cache-friendly), it is faster than looking up values in a nested
structure.
This concept is implemented in class TMultiDimensionalStorage. It is templated with the type
(Type) and the number of dimensions (NumDim) of the underlying storage. It has three important
member variables:

• A vector of type Type that stores the values.

• An instance of TDimension, storing the dimensions of these values.

• An array of pointers to TNamesEmpty, where each element in the array stores the names of
one dimension.

TMultiDimensionalStorage implements the operator operator=() that provides access to the
values of the parameter. To get linear indices from n-dimensional coordinates, TMultiDimen-
sionalStorage also provides wrapper functions of TDimension (e.g. getIndex(), getRange(),
getFull(), get1DSlice() etc.). Hence, TMultiDimensionalStorage manages both values and
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their dimensionality.

Class TMultiDimensionalStorage provides different options to fill values. If the dimensions are
known at run-time, the function resize() allocates the memory which can then be set with
the [] operator. However, the dimensions might not be known in advance. For example, when
reading in data from a file, we typically know the number of columns from the header, but we
do not know the number of rows until we have reached the end of the file. We provide special
functions for such cases:

• Before reading the data, the function prepareFillData() must be called. This function
prepares the memory required to fill the data. The basic idea is that for most input files,
all except one dimension are known. For example, in a VCF file, we know from the header
how many individuals there will be. However, we will not know how many loci there will
be until we parsed the entire file. We might have a guess, but it can be less or more. This
function threrefore expects two arguments. The first argument is a guess of the length of
the first dimension (i.e. the most outer dimension when linearizing the data, see chapter
about dimensions). The second argument is an array of all known dimensions. The guess of
the length of the first dimension makes the memory-filling process more efficient, because
we reserve the memory in advance (with the vector function reserve()) and then fill it
(with the vector function emplace_back()). If we need more memory than guessed, this
is not a problem, we will simply emplace_back() to the vector.

• Then, we can fill the data using emplace_back(). Note that data must be filled in an
ordered manner (i.e. the way it is supposed to be stored), no re-ordering will be possible
afterwards.

• When all data has been filled, the function finalizeFillData() must be called. This
function calculates the effective length of the first dimension based on the number of ele-
ments that were filled and the known dimensions; and resizes the vector of stored values
to its actual size (to release redundant memory).

In the following section, we will dive deeper into the concept of linearizing n-dimensional arrays
and explain how this is implemented in TDimension.

1.2.2.1 TDimension

TDimension is templated with the number of dimensions, as this is known at compile time. It
stores a array _dimensions of size NumDim that represents the length of each dimension.
When initializing a TDimension object, the total size of the array (= the product of all dimen-
sions) is automatically calculated and stored in variable _totalSize.
The linear index s is calculated from a D-dimensional array of coordinates n = n1, . . . , nD as

s =

D∑
i=1

 D∏
j=i+1

Nj

ni, (2)

where Nj corresponds to the length of dimension j. To optimize speed, this double-loop is written
out for 1-, 2- and 3-dimensional cases, respectively:

s = n1 and s = n2 + n1N2 and s = n3 +N3(n2 + n1N2).

The D-dimensional array of coordinates n = n1, . . . , nD is calculated from a linear index s as
follows:

6



1. Start at the most inner dimension i = D.

2. Calculate the index in the current dimension i with ni = s mod Ni.

3. Update the linear index by removing the effect of the current dimension: s′ = s−ni
Ni

.

4. Repeat steps 2-3 for next dimension until the most outer dimension is reached.

Again, this algorithm can be written out for speed for 1- and 2-dimensional arrays:

n1 = s,

and
n2 = s mod N2 and n1 =

(s− n2)

N2
.

Most other functions of class TDimension use function linearizeIndex to linearize a vector of
coordinates, and then return an object of class TRange. TRange is a very simple class that
consists of three members: begin, end and increment. These correspond to the first index in
the linear array, the last (not included) index in the linear array, and the increment one has to
use to get the correct elements. It is then straightforward to use TRange in a for-loop like this:
for ( s i ze_t i = range . begin ; i < range . end ; i += range . increment ){
// . . .

}

The following functions are implemented in TDimension:

• getIndex(): takes a vector of coordinates, and returns the linear index.

• getDiagonal(): only for 2-dimensional square matrices, throws otherwise. Returns a range
object for all linear indices of the elements on diagonal.

• getRange(): takes two vectors of coordinates (start and end) and returns a range object
of all elements between those.

• get1DSlice(): takes a number dim and a vector of coordinates, start. It will start at
the linear index of start, follow the given dimension dim until its end, and return the
corresponding range object. A classic example would be a 2-dimensional matrix, where
we want to start at element {4, 0} (fifth row, first column), and go over all elements of
dimension 1 (= columns), to get one full row (end: {4, ncol}).

• getFull(): returns a range of all linear indices from first to last element, with increment
1.

1.2.2.2 TNamesEmpty

As mentioned above, class TMultiDimensionalStorage stores a vector of pointers to TName-
sEmpty, such that each dimension has a pointer to the dimension names. For example, a three-
dimensional parameter will have a vector with three pointers to TNamesEmpty, corresponding to
the dimension names of the first, the second and the third dimension. TNamesEmpty is a pure
virtual base class that provides a common interface to all deriving name classes. The [] operator
can be used to get the name as a string for an element with a certain index of a dimension. The
following classes derive from it:
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• TNamesStrings. This class is nothing more but wrapper of a vector of strings: it provides
functions to resize the vector and to add or set elements to it. The [] operator simply
returns the element of the vector with the corresponding index. This class is e.g. useful to
store sample names or names of covariates.

• TNamesIndices. This class stores only the offset for indices (by default 1, but can be set to
zero). The [] operator adds its argument to the offset and returns this result as a string.
This is the most simple class, and is typically used for simulating parameters (when there
are no specific names), or for parameters whose elements correspond to “categories”, e.g.
the event probabilities from a categorical distribution.

• TNamesIndicesAlphabetUpperCase. This class stores nothing and returns the (numeric)
index given to the [] operator as a alphabetic representation in upper case letters of that
index in Excel column name stype (i.e. 0 → A, 1 → B, . . . , 25 → Z, 26 → AA, 27 → AB,
51 → AZ, 52 → BA etc.)

• TNamesIndicesAlphabetLowerCase. This class stores nothing, but returns the (numeric)
index given to the [] operator as a alphabetic representation in lower case letters of that
index in Excel column name stype (i.e. 0 → a, 1 → b, . . . , 25 → z, 26 → aa, 27 → ab, 51
→ az, 52 → ba etc.)

• TNamesPositions. This class stores a pointer to TPositionsRaw, which is a class that
stores a vector of chunk names (as strings) and a vector of positions (as uint32_t). The
[] operator returns a string consisting of chunk name and position (concatenated by some
delimiter). This class is useful to store positional information, e.g. chromosome (as chunks)
and loci (positions).

The idea behind these classes is that the developer reads the observations and creates a name
class, depending on which kind of names need to be stored. The name class for each dimension
is then given over the function setDimensionName() to the observation. For example, when
reading a VCF-file containing genotype likelihoods, the developer will need to create and fill
three such name classes: one for the loci (i.e. TNamesPositions), one for the individuals (i.e.
TNamesStrings) and one for the genotype (i.e. TNamesIndices). The developer will then pass
them to the instance of the observation class storing these genotype likelihoods. After this, when
the storage of the DAG is initialized, the box specified on these data knows how to match its
parameter dimensions to the observation dimensions. For example, if one would specify a normal
mixed model directly on these genotype likelihoods, the hidden state would be per locus, and
would therefore retrieve the pointer to the loci-names from the observations below. When writing
to a file, each parameter will hence have the correct dimension names.

1.3 Observations

We define observations as the node(s) located at the bottom of the DAG that contain observed
data and that are not to be estimated. The class TObservation represents such an observation.
In its constructor, it gets an instance of TMultiDimensionalStorage that contains the data and
that is not modified afterwards.
TObservation is templated with its type, the number of dimensions and the type of the box
above. It inherits from TObservationBase, which is not templated and provides a pure virtual
interface. It further inherits from TNodeTyped.
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1.4 Parameters

We define parameters as the node(s) located on the upper levels of the DAG that are to be
inferred. The class TParameter represents such a parameter. Most importantly, TParameter has
functionalities to update itself with Metropolis-Hastings or Gibbs sampling.
TParameter is templated with typename Spec that specifies the compile-time features of the
parameter, as well as with the type of the box above. TParameter inherits from TParameterBase,
which is not templated and provides a pure virtual interface. It further inherits from TNodeTyped.

1.4.1 ParamSpec

This class specifies the compile-time features of a parameter. It is templated with the following
mandatory arguments:

• typename Type: The type that defines the interval of the parameter. Can be any of the
weak types from coretools, e.g. Unbounded, Probability, StrictlyPositive etc.

• Hash<size_t H>: A unique hash, generated from the name of the parameter. Used to
make each parameter uniquely identifiable.

• typename TypeBoxAbove: The full type of the box above the parameter.

ParamSpec is futher templated with a template parameter pack (...) that represent optional
arguments. Since all of these optional arguments have a unique type identifier, they can be given
in any order. If they are not specified, a default value is used.

• NumDim<size_t N>: The number of dimensions. Default is N = 1.

• typename Constraint: A constraint. Currently supported constraints are Unconstrained,
SumOne and LengthOne. Default is Unconstrained.

• Parallelize<MarkovOrder Order> Indicates if the update of the parameter can be par-
allelized, and with which Markov order. The template argument MarkovOrder is a enum
with possible values allDependent, allIndependent and different. If allDependent,
all elements in the vector all dependent on each other, such that parallelization is not pos-
sible. If allIndependent, all elements in the vector are independent of each other, such
that the update can be fully parallelized among the indices. If different, there are some
dependencies, but they are possibly only known at runtime and must then be provided in
the constructor of TParameter. Default is MarkovOrder::allDependent, resulting in no
parallelization.

• Weights<size_t N, UpdateWeights...W> Update weights, one per dimension. Currently
supported weights are regular, irregular, geometricUniform, log10StatePosterior
and powerStatePosterior. Default is W = regular for each dimension.

• RJMCMC<typename SpecModelParameter> Whether or not this parameter is an RJ-MCMC
parameter. A RJ-MCMC parameter is a parameter that is present or absent in a model,
depending on an indicator variable. Default is NoRJMCMC.

1.4.2 Parameter constraints

Certain parameter vectors have constraints on their values. We consider two cases. First, a unit

vector x = {x1, . . . , xI} has length one, i.e.
√∑I

i=1 x
2
i = 1. Second, a normalized vector sums

to one, i.e.
∑I

i=1 xi = 1.
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The elements of such parameters can not be updated independently in the MCMC without
violating the constraints. There are two options to update constrained parameters: joint and
pair-wise. In a joint update, all elements of the parameter are slightly modified and then re-
normalized to satisfy the constraint. In a pair-wise update, two elements are updated together
such that the constraint is still satisfied.
In the following paragraphs, we will discuss the different updating schemes.

1.4.2.1 Pairwise update of unit vectors

Let us denote by x = {x1, . . . , xI} a unit vector such that
√∑I

i=1 x
2
i = 1. Let us further denote

by i, j the two indices that are being updated. A pair-wise update of xi and xj will always result
in a valid unit vector x′ if

x2i + x2j = x′2i + x′2j . (3)

This condition can be solved by representing the problem as a circle where the radius is given by

rij(x) = x2i + x2j .

Every value on the circumference of this circle will satisfy the condition given by equation (3).
The proposal kernel to get a new value pij(x)

′ = (x′i, x
′
j) should be symmetric to avoid extra

computations in the Hastings ratio. A computationally cheap and symmetric proposal kernel is
to sample a random point along the tangent line to the circle and then normalize its norm to
rij(x) to project it on the circle.
The slope of the tangent line is given by the vector

sij(x) =

(
1
− xi

xj

)
,

which is normalized to unit length:

ŝij(x) =
sij(x)

||sij(x)||
We then propose a random jump α according to some proposal kernel and calculate the new
values pij(x)

′ as

pij(x)
′ = γ (pij(x) + αŝij(x)) ,

where γ is the normalizing ratio

γ =

√
||pij(x)||
||pij(x)′||

=

√
x2i + x2j
x′2i + x′2j

.

1.4.2.2 Pairwise update of normalized vector

Let us denote by x = {x1, . . . , xI} a vector with length one such that
∑I

i=1 xi = 1. Let us
further denote by i, j the two indices that are being updated. A pair-wise update of xi and xj
will always result in a valid vector x′ of length one if

xi + xj = x′i + x′j . (4)

Since xi and/or xj can be very small, we scale the proposal width by the sum xi+xj . Specifically,
our goal is to propose a jump u ∼ α

√
x2i + x2j where α ∼ N (0, σ) and

√
x2i + x2j is the length of
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the line constituted by all valid xi, xj combinations. Given jump u, the new values are simply
x′i = xi + u and x′j = xj − u. However, we need to make sure to mirror at the maximum given
by xi + xj . To achieve this, we re-formulate the above as:

x′i ∼ N (xi, σ
√
x2i + x2j ),

where we mirror at xi + xj . The new value of x′j is then simply given by x′j = xi + xj − x′i.

1.4.3 Update weights

In general, each element of a parameter is updated exactly once per MCMC iteration. However,
for certain parameters, we might have a guess about which elements are more relevant than others.
These elements should preferrably be updated more often, therefore allocating computational
resources to the elements that need fine-tuned updating. This ideally improves convergence of
the chain, allowing for shorter MCMCs.
The idea is to allocate update weights to each dimension of a parameter. For example, the first
dimension of a parameter is updated according to some specific weights, whereas the second
dimension is updated “regularly”, i.e. each element once. The enum UpdateWeights specifies all
possible weighting schemes. The parameters of the weighting schemes can be passed as vectors
of strings, if necessary, but there are sensible default values for all schemes.

1.4.3.1 UpdateWeights::regular

Returns equal weights for all indices.

1.4.3.2 UpdateWeights::irregular

Returns the (untransformed) weights provided by the developer. This is useful if some tool-
specific algorithm is used to calculate the weights.

1.4.3.3 UpdateWeights::geometricUniform

The input statistics are ranks ri for all indices i = 1, . . . , N , for instance obtained by the ranking
of a statistical test. The weight Qi of index i is then given by Qi =

3
10Ui +

7
10Gi, where Ui is a

discrete uniform distribution between 1 and n, and Gi = (1−p)ri−1p is the geometric distribution.
We determine the parameter p of the geometric distribution based on two probabilities t and x,
which specify the top fraction t of all elements that receive a fraction x of the effort in updating.
By default, t = 0.2 and x = 0.9, meaning that the top 20% elements receive 90% of the updating
effort. For n→∞, the parameter p can be computed as

p = 1− exp

(
log(1− x)

tN

)
,

by solving the cumulative distribution function for t elements for p. It can be shown that this
approximation is valid if n > 150. Figure 2A visualizes the weight distribution for different
values of t and x.

1.4.3.4 UpdateWeights::log10StatePosterior

The input statistics are state posterior probabilities pi for all indices i = 1, . . . , N . The weight
Qi of index i is then given by the absolute logarithmic value of the complement of the state
posterior probability:

Qi = − log10(1− pi),

11



0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

r

Q

t=0.2, r=0.9
t=0.3, r=0.9
t=0.2, r=0.3

(A)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

p
Q

(B)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

05
0.

00
15

0.
00

25

p

Q

m=0.1, β = 0.5
m=0.1, β = 1
m=0.1, β = 2

(C)

Figure 2: Update weights as a function of the input statistics. (A) The weights Q as a func-
tion of the input ranks r for UpdateWeights::geometricUniform. (B) The weights Q as a
function of the input state posterior probabilities p for UpdateWeights::log10StatePosterior.
(C) The weights Q as a function of the input state posterior probabilities p for Up-
dateWeights::powerStatePosterior.

where we cap pi at 0.01 and 0.99, respectively. The Qi are normalized such that they sum to
one,

∑
iQi = 1. With this weight distribution, indices with high state posterior probabilities

will receive higher update weights (Figure 2B).

1.4.3.5 UpdateWeights::powerStatePosterior

The input statistics are state posterior probabilities pi for all indices i = 1, . . . , N . The weight
Qi of index i is then given by a power function with the state posterior probability as a base:

Qi = m+ (1−m)pβi ,

where m is an intercept in [0,1] and β is the slope (Figure 2C). If β = 1, a linear function results.
If β < 1, a concave function with a flat slope results that levels off for pi → 1. If β > 1, a convex
function with a steep slope results. By default, β = 0.5 and m = 0.1. The Qi are normalized
such that they sum to one,

∑
iQi = 1.

1.4.3.6 TUpdateWeights

For each dimension of a parameter, an enum UpdateWeights has to be specified at compile
time. The update weight of a (multi-dimensional) index is given by the product of the update
weights for all dimensions: Qi = Q{j1,...,JD} =

∏D
d=1Qjd , where {j1, . . . , JD} corresponds to

the subscripts of the linear index i in all d = 1, . . . , D dimensions. The class TUpdateWeights
provides several functions that calculate those linear weights and calculate the cumulative of the
linear weights, which are ultimately needed for choosing an index to update.

1.4.4 Choosing indices to update

As discussed previously, a parameter can be updated regularly, i.e. each index exactly once per
iteration, or else according to update weights. In addition, constraints on a parameter dimension
may require special update types, such as an update in pairs or a joint update of the entire
dimension. Finally, all update functions should be safe to parallelize, i.e. one index should never
be updated by two threads at the same time. To achieve this, multiple classes handle each
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specific combination of cases. Each class implements the function numUpdates() that specifies
the number of updates to perform per iteration. In addition, each class implements the function
pick() that takes the current iteration and thread as arguments, and returns an instance of
TRange that specifies one or multiple indices to updated.

1.4.4.1 TUpdateSingle

This class handles updates when there are no constraints and when UpdateWeights::regular
is used for all dimensions. In this case, each index should be updated exactly once per iter-
ation. The initialization function of this class takes an instance of TMarkovOrder. This class
TMarkovOrder is described in section 1.4.5 and defines a range of parameter indices that can be
updated independently and thus can be parallelized. There are possibly multiple instances of
TUpdateSingle. Each instance will loop over the indices within its internal range. The function
pick() then transform the internal index to the index of the full parameter space as described
in 1.4.5.

1.4.4.2 TUpdateSingleWeighted

This class handles updates when there are no constraints and when at least one dimension
uses non-regular update weights. The class randomly selects an index to update based on the
cumulative update weights. If the update is parallelized, we need to make sure that there is no
race conditions, i.e. that one index is never updated by two threads simultaneously. To achieve
this, we assign a range of indices to one specific thread t = 1, . . . , T by splitting the vector of
cumulative weights into T vectors, one per thread. The function pick() then draws an index
from the cumulative weights of the current thread.
To split the vector, we use a simple splitting scheme that aims at assigning approx. the same
cumulative weight to each thread, but making sure that each thread gets at least one index to
update. We note that this might not result into the exact weights. For example, if there are three
elements with the cumulative weights {0.1, 0.2, 1.0} and three threads are used for updating, each
element will be assigned to one thread and updated equally often. However, for more indices and
a less extreme weight distribution, this becomes less of an issue. Ultimately, the update weights
are rough estimates too and should not be problematic if a parameter is updated a bit more or
less than the update weights predict.
In addition, as in class TUpdateSingle, the initialization function takes an instance of TMarkovOrder
to define a subset of indices to update. The weights given to the class are then subsetted to the
indices from this sequence.

1.4.4.3 TUpdatePair

This class handles updates when UpdateWeights::regular is used for all dimensions and when
there are constraints such that parameters must be updated in pairs. The template argument
AlongDim specifies the dimension along which the constraint holds. The class TIndexSampler
is used to generate random index pairs with the use of a single random number. This random
number corresponds to one random position i and it pairs up with index j = i + 1. From this,
all other pairs are created by shifting i′ = i− 1 and j′ = j +1 repetitively, where the indices are
set to N − 1 when crossing zero and to zero when crossing N − 1. The pairwise indices thus run
along one dimension, which represents a one-dimensional slice. In the case of D dimensions with
length Nd each, there are K =

∏D
d̸=AlongDimNd such slices. The class TIndexSamplerMultiDim

transforms a linear index in the parameter space into the index relevant for the pairwise index
sampler and then back-transforms the index of the pair, corresponding to the index in AlongDim,
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into two linear indices in the parameter space. This is thread-safe, since each parameter index
occurs at most once within all possible index pairs.

1.4.4.4 TUpdatePairWeighted

This class handles updates when at least one dimension uses non-regular update weights and when
there are constraints such that parameters must be updated in pairs. The template argument
AlongDim specifies the dimension along which the constraint holds. In this case, we can not
simply assign indices to threads as before, since then certain indices will never be assigned to
the same pair. To prevent race conditions, we store all the indices that are currently updated
in a vector, and only allow a thread to update an index if it is not present in this vector. This
section of the code is marked with pragma critical such that only one thread can access it at
a time. The first index of a pair is drawn at random from the cumulative update weights. The
second index of the pair is then also drawn at random from the cumulative update weights, but
ensuring that i) it is located in the same slice as the first index and ii) it is not the same as the
first index. To achieve this, we re-scale the cumulative weights in the dimension AlongDim by
excluding the weight of the first index, and drawing at random from these weights.

1.4.4.5 TUpdateJoint

This class handles updates when UpdateWeights::regular is used for all dimensions and when
there are constraints such that all parameters of a certain dimension, given by the template
argument AlongDim, must be updated jointly. In this case, each one-dimensional slice along
AlongDim should be updated exactly once per iteration. Note that in this case we don’t allow
for update weights.

1.4.5 Parallelization of updates

When parameter indices can be updated independently, their update can be parallelized. The
template argument MarkovOrder of the parameter specification is used to define the dependency
assumptions. The three possible enums allDependent, allIndependent and different corre-
spond to no, full and partial parallelization, respectively.
For the different case, the Markov order must be given at runtime to the constructor of
TParameter. In general, a Markov order of X means that every (X + 1)th element can be
updated independently. For example, a Markov order of zero corresponds to full independence of
elements as every element can be updated independently. A Markov order of one corresponds to
the classic HMM case where every second element can be updated independently, as the update
of one index only depends on the direct neighbours. The largest possible Markov order is the
size of the parameter minus one, which corresponds to full dependency.
This concept can be generalized to multiple dimensions where each dimension is assigned a
Markov order.
Having specified the Markov order, the challenge is then to parallelize the loop over indices
while respecting the Markov order. To simplify the problem, we currently only allow for par-
allelization in unconstrained parameters, i.e. if either of the classes TUpdateSingle or TUp-
dateSingleWeighted are used to pick indices to update. We then define a vector of pickers that
corresponds to multiple instances of these two classes. Each picker is assigned to a subset of all
parameter indices that can be fully parallelized. In the function update() of TParameter, we
first loop over all pickers, which is never parallelized. We then loop over all indices within one
picker, which is fully parallelized using OpenMP.
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Figure 3: Two examples of Markov orders for a two-dimensional parameter with seven rows and
five columns. The colors represent the index pickers, and the numbers represent the index within
the index picker. (A): Markov order = (1, 2) results in six index pickers of different dimensions.
(B): Markov order = (6, 0) results in seven index pickers, one for each row.

The class TMarkovOrder manages the compression of full indices to picker indices and their
expansion back to full indices. Let us define by m = (m1, . . . ,mD) the D-dimensional Markov
order and by f = (f1, . . . , fD) the dimensions of the parameter.
The number of pickers P is given by

P =

D∏
d=1

nd,

where nd = md + 1 denotes the Markov order md increased by one. Each picker p = 1, . . . , P is
then assigned a starting value. This is obtained by calculating the D-dimensional coordinates sp
of the linear index p in the space spanned by n = (n1, . . . , nD) as explained in section 1.2.2.1.
This is visualized in Figure 3. The internal dimensions qp = (qp1, . . . , qpD) of each picker p are
then given by

qpd =

⌈
fd − spd

nd

⌉
,

for each dimension d. This simply corresponds to the total length of the dimension when starting
at spd, divided by the step size nd, and then rounding up.
To transform internal index i of picker p to the index j in the full parameter space, we first
transform the linear index i to the D-dimensional coordinates k = (k1, . . . , kD) in the space
spanned by qp. We then expand these coordinates to the full space using

k′d = spd + kd ∗ nd, (5)

for each dimension d. This simply corresponds to multiplying the index kd by the step size nd

and adding the starting value spd to it. The linear index j is then obtained by linearizing the
coordinates k′ using (2).
We consider the special case that all elements are independent. In this case, there is a single
picker and the equation (5) simplifies j = i.
Finally, it would be quite inefficient if all indices had their own picker when all indices are
dependent, i.e. if the enum allDependent is used (which is the default). In this case, class
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TParameter sets the Markov order to all zeros, which results in a single picker. Using compile-
time statements, it is ensured that the number of threads for parallelization is restricted to one,
which makes the use of this single picker safe to use.

1.4.6 Proposing new values

We have now seen the different mechanisms on how indices are selected for an update. In the
following section, we will describe on how the update is effectively performed for the selected
indices. The base class for this is TUpdateTypedBase that manages the Metropolis-Hastings
update of the parameter value. It holds a pointer to a proposal kernel that proposes a new value
based on some proposal width.
Class TUpdateTypedBase is templated and its type matches the type of the parameter. The
proposal widths, however, are of the underlying type (and not of the type itself). The reason
is that for certain custom types, e.g. for strictly negative values, the proposal width could only
hold negative values - but this is clearly not useful, since we would have to implement a special
proposing scheme for such types.
After each burnin, TUpdateTypedBase is responsible for:

1. Adjust the jump size j by calculating

j′ = ju,

with
u =

(
(a+ 1)

r(T + 1)

)
(6)

where a is the number of accepted updates, T is the number of total updates and r is
the ideal acceptance rate. We add one to avoid issues if the parameter has never been
accepted. By default, r is set to 0.44, since this appears to be the optimal acceptance
rate for the Metropolis-within-Gibbs algorithm where a single coordinate is updated at a
time (Brooks et al., 2011). However, r can be overridden by providing the command-line
argument accRate.

2. Clear all counters (the number of accepted and total updates).

Its derived classes implement different options on how the proposal widths are handled.

1.4.6.1 TUpdateShared

The class TUpdateShared inherits from TUpdateTypedBase and uses the same proposal width
for all indices of parameters. This is useful if the parameter values are approx. the same order
of magnitude.

1.4.6.2 TUpdateUnique

The class TUpdateUniqueRegular inherits from TUpdateTypedBase and uses a proposal width
that is specific to each parameter index. This is useful if the parameter values are of different
orders of magnitude, such that using the same proposal width for all will result in poor mixing
for some elements. The class is templated with Regular that indicates if the update weights are
all regular. If all weights are regular, each index is updated equally often, so the total number of
updates can be a single number. If the weights are not regular, indices might be updated more
often than others, therefore, the total counter of updates must run per index.
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1.4.7 TPropKernelBase

The actual proposal of a new value uses a certain proposal distribution. This is handled by the
class TPropKernelBase and its derived classes.
Proposal kernels 1) propose a value j according to some distribution, 2) add it to x, and 3)
mirror. All proposal kernels must restrict the value of j, in order to prevent too large jumps that
could cause overshooting or numerical issues. We therefore make sure that the proposal width
δ is always smaller than half of the value’s range r, δ ≤ r

2 . All of the following proposal kernels
except TPropKernelScalingLogNormal are symmetric and cancel out in the Hastings ratio.

1.4.7.1 TPropKernelUniform

Uniform proposal kernel where j ∼ U(δ). A jump is obtained with j = Rδ − δ
2 , where R is a

random uniform number between 0 and 1. This is enabled for floating point types.

1.4.7.2 TPropKernelNormal

Normal proposal kernel where j ∼ N (0, δ2). A jump is obtained by drawing random normal
values inside a while-loop until − r

2 ≤ j ≤ r
2 . This is enabled for floating point types.

1.4.7.3 TPropKernelRandomInteger

Integer proposal kernel with random sampling. The new value is randomly sampled from the
entire range of the type. This class thus does not have a proposal width that is adjusted. It is
designed for integral types with small ranges (e.g. categorical variables) where a proposal width
is not meaningful (e.g. a update 0 → 1 should be equally likely as an update 0 → 10). Per
default, this proposal kernel is used for types with a maximum value smaller or equal than 10.

1.4.7.4 TPropKernelInteger

Integer proposal kernel where j ∼ U(−δ, δ). A jump is obtained by randomly picking any value
in the range 0, 1, 2, . . . , 2δ. The values are then shifted by δ in order to be symmetric. If
j = δ is picked, we draw again, since this would result in no update after shifting. If mirroring
results in the same value as before, we also draw again. Note that this update has a bad
performance for integers with small ranges (e.g. categorical variables), since it requires mirroring
which might be quite an overhead for small ranges. For these cases, we instead recommend
TPropKernelRandomInteger.

1.4.7.5 TPropKernelBool

Boolean proposal kernel: x′ = 1 − x. We always propose the opposite value for bools, so jump
sizes j do not matter. This is enabled for bools only.

1.4.7.6 TPropKernelScalingLogNormal

A special log-normal proposal kernel that scales with magnitude of value. In general, a desired
feature of a proposal kernel is that its width scales with the value x of the parameter that is
updated: If x is very small, the proposal width should also be very small. If x is very large, the
proposal width should also be very large. However, tuning the proposal width until it matches
the value of x might take quite a few iterations, especially if the values of x are very large.
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A typical solution for this is to update x in the log-space. However, updating x in the log-
space is sometimes unpractical, as this naturally imposes a exponential prior with rate 1 on the
parameter, which is sometimes too strong.
We therefore implemented a proposal kernel that scales with the value of x. We obtain a new
value x′ by multiplying a jump value j:

x′ = jx,

where j follows a log-normal distribution: j ∼ Lognormal(0, σ2). In fact, one can show that
x′ = jx ∼ Lognormal(log x, σ2).
Unfortunately, this proposal kernel is not reversible:

P(x′|x) = P(x|x′)
1

x′
√
2πσ2

exp

(
−(log x′ − log x)2

2σ2

)
=

1

x
√
2πσ2

exp

(
−(log x− log x′)2

2σ2

)
x = x′

The ratio of the proposal kernels does not cancel out in the Hastings ratio. We need to correct
the Hastings ratio with:

h =
P(x|x′)
P(x′|x)

=
x′

x
.

It is important to note that this proposal kernel does only make sense for strictly positive or
strictly negative values, since a sign change is not possible (j will always be positive, therefore
x′ will always keep the sign of x).
Since the proposal kernel is not reversible, using it to infer bounded parameters by mirroring
at those boundaries is also more complicated. Mirroring for reversible proposal kernels is valid
because

P(x|x′) + P(2a− x|x′) + P(2b− x|x′) = P(x′|x) + P(2a− x′|x) + P(2b− x′|x)

In our case, however, the distances to the proposed values are not the same. We could correct
for this in the Hastings ratio, too, but we decided not to implement this, since it was not needed
in our use-case. The proposal kernel is anyways automatically “mirrorred” at zero, as explained
above.
The procedure to adjust the proposal width is also different than for the standard proposal
kernels. The variance of j is given by the variance of a log-normal distribution with µ = 0:

Var(j) =
(
eσ

2 − 1
)
eσ

2
=
(
eσ

2
)2
− eσ

2
.

Our goal is to adjust the variance of the log-normal distribution, σ2, according to the factor u
from equation 6:

u

((
eσ

2
)2
− eσ

2

)
=
(
eσ

2′
)2
− eσ

2′
.

Solving for σ2′ results in:

σ2′ = log
1

2
+ log

(
1 +

√
1 + 4u

(
e2σ2 − eσ2

))
.
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1.4.8 TMirror

Let us have a closer look on how we make sure that the proposed values are inside a specific
interval. All types in the framework are weak types from coretools that are defined on a specific
interval. By default, this interval is given by the numeric limits of the underlying type. A couple
of classes exist that implement the most common non-default intervals, such as positive, strictly
positive, the open interval between 0 and 1, the closed interval between 0 and 1, etc. All of these
types can return their minimum and maximum value, denoted here by a and b, respectively.
In its most basic form, mirroring works like this:

x̃ = x+ j; x′ =


x̃ if a ≤ x̃ ≤ b

2a− x̃ if x̃ < a

2b− x̃ if x̃ > b

, (7)

where x̃ is an initial proposal, and x′ is the value returned from the mirroring function. This only
holds if 2a− x̃ < b and 2b− x̃ > a in all cases, so we need to make sure that x̃ is not too large
(i.e. by restricting the maximal jump value j to half of the range). However there are different
challenges associated with mirroring. A first challenge for both signed and unsigned types arises
from the fact that we will run into numeric problems when using equation (7) for boundaries
where a and/or b are given by the numeric limits of that type. If we first add x + j and then
mirror, we might have crossed the numeric limits already, but never notice it, as numeric overflow
results in undefined behaviour. Hence, we must first check if we cross the boundaries, and only
after do the addition. Note that the following rules apply to both default and non-default min
and max.
We exceed the minimum if

−j > x− a, (8)

because the distance between the minimum and the current value is smaller than the jump size.
If this is the case, we need to mirror, using the logic of (7). However, calculating 2a might also
result in numeric overflow, so we use the un-simplified equation a− j− (x−a) in order to mirror.
The same logic applies for mirroring at the maximum b. We exceed the maximum if

j > b− x, (9)

because the distance between the maximum and the current value is smaller than the jump size.
We then mirror with b− (j − (b− x)), as 2b would again result in numeric overflow.
For signed types, an additional challenge arises from the fact that adding/subtracting value with
different signs can cause numeric overflows, since the value to store this range might be larger
than the numeric maximum of the type. This issue is addressed in class TMirrorSigned, a class
for mirroring signed types. If x ≥ 0 and a < 0, we can safely compute x− a if

x ≤ a− numeric_min.

If this is not the case, we do not need to care about mirroring anyways, as we restrict j to half
of the range, and will therefore never make such a big jump. For mirroring at the maximum, we
would again run into numeric overflow if b≫ 0 (e.g. the numeric maximum) and x < 0. We can
safely compute b− x if

−x ≤ numeric_max− b.

If this is not the case, we don’t need to care about mirroring as well.
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For unsigned types (e.g. uint8_t, uint16_t etc.), we do not have these range-overflow issues, as
the numeric minimum is always 0. Therefore, class TMirrorUnsigned provides an implementa-
tion for unsigned types. The challenge for unsigned types is that we can not directly pass the
jump size as an unsigned integer to the function, since unsigned values can’t be negative, and if
we passed j as an unsigned type, we would always increase x - clearly not what we want. We
therefore pass both the jump size as well as the shift to the function for unsigned types (both
as unsigned integers), and calculate whether we will jump to the right or the left and mirroring
accordingly.

A last caveat are integer types. If we applied the above procedure to an integer type, we would
need to correct for a non-symmetric proposal kernel in the Hastings ratio because of mirroring. As
an example, consider an integral type with an interval [0, 2] with possible jumps {−2,−1, 0, 1, 2}.
There are two possibilities to propose the update 0 → 1: Either by taking jump 1 or by taking
jump −1 and then mirroring at a = 0. However, there is only one possibility to propose the
reversed update 1→ 0, as this is only possible by taking jump −1, but not by mirroring.
We solve this issue by mirroring at a− 1

2 and at b+ 1
2 instead of mirroring at a and b. This results

in a symmetric, reversible proposal kernel. Since 2
(
a− 1

2

)
− x̃ = 2a − x̃ − 1 and analogously

2
(
b+ 1

2

)
− x̃ = 2b− x̃+ 1, we can simply subtract or add one after mirroring at the left or the

right boundary, respectively.

1.4.9 RJ-MCMC

Reversible-jump MCMC (RJ-MCMC, Green (1995)) allows for MCMC updates of parameters
that differ in dimensionality. In such cases, the Hastings ratio must account for the change in
dimensionality as comparing densities of parameters of different dimensions is meaningless. This
is relevant in the case of model choice, e.g. in mixture models. We refer to Wegmann and
Leuenberger (2019) for a general description of RJ-MCMC. In stattools, we currently allow
for a mixed model that consists of two nested submodels M1 ⊂ M2 where both models share
the parameters θ but modelM2 has additional parameters σ. To compensate for the difference
in dimensionality, we use a random vector u with density π(u) and of the same dimension as
σ. For the diffeomorphism Φ12 we choose the identity map (θ,u) 7→ (θ,σ = u) whose Jacobian
determinant is 1 and thus cancels out in the Hastings ratio. The simplified Hastings ratio is then
given by

h(θ → (θ,σ)) = min

{
1,

P(D|θ,σ)P(σ)P(M2)q21
P(D|θ)P(M1)π(σ)q12

}
for the jump fromM1 toM2 and

h((θ,σ)→ θ) = min

{
1,

P(D|θ)P(M1)π(σ)q12
P(D|θ,σ)P(σ)P(M2)q21

}
for the reverse jump. Here, q12 denotes the proposal probability for the jump from M1 to M2,
and q21 denotes the reverse probability. We fix q12 = 1, meaning that we will always propose a
jumpM1 →M2. The reverse probability is set to q21 = 0.1 by default (and can be changed in the
TParameterDefinition), meaning that in 10% of the cases we will propose a jumpM2 →M1.
In all other cases, we will remain in model M2 and perform a standard Metropolis-Hastings
update of parameter σ instead. We generally recommend to set q21 to rather small values, as
this choice allows for a sampling rate of σ that is comparable to that of other parameters. If
q21 was set to high values most updates would correspond to a model jump, and the MCMC
would need to run much longer in order to generate sufficiently many posterior samples of σ for
parameters where the M2 is preferred. q21 = 0.1 is an arbitrary choice but performed well in
our application of RJ-MCMC.
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The RJ-MCMC update is implemented as follows. For each RJ-MCMC parameter σi with
i = 1, . . . , I there exists an indicator variable mi that is one if σi is in model M2 and zero
otherwise. Both parameters σ = (σ1, . . . , σI) and m = (m1, . . . ,mI) are instances of TParam-
eter. In the parameter specification ParamSpec of σ, the user must indicate that this is an
RJ-MCMC variable with the parameter specification of m as a template argument. In addi-
tion, the proposal distribution for proposing new values of σ after jumping from M1 → M2

must be specified. This can be any distribution from coretools::probdist. For example, for
a σ that is bounded in the interval (0, 1), the ParamSpec for σ should specify RJMCMC<SpecM,
coretools::probdist::TBetaDistr>. Note that the model parameter m does not need the
RJ-MCMC specification in ParamSpec.
The function calculateLLRatio(SpecSigma) for σ is then used to calculate the likelihood ratio
of the standard Metropolis-Hastings update in case of no jump between submodels.
The function calculateLLRatio(SpecM) for m is used to calculate the likelihood ratio of the
jump between models. The user needs to figure out which model jump was performed. The jump
M2 →M1 would result in m->value(i) == 0, meaning that the likelihood ratio P(D|θ)

P(D|θ,σ) must
be calculated. Analogously, the jumpM10→M2 would result in m->value(i) == 1, meaning
that the likelihood ratio P(D|θ,σ)

P(D|θ) must be calculated. The other parts of the RJ-MCMC Hastings
ratio are evaluated internally in stattools.

1.5 Prior distributions

In a Bayesian setting, every parameter is assumed to follow a prior distribution. The prior
distribution reflects the knowledge about the parameter before any observations are taken into
account. The prior can be an uniform distribution, giving equal weight to every value, or some-
thing more sophisticated like a normal, exponential or beta distribution. The latter distributions
are parametrized with prior parameters (e.g. mean and variance for the normal distribution).
The relationship between an observation and a parameter is formally called the likelihood. How-
ever, from a programming point of view, the implementation of likelihood and prior is the same,
as they both define a probabilistic relationship. The following classes, although named “prior”,
equally apply to likelihood functions if they relate an observation to a parameter.
In stattools, the prior distributions are implemented in the classes deriving from prior::TBase.
A couple of prior classes have fixed prior parameters that are not inferred. These all include the
name “Fixed”. Other prior classes infer their prior parameters (and are hence called “Inferred”).
For efficient calculations, the prior classes must know 1) the type and the number of dimensions
of the parameter they are defined on, and 2) the full parameter specification (ParamSpec) of
all prior parameters. The number of templates is thus specific for each prior class. There are
certain restrictions on these parameter types, since most priors are only valid on specific intervals.
For example, for prior::TNormalInferred mentioned before, Type and SpecMean::value_type
must be unconstrained floating point numbers (constraints are not allowed, since this would
represent a truncated normal prior that needs to normalize its densities). SpecVar::value_-
type on the other hand must be a strictly positive floating point number. To enforce these
conditions, the prior classes are all templated with static asserts, such that compile errors result
if the conditions are not met.

1.5.0.1 Initialization

Prior classes that have inferred prior parameters expect pointers for each such parameter in the
constructor. Priors with fixed prior parameters accept a string that contains the values for the
prior parameters (seperated by commas). This is handy since users are allowed to change these
values over the command-line or via files.
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A prior that manages inferred prior parameters usually has certain expectations on the dimen-
sionality of these prior parameters. For instance, a normal prior knows that the parameter for
the mean must be a single element, whereas a multivariate normal prior knows that the pa-
rameter for the mean must be D-dimensional. The function initialize() of a prior goes over
all parameters on which the prior is defined and extracts the necessary information about their
dimensions (e.g. the multivariate normal prior will derive the number of dimensions D from the
parameter below). The function then calls initStorage() of each prior parameter, and passes a
vector of dimensions, for example {D} to it. The parameter then allocates the requested memory.
An important member of class TPriorBase is a vector of pointers to the data of the parameters
and observations it is defined on (member variable _storageBelow). Usually, this vector will
have only one element, as most parameters have their own prior. However, there might be cases
where multiple parameters/observations share the same prior and where the prior parameters
should be leared based on all of these parameters/observations.

1.5.1 Prior ratios

An important part of a prior is the calculation of prior probabilities. The Hastings ratio for an
update of parameter x→ x′ is calculated as

hx = min

(
1,

P(D|x′)P(x′)q(x′, x)
P(D|x)P(x)q(x, x′)

)
.

Here, P(D|x) is the likelihood, P(x) is the prior probability, and q(x, x′) is the proposal kernel.
The prior ratio px, which is the focus of this section, is therefore part of the full Hastings ratio
and defined as:

px =
P(x′)
P(x)

.

As these probabilities can become very small, we usually calculate the log prior ratio:

log px = logP(x′)− logP(x).

Here, the prior density P(x) obviously depends on the prior distribution chosen. The interface
to get logP(x′), logP(x) and log px however is the same for all prior distributions:

• getDensity(const Storage & x, size_t i): Calculates P(x′i).

• getLogDensity(const Storage & x, size_t i): Calculates logP(x′i).

• getLogDensityRatio(const UpdatedStorage & x, size_t i): Calculates log pxi .

The functions getDensity() and getLogDensityRatio() are pure virtual and must be overrid-
den by any prior inheriting from TPriorBase. The function getLogDensity() by default just
calculates log(getDensity()), but can also be overridden if necessary.
Multiple classes inherit from TPriorBase and implement specific prior distributions. We will
now discuss those in more detail.

1.5.2 Priors with fixed parameters

The following paragraphs describe prior distributions where the prior parameters are fixed, i.e.
they are not inferred in the MCMC.
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1.5.2.1 prior::TUniformFixed

A uniform prior does not have any parameters, except for a minimal and maximal value for
which the log density is defined. These values are directly obtained from the underlying type.
The log prior density of a value x with minimum a and maximum b is:

logP(x|a, b) = log

(
1

b− a

)
.

The log prior ratio is zero, as every value is equally likely:

log px = log

(
P(x′|a, b)
P(x|a, b)

)
= 0.

1.5.2.2 prior::TNormalFixed

A normal distribution is parametrized by:

• mean µ (_mean).

• variance σ2 (_var), where σ2 > 0.

The log prior density of a value x is:

logP(x|µ, σ2) = −1

2
log(σ2)− 1

2
log(2π)− 1

2σ2
(x− µ)2. (10)

The log prior ratio is:

log px = log

(
P(x′|µ, σ2)

P(x|µ, σ2)

)
=

1

2σ2

(
(x− µ)2 − (x′ − µ)2

)
. (11)

1.5.2.3 prior::TExponentialFixed

An exponential distribution is parametrized by:

• rate λ (_lambda), where λ > 0.

The log prior density of a value x is:

logP(x|λ) = log(λ)− λx. (12)

The log prior ratio is:

log px = log

(
P(x′|λ)
P(x|λ)

)
= λ(x− x′). (13)

1.5.2.4 prior::TGammaFixed

An gamma distribution is parametrized by:

• shape α (_alpha), where α > 0.

• rate β (_beta), where β > 0.

The log prior density of a value x is:

logP(x|α, β) = α log(β)− log Γ(α) + (α− 1) log(x)− βx. (14)

The log prior ratio is:

log px = log

(
P(x′|α, β)
P(x|α, β)

)
= (α− 1) log

(
x′

x

)
+ β(x− x′). (15)
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1.5.2.5 prior::TChisqFixed

A chi-square distribution is parametrized by

• the degrees of freedom k (_k), where k > 0.

The log prior density of a value x is:

logP(x|k) = −k

2
log 2− ln Γ

(
k

2

)
+

(
k

2
− 1

)
log x− x

2
. (16)

The log prior ratio is:

log px = log

(
P(x′|k)
P(x|k)

)
=

(
k

2
− 1

)
(log x′ − log x) +

x− x′

2
. (17)

1.5.2.6 prior::TMultivariateChisqFixed

In this prior, x is a vector of N values, and on every element xi a chisq prior with a different
degree of freedom ki is specified. A classic example is that the degrees of freedom are given by
the index i with N + 1 − i, such that the first element in the vector has N degrees of freedom,
the second has N − 1, . . . , and the last has 1 degree of freedom.
Hence, this prior is parametrized by

• A vector of degrees of freedom, k (_k), where all ki > 0.

The log prior density and ratio of a value x are given by (16) and (17), with the only difference
that k depends on the index i.

1.5.2.7 prior::TMultivariateChiFixed

In this prior, x is a vector of N values, and on every element xi a chi prior with a different
degree of freedom ki is specified. A classic example is that the degrees of freedom are given by
the index i with N + 1 − i, such that the first element in the vector has N degrees of freedom,
the second has N − 1, . . . , and the last has 1 degree of freedom.
Hence, this prior is parametrized by

• A vector of degrees of freedom, k (_k), where all ki > 0.

The log prior density of a value x is:

logP(x|k) = −
(
k

2
− 1

)
log 2− ln Γ

(
k

2

)
+ (k − 1) log x− x2

2
.

The log prior ratio is:

log px = log

(
P(x′|k)
P(x|k)

)
= (k − 1) (log x′ − log x) +

x2 − x′2

2
.

1.5.2.8 prior::TBetaFixed

A beta distribution is parametrized by

• shape α (_alpha), where α > 0.

• shape β (_beta), where β > 0.
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The log prior density of a value x is:

logP(x|α, β) = lnΓ(α+ β)− ln Γ(α)− ln Γ(β) + (α− 1) log x+ (β − 1) log(1− x), (18)

where ln Γ is the log-gamma function. The log prior ratio is:

log px = log

(
P(x′|α, β)
P(x|α, β)

)
= (α− 1)(log x′ − log x) + (β − 1)(log(1− x′)− log(1− x)). (19)

1.5.2.9 prior::TBinomialFixed

A binomial distribution is parametrized by

• the success probability for each trial, p (_p), where 0 < p < 1.

The data on which a binomial prior is defined must be 2-dimensional, as we allow for different
number of trials n. The function setFixedPriorParameters() checks if 1) the data is one-
dimensional with a total size of 2 (n and k) or if 2) the data is two-dimensional with the number
of columns (the second dimension) being exactly two (n and k). If neither of these is the case,
an error is thrown.
The log prior density of a value k is:

logP(k|n, p) = log

(
n

k

)
+ k log p+ (n− k) log(1− p). (20)

The log prior ratio is:

log pk = log

(
P(k′|n, p)
P(k|n, p)

)
= log

(
n

k′

)
− log

(
n

k

)
+ (k′ − k) log p+ (k − k′) log(1− p). (21)

1.5.2.10 prior::TNegativeBinomialFixed

The negative binomial distribution models the number of failures which occur in a sequence of
Bernoulli trials before a target number of successes is reached. Note that there exist different
formulations for this distribution, as failure and success are interchangable. We implemented
the formulation that is used in R and thus assume that the number of successes n until the
experiment is stopped is non-random (observed), while the number of failures x is a parameter
that can potentially be updated, analogous to k from the binomial distribution.
An negative binomial distribution is parametrized by:

• the success probability for each trial, p (_p), where 0 < p < 1.

The data on which a negative binomial prior is defined must be 2-dimensional, as we allow for
different number of trials n. The function setFixedPriorParameters() checks if 1) the data is
one-dimensional with a total size of 2 (n and x) or if 2) the data is two-dimensional with the
number of columns (the second dimension) being exactly two (n and x). If neither of these is
the case, an error is thrown.
The log prior density of a value x is:

logP(x|p) = log Γ(x+ n)− log Γ(n)− log(x!) + x log(1− p) + n log(p) (22)

The log prior ratio is:

log px = log

(
P(x′|p)
P(x|p)

)
= log Γ(x′+n)−log Γ(x+n)+log(x!)−log(x′!)+(x′−x) log(1−p); (23)

Here, the term log(x!)−log(x′!) can be simplified to a falling factorial
∑n−1

k=0(y−k) with n = |x′−x|
and y = max(x′, x). This term is added if x > x′ and substracted if x ≤ x′.

25



1.5.2.11 prior::TBernoulliFixed

A Bernoulli distribution parametrized by

• probability π (_pi), where 0 < π < 1.

The log prior density of a value x is:

logP(x|π) = x log π + (1− x) log(1− π). (24)

The log prior ratio is:

log px = log

(
P(x′|π)
P(x|π)

)
= (x′ − x) log π + (x− x′) log(1− π). (25)

1.5.2.12 prior::TPoissonFixed

A Poisson distribution parametrized by

• rate λ (_lambda), where λ > 0.

The log prior density of a value x is:

logP(x|λ) = x log(λ)− λ− log(x!). (26)

The log prior ratio is:

log px = log

(
P(x′|λ)
P(x|λ)

)
= (x′ − x) log(λ) + log(x!)− log(x′!). (27)

Here, the term log(x!)−log(x′!) can be simplified to a falling factorial
∑n−1

k=0(y−k) with n = |x′−x|
and y = max(x′, x). This term is added if x > x′ and substracted if x ≤ x′.

1.5.2.13 prior::TDirichletFixed

A Dirichlet distribution parametrized by

• a vector of K concentration parameters α, where all αk > 0.

The log prior density of values x is:

logP(x|α) = − logB(α) +
K∑
k=1

(αk − 1) log xk, (28)

where the normalizing constant B(α) is a Beta function given by

B(α) =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1 αk)
.

The log prior ratio is:

log px = log

(
P(x′|α)

P(x|α)

)
=

K∑
k=1

(αk − 1) log

(
x′k
xk

)
. (29)
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D

µ σ

TNormalFixed TExponentialFixed

TNormalInferred

Figure 4: Example DAG. The prior on data D is a normal distribution where the parameters µ
and σ are inferred. D is an instance of TObservation, and µ and σ are instances of TParameter.
The prior distributions on µ and σ are fixed, since the prior parameters of these distributions
can not be estimated from a single value. All existing pointers are shown with directed edges.

1.5.3 Priors with inferred prior parameters

The following paragraphs describe prior distributions where the prior parameters are inferred.
In inferred prior classes, the prior parameters are pointers to TParameter. A simple example is
shown in Figure 4, where a TObservation D has a pointer to a prior::TNormalInferred. This
prior::TNormalInferred has a pointer to both µ and σ, which are of type TParameter. Each
prior parameter, i.e. µ and σ, has a pointer to a fixed prior distribution. In addition, each prior
parameters also has a pointer to the box around them, i.e. to prior::TNormalInferred.
While in most cases a prior is solely defined on one parameter or observation x, it is possible that
it is defined on a vector of P parameters. In such cases, we need to account for all parameters xp

when updating the prior parameters. In the following paragraphs, we will write out the likelihood
ratios for the single-parameter case only. The likelihood ratio for a prior parameter θ naturally
extends to

lθ =
P∑

p=1

log

(
P(xp|θ′)
P(xp|θ)

)
.

for the multi-parameter case. The loop over all nodes below is hidden in prior::TPriorBase
and must not be considered by the developer.

1.5.3.1 prior::TNormalInferred

A normal distribution is parametrized by

• mean µ (_mean).

• variance σ2 (_var).

The log prior density and ratio are given by (10) and (11), respectively.
The log likelihood ratio lµ for an update of µ is:

lµ = log

(
P(x|µ′, σ2)

P(x|µ, σ2)

)
=

1

2σ2

N∑
i=1

(
(xi − µ)2 − (xi − µ′)2

)
.

The log likelihood ratio lσ2 for an update of σ2 is:
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lσ2 = log

(
P(x|µ, σ2′)

P(x|µ, σ2)

)
=

N

2
log

(
σ2

σ2′

)
+

1

2

(
1

σ2
− 1

σ2′

) N∑
i=1

(xi − µ)2.

For initialization of the prior parameters, we calculate the maximum likelihood estimate (MLE)
µ and σ2. The MLE µ̂ is

µ̂ =
1

N

N∑
i=1

xi. (30)

If the prior is defined on a vector of P parameters X, the MLE µ̂ is:

µ̂ =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

xpi .

The MLE σ̂2 is

σ̂2 =
1

N

N∑
i=1

(xi − µ̂)2. (31)

If the prior is defined on a vector of P parameters X, the MLE σ̂2 is:

σ̂2 =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

(xpi − µ̂)2.

1.5.3.2 prior::TExponentialInferred

An exponential distribution is parametrized by

• rate λ (_lambda).

The log prior density and ratio are given by (12) and (13), respectively.
The log likelihood ratio lλ for an update of λ is:

lλ = log

(
P(x|λ′)

P(x|λ)

)
= N log

(
λ′

λ

)
+ (λ− λ′)

N∑
i=1

xi.

For the initialization of the prior parameters, we calculate the MLE for λ̂:

λ̂ =
N∑N
i=1 xi

,

If the prior is defined on a vector of parameters, the MLE is:

λ̂ =

∑P
p=1Np∑P

p=1

∑Np

i=1 xpi
.
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1.5.3.3 prior::TPoissonInferred

An Poisson distribution is parametrized by

• rate λ (_lambda).

The log prior density and ratio are given by (26) and (27), respectively.
The log likelihood ratio lλ for an update of λ is:

lλ = log

(
P(x|λ′)

P(x|λ)

)
= log

(
λ′

λ

) N∑
i=1

xi + (λ− λ′)N.

For the initialization of the prior parameters, we calculate the MLE for λ̂:

λ̂ =

∑N
i=1 xi
N

,

If the prior is defined on a vector of parameters, the MLE is:

λ̂ =

∑P
p=1

∑Np

i=1 xpi∑P
p=1Np

.

1.5.3.4 prior::TBetaInferred

A beta distribution is parametrized by

• shape α (_alpha).

• shape β (_beta).

The log prior density and ratio are given by (18) and (19), respectively.
The log likelihood ratio lα for an update of α is

lα = log

(
P(x|α′, β)

P(x|α, β)

)
= N

(
ln Γ(α′ + β)− ln Γ(α+ β) + lnΓ(α)− ln Γ(α′)

)
+(α′−α)

N∑
i=1

log xi.

The log likelihood ratio lβ for an update of β is

lβ = log

(
P(x|α, β′)

P(x|α, β)

)
= N

(
ln Γ(α+ β′)− ln Γ(α+ β) + lnΓ(β)− ln Γ(β′)

)
+(β′−β)

N∑
i=1

log(1−xi).

For the initialization of the prior parameters, we calculate the method of moments estimates for
α and β, since the MLE does not have a closed form. These estimates rely on the mean µ and
variance σ2 of x:

µ =
1

N

N∑
i=1

xi,

σ2 =
1

N

N∑
i=1

(xi − µ)2.

Let us define

ν = α̂+ β̂ =
µ(1− µ)

σ2
− 1, where ν > 0, therefore: σ2 < µ(1− µ).
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The method of moments estimates for α̂ and β̂ then are:

α̂ = µν,

β̂ = (1− µ)ν.

This naturally extends to the case where the prior is defined on a vector of parameters, as the
only difference is the equation for µ and σ2:

µ =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

xpi ,

σ2 =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

(xpi − µ)2.

1.5.3.5 prior::TGammaInferred

A gamma distribution is parametrized by:

• shape α (_alpha).

• rate β (_beta).

The log prior density and ratio are given by (14) and (15), respectively.
The log likelihood ratio lα for an update of α is:

lα = log

(
P(x|α′, β)

P(x|α, β)

)
= N

(
log β(α′ − α) + log Γ(α)− log Γ(α′)

)
+ (α′ − α)

N∑
i=1

log xi.

The log likelihood ratio lβ for an update of β is:

lβ = log

(
P(x|α, β′)

P(x|α, β)

)
= Nα log

(
β′

β

)
+ (β − β′)

N∑
i=1

xi.

There is no closed-form solution for the MLE of α and β. Instead, we use mixed type log-moment
estimators that have a closed-form and are derived from the likelihood of the generalized gamma
distribution.
Let us denote by s = N

∑N
i=1 xi log xi −

∑N
i=1 log xi

∑N
i=1 xi. The estimate for α is:

α̂ =
N
∑N

i=1 xi
s

,

If the prior is defined on a vector of parameters, the estimate is:

α̂ =

∑P
p=1Np

∑Np

i=1 xi∑P
p=1 sp

,

The estimate for β is:

β̂ =
N2

s
,

If the prior is defined on a vector of parameters, the estimate is:

β̂ =

∑P
p=1N

2
p∑P

p=1 sp
.
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1.5.3.6 prior::TBinomialInferred

A Binomial distribution is parametrized by

• the success probability for each trial, p (_p).

The data this prior is defined on must be 2-dimensional, where the number of columns (i.e. the
second dimension) is of length two, corresponding to ni and ki of the binomial distribution.
The log prior density and ratio are given by (20) and (21), respectively.
The log likelihood ratio lp for an update of p is:

lp = log

(
P(k|n, p′)
P(k|n, p)

)
= log

(
p′

p

) N∑
i=1

ki + log

(
1− p′

1− p

) N∑
i=1

(ni − ki) .

For the initialization of the prior parameters, we calculate the MLE for p with

p̂ =

∑N
i=1 ki∑N
i=1 ni

.

If the prior is defined on a vector of parameters, this gets:

p̂ =

∑P
p=1

∑Np

i=1 xpi∑P
p=1

∑N
i=1 npi

.

1.5.3.7 prior::TNegativeBinomialInferred

A negative binomial distribution is parametrized by

• the success probability for each trial, p (_p).

The same conditions apply to the data as in the fixed prior, see above.
The log prior density and ratio are given by (22) and (23), respectively.
The log likelihood ratio lp for an update of p is:

lp = log

(
P(x|n, p′)
P(x|n, p)

)
= log

(
p′

p

) N∑
i=1

ni + log

(
1− p′

1− p

) N∑
i=1

xi.

For the initialization of the prior parameters, we calculate the MLE for p with

p̂ =

∑N
i=1 ni∑N

i=1(ni + xi)
.

If the prior is defined on a vector of parameters, this gets:

p̂ =

∑P
p=1

∑Np

i=1 npi∑P
p=1

∑N
i=1(npi + xpi)

.
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1.5.3.8 prior::TBernoulliInferred

A Bernoulli distribution is parametrized by

• a probability π (_pi).

The log prior density and ratio are given by (24) and (25), respectively.
The log likelihood ratio lπ for an update of π is:

lπ = log

(
P(x|π′)

P(x|π)

)
= log

(
π′

π

) N∑
i=1

xi + log

(
1− π′

1− π

) N∑
i=1

(1− xi).

For the initialization of the prior parameters, we calculate the MLE for π with

π̂ =

∑N
i=1 xi
N

.

If the prior is defined on a vector of parameters, this gets:

π̂ =

∑P
p=1

∑Np

i=1 xpi∑P
p=1Np

.

1.5.3.9 prior::TGibbsBetaBernoulliInferred

If the likelihood is given by a Bernoulli distribution as

P(x|π) = πx(1− π)1−x,

and the prior is given by a Beta distribution as

P(π|α, β) = πα−1(1− π)β−1 1

B(α, β)
,

then it is possible to sample directly from the posterior P(π|x), since the Bernoulli and the Beta
distribution are conjugate. The posterior is proportional to

P(π|x) ∝ πk+α−1(1− π)N−k+β−1,

where k =
∑N

i=1 xi denotes the number of successes. This is again a Beta-distribution, such that

P(π|x) ∼ B(k + α,N − k + β).

In such cases, the parameter π does not need to be updated with the Metropolis-Hastings al-
gorithm, but can be instead directly sampled from its posterior distribution. This is more
efficient, since every update is accepted (compared to accepting only roughly 30% of all updates
in Metropolis-Hastings).
This prior inherits from prior::TBernoulliInferred and overrides solely the methods that
update π: Instead of updating π in Metropolis-Hastings, the function doGibbs() samples from
the posterior. Because it needs to know α and β from the prior on π, the class additionally
expects a pointer to the prior::TBetaFixed prior on π.
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1.5.3.10 prior::TCategoricalInferred

A categorical distribution is a discrete probability distribution that describes the possible results
of a parameter x that can take on one of K possible categories, with the probability of each
category separately specified by a probability πk. This prior is thus parametrized by

• probabilities π (_pis) of size K.

The probabilities π must sum to one:
∑

k πk = 1. The initial values are thus normalized to
satisfy this condition.
The log prior density of a value xi is:

logP(xi = k|π) = πk.

The log prior ratio is

log px = log

(
P(x = j|π)
P(x = k|π)

)
= log

(
πj
πk

)
.

The log likelihood ratio lπk
for an update of πk is:

lπk
= log

(
P(x|π′

k)

P(x|πk)

)
= log

(
π′
k

πk

) N∑
i=1

I(xi = k).

For the initialization of the prior parameters, we calculate the MLE for each π̂k:

π̂k =
1

N

N∑
i=1

I(xi = k).

If the prior is defined on a vector of parameters, the MLE is:

π̂ =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

I(xpi = k).

1.5.3.11 prior::TDirichletVarInferred

A Dirichlet with inferred variance distribution parametrized by

• a vector of K concentration parameters α̃ (fix).

• a variance parameter σ (inferred).

The values of α̃ should be given as a comma-seperated string to the function setFixedPrior-
Parameters(), whereas σ is a pointer to TParameter. The concentration parameters that are
then used for the Dirichlet distribution are given by

α =
α̃

σ
.

The idea of this class is that the expected value of the parameter below does not depend on σ
but only on the normalized concentration parameter:

E[Xi] =
αi∑K

k=1 αk

.

However, the variance of the parameter below may vary depending on σ:
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Var[Xi] =
ai(1− ai)

α0 + 1
,

where ai =
αi
α0

and α0 =
∑K

k=1 αk. The forumlation is such that smaller values of σ result in
smaller Var[Xi].
The log prior density and ratio are given by 28 and 29 as described above for TDirichletFixed.
The log likelihood ratio lσ for an update of σ is:

lσ = log

(
P(x|α′)

P(x|α)

)
= logB(α)− logB(α′) +

K∑
k=1

(α′
k − αk) log xk.

For the initialization of σ prior to the MCMC, we do a line search to find the value of σ maximizing
the log-likelihood as given by equation 28.

1.5.3.12 prior::THMMPrior

The general framework for HMMs are described in section 3. Here, we will describe how the
HMM parameters are updated in the MCMC. The class prior::THMMPrior serves as a base
class for several specific HMM priors. As the MCMC updates are very similar among all HMM
priors, we will describe the general procedure here assuming that the transition probabilities are
modelled using a parameter θ and that the hidden states are represented by zi with i = 0, . . . , N .
The distances are given by δi.
The HMM prior is a classic example of a non-iid prior, as the prior density of one zi depends on
its neighbours zi−1 and zi+1. The log prior density of a value zi is

logP(zi|z0:N , δ0:N , θ) = logP(zi|zi−1, δi, θ) + logP(zi+1|zi, δi+1, θ).

These probabilites correspond to the transition probabilities and are given by the element
[Q(δi)]zi−1zi from the transition matrix. Note that the log prior density breaks down to

logP(z0|z0:N , δ0:N , θ) = logP(z0|θ) + logP(z1|z0, δ1, θ),

and
logP(zN |z0:N , δ0:N , θ) = logP(zN |zN−1, δN , θ),

for z = 0 and z = N , respectively.
The log prior ratio for an update of zi is:

log pzi = log

(
P(z′i|z0:N , δ0:N , θ)

P(zi|z0:N , δ0:N , θ)

)
= log

(
P(z′i|zi−1, δi, θ)

P(zi|zi−1, δi, θ)

)
+ log

(
P(zi+1|z′i, δi+1, θ)

P(zi+1|zi, δi+1, θ)

)
,

Note that the log prior ratio breaks down to

log pz0 = log

(
P(z′0|θ)
P(z0|θ)

)
+ log

(
P(z1|z′0, δ1, θ)
P(z1|z0, δ1, θ)

)
,

and
log pzN = log

(
P(z′N |zN−1, δN , θ)

P(zN |zN−1, δN , θ)

)
,

for z = 0 and z = N , respectively.
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The log likelihood ratio lθ for an update of θ is

lθ = log

(
P(z0:N |δ0:N , θ′)

P(z0:N |δ0:N , θ)

)
= log

(
P(z0|θ′)
P(z0|θ)

)
+

N∑
i=1

log

(
P(zi|zi−1, δi, θ

′)

P(zi|zi−1, δi, θ)

)
. (32)

For the initialization of the prior parameters, we use the Baum-Welch algorithm described in
section 3.

1.5.3.13 prior::THMMBoolInferred

The class prior::THMMBoolInferred applies for HMMs where the hidden state zi is a binary
variable with S = 2 states: 0 and 1. The transition matrix for this prior is parametrized by two
parameters π and γ, as described in section 3.1. The class inherits from prior::THMMPrior, and
equation 32 is used to calculate the log likelihood ratio for an update of θ = π, γ.

1.5.3.14 prior::THMMBoolGeneratingMatrixInferred

The class prior::THMMBoolGeneratingMatrixInferred applies for HMMs where the hidden
state zi is a binary variable with S = 2 states: 0 and 1. The transition matrix for this prior is
parametrized by two parameters log Λ1 and log Λ2, as described in section 3.1. The class inherits
from prior::THMMPrior, and equation 32 is used to calculate the log likelihood ratio for an
update of θ = logΛ1, log Λ2.
In simulations, we noted that for large distances (i.e. when the transition probabilities approach
the stationary probabilities), different combinations of log Λ1 and log Λ2 result in exactly the
same transition probabilities. The likelihood surface therefore results in a ridge. We then en-
countered the issue that during initialization, the Nelder-Mead algorithm optimizes log Λ1 and
log Λ2 along that ridge, until the values get so large that the matrix exponential has numeric
inaccuracies, and odd transition probabilities result. This is an undesired behaviour. We there-
fore implemented the prior prior::THMMBoolInferred, which circumvents this issue with a more
elegant parametrization, and recommend to use that class for HMM prior on booleans.

1.5.3.15 prior::THMMLadderInferred

The class prior::THMMLadderInferred applies for HMMs where the generator matrix has a
ladder-type structure that only allows for transitions between neighbouring states. The transition
matrix for this prior is parametrized by two parameters κ, as described in section 3.1.4. The
class inherits from prior::THMMPrior, and equation 32 is used to calculate the log likelihood
ratio for an update of θ = κ.

1.5.3.16 prior::THMMCombinedScaledLadderInferred

The class prior::THMMCombinedScaledLadderInferred implements one or more HMMs where
each chain has a transition probability given by a scaled ladder-type generator matrix. The
concept of decomposing a HMM on combined states into multiple chains with specific transition
probabilities is described in section 3.6.3. This class is templated and takes any scaled latter-type
transition matrix, with or without attractor. Specifically, the template argument TransitionMa-
trixType can either be TTransitionMatrixScaledLadder, TTransitionMatrixScaledLadder-
AttractorShift or TTransitionMatrixScaledLadderAttractorShift2, which are described in
section 3.1. If the transition matrix has an attractor, the attractor for each chain must be
specified in the constructor. These attractors are fixed and will not be updated in the MCMC.
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Apart from (optional) attractors, the transition matrix is parametrized by three parameters, κ,
ν and µ. These parameters are vectors where the size is given by the number of chains. If a
chain c consists of 3 states, the parameter µc is superficial and is not included. All κ, ν and µ
must be strictly positive. However, the parametrization of the scaled ladder only makes sense if
ν and µ are in [0,1], since only then the middle state is more frequent than all other states. We
therefore recommend to put a sparse prior on them. In the initialization with EM, we can not
specify a prior, but we still want a spare solution. Therefore, we make sure ν and µ are in [0,1]
by applying the logistic function after optimization by Nelder-Mead.
The class inherits from prior::THMMPrior, and equation 32 is used to calculate the log likelihood
ratio for an update of θ = κ,ν,µ.

1.5.3.17 prior::THMMCategoricalInferred

The class prior::THMMCategoricalInferred applies for HMMs where the transition matrix
is of type TTransitionMatrixCategorical. The hidden states are categorical with a total of
D states. The transition matrix for this prior is parametrized by three parameters π, γ and
ρ, where ρ = ρ1, . . . , ρD is a vector with the constraint

∑
d ρd = 1. The class inherits from

prior::THMMPrior, and equation 32 is used to calculate the log likelihood ratio for an update
of θ = π, γ,ρ.

1.5.3.18 prior::TTwoNormalsMixedModelInferred

This class implements a special form of a mixture model of K = 2 normal distributions:

P(xi) = (1− zi)Φ(µ, σ
2
0) + ziΦ(µ, σ

2
0 + σ2

1).

Here, zi denotes an binary indicator variable representing the two models, and Φ(µ, σ2) denotes
the normal density with mean µ and variance σ2. In this parametrization, the two mixture
components share a common mean µ and the variance is larger in case zi = 1 than in the case
zi = 0.
This prior is thus parametrized by

• A mean (for both components), µ (_mus).

• A variance for the null-model, σ2
0, and for the one-model σ2

1 (_vars).

• Indicator variables z (_z). These are linear with size N .

The log prior density of a value xi is:

logP(xi|µ, σ2
0, σ

2
1, zi) =

−
1
2 log(σ

2
0)− 1

2 log(2π)−
1

2σ2
0
(xi − µ)2 if zi = 0,

−1
2 log(σ

2
0 + σ2

1)− 1
2 log(2π)−

1
2(σ2

0+σ2
1)
(xi − µ)2 if zi = 1.

(33)

The log prior ratio is:

log px = log

(
P(x′i|µ, σ2

0, σ
2
1, zi)

P(xi|µ, σ2
0, σ

2
1, zi)

)
=


1

2σ2
0

(
(xi − µ)2 − (x′i − µ)2

)
if zi = 0

1
2(σ2

0+σ2
1)

(
(xi − µ)2 − (x′i − µ)2

)
if zi = 1.

The log likelihood ratio lµ for an update of µ is

lµ = log

(
P(x|µ′, σ2

0, σ
2
1, z)

P(x|µ, σ2
0, σ

2
1, z)

)
=

1

2σ2
0

N∑
i=1

(1− zi)
(
(xi − µ)2 − (xi − µ′)2

)
+

1

2
(
σ2
0 + σ2

1

) N∑
i=1

zi
(
(xi − µ)2 − (xi − µ′)2

)
.
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The log likelihood ratio lσ2
0

for an update of parameter σ2
0 is

lσ2
0
= log

(
P(x|µ, σ2′

0 , σ
2
1, z)

P(x|µ, σ2
0, σ

2
1, z)

)

=
1

2
log

(
σ2
0

σ2′
0

) N∑
i=1

(1− zi) +
1

2
log

(
σ2
0 + σ2

1

σ2′
0 + σ2

1

) N∑
i=1

zi+

1

2

(
1

σ2
0

− 1

σ2′
0

) N∑
i=1

(1− zi)(xi − µ)2 +
1

2

(
1

σ2
0 + σ2

1

− 1

σ2′
0 + σ2

1

) N∑
i=1

zi(xi − µ)2.

The log likelihood ratio lσ2
1

for an update of σ2
1 is

lσ2
1

= log

(
P(x|µ, σ2

0, σ
2′
1 , z)

P(x|µ, σ2
0, σ

2
1, z)

)

=
1

2
log

(
σ2
0 + σ2

1

σ2
0 + σ2′

1

) N∑
i=1

zi +
1

2

(
1

σ2
0 + σ2

1

− 1

σ2
0 + σ2′

1

) N∑
i=1

zi(xi − µ)2.

The posterior distribution of zi can be calculated analytically, because its values are limited to
few discrete states. We therefore directly sample new values of zi from the posterior distribution
as specified in (1). The likelihood for sampling a specific zi is then given by P(xi|µ, σ2

zi), and the
prior by P(zi|π). Note that this hold regardless of the prior distribution, e.g. HMMs.
We use an Expectation-Maximization (EM) algorithm for the initialization of the prior param-
eters. To simplify the EM, we assume that the variance of the null model (σ2

0) is independent
of the variance of the one-model. The EM algorithm then runs exactly as described on page
82, except for µ, which is now independent of component k. We can therefore initialize µ with
its MLE using (30), and don’t need to update it during the EM. The initialization of the EM
therefore also proceeds differently:

1. Calculate the overall MLE mean µ̂ and variance σ̂2 of all x using (30) and (31), respectively.

2. Calculate the log density logP(xpi|µ̂, σ̂2) for each data point xpi with (10). Then, calculate
the average log density over all parameters as d̄ = 1

P

∑P
p=1 logP(xpi|µ̂, σ̂2).

3. Data points with a low density do not fit the overall variance well, because they are far
away from the mean. Therefore, sort the densities d̄ in ascending order. Assign the first
10% of the data points x with the lowest density to z = 1 and the rest to z = 0.

4. Calculate the MLE variances σ̂2
0 and σ̂2

1 based on this classification.

5. Initialize the latent variable zi to the state that maximizes the emission probabilities.

6. Initialize σ2
0 and σ2

1 by re-calculating the MLE variance based on this classification.

We have now estimated mean and variance of null- and one-model independently, ignoring the
condition that the variance of the one-model must be larger than the variance of the null-model.
Therefore, we now set σ̂2

0 = min(σ2
0, σ

2
1) and σ̂2

1 = max(σ2
0, σ

2
1)− σ̂2

0, and assign z and the prior
on z accordingly.
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1.5.3.19 prior::TMultivariateNormalInferred

This class implements a multivariate normal prior

xi ∼ N (µ,Σ),

where xi is a D-dimensional vector, parametrized by a D-dimensional mean vector µ and a DxD
variance-covariance matrix Σ. Since the inverse of Σ is positive definite and symmetric, it can
be parametrized with aid of the Cholesky factorization:

Σ−1 = MMT , (34)

where M is the lower triangular matrix:

M =
1

m
·


m11 0 . . . 0
m21 m22 . . . 0

...
...

. . .
...

mD1 mD2 . . . mDD

 ,

for a positive scale factor m > 0. This factorization allows for independent updates of the
elements in the matrix M while preserving the intrinsic properties of a variance-covariance
matrix. The density of the multivariate normal distribution is:

P(xi|µ,Σ) =
1√

(2π)D detΣ
exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)

=
1

mD |
∏D

r=1mrr|√
(2π)D

exp

− 1

2m2

D∑
s=1

(
D∑
r=s

mrs(xir − µr)

)2
 , (35)

because the determinant of Σ is given by

detΣ =

(
1

mD

D∏
r=1

mrr

)−2

,

and

(xi − µ)TΣ−1(xi − µ) = ||MT (xi − µ)||2 = 1

m2

D∑
s=1

(
D∑
r=s

mrs(xir − µr)

)2

.

New proposals of the variance-covariance matrix Σ are obtained by proposing new elements mrr,
mrs and m. Although this is not part of this prior, commonly recommended prior distributions
for these parameters are m ∼ Exp(λm), m2

rr ∼ χ2
δr

where δr = D + 1 − r and mrs ∼ N (0, 1).
With m fixed and these prior distributions for mrr and mrs, Σ−1 is sampled from a Wishart
distribution with D degrees of freedom and scale m (Anderson, 2003).
A multivariate normal distribution is hence parametrized by

• Means µ of size D (_mus).

• A scale factor m of size 1 (_m).

• Diagonal elements mrr of size D (_Mrr).
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• Off-diagonal elements mrs of size T (_Mrs). T is given by:

T =
D(D − 1)

2
. (36)

From T , we can also calculate D with:

D =
1 +
√
1 + 8T

2
.

To get from a coordinate r, s the linear index p, we calculate

p =
r(r − 1)

2
+ s.

The parameter on which this prior is defined, X, must have dimensions N ×D, i.e. the number
of dimensions of the multivariate normal prior should be the columns of X. This is beneficial
for cache handling: When calculating the prior densities, we always need one row xi from X,
which corresponds to one consecutive chunk of memory because we store matrices in a row-major
order.
The multivariate normal prior is a non-iid prior, as the prior density of one xid depends on all
xi. The log prior density of a value xid with parameters µ, M = {m,mrr,mrs} is

logP(xid|µ,M) = −D logm+
D∑
r=1

mrr −
D

2
log(2π)− 1

2m2

D∑
s=1

(
D∑
r=s

mrs(xir − µr)

)2

.

The log prior ratio is:

log pxid
= log

(
P(x′id|µ,M)

P(xid|µ,M)

)
=

1

2m2

D∑
s=1

( D∑
r=s

mrs(xir − µr)

)2

−

(
D∑
r=s

mrs(x
′
ir − µr)

)2


=
1

2m2

((
x2id − x′2id + 2µd(x

′
id − xid)

) d∑
r=1

m2
dr+

2(xid − x′id)

S∑
s=1

mds

D∑
r=s,r ̸=d

mrs(xir − µr)

)
.

where S = min(d,D − 1).
The log likelihood ratio lµd

for an update µd is:

lµd
= log

(
P(X|µ′

d,M)

P(X|µd,M)

)
=

1

2m2

N∑
i=1

D∑
s=1

( D∑
r=s

mrs(xir − µr)

)2

−

(
D∑
r=s

mrs(xir − µ′
r)

)2


=
1

2m2

(
N(µ2

d − µ′2
d )

d∑
r=1

m2
dr + 2(µ′

d − µd)

(
d∑

r=1

m2
dr

)(
N∑
i=1

xid

)
+

2(µ′
d − µd)

N∑
i=1

S∑
s=1

mds

D∑
r=s,r ̸=d

mrs(xir − µr)

)
.

The log likelihood ratio lm for an update of m is:

lm = log

(
P(X|µ,M ′)

P(X|µ,M)

)

= ND(logm− logm′) +
1

2

(
1

m2
− 1

m′2

) N∑
i=1

D∑
s=1

(
D∑
r=s

mrs(xir − µr)

)2

.
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The log likelihood ratio lmrr for an update of parameter mrr is:

lmrr = log

(
P(X|µ,M ′)

P(X|µ,M)

)

= N(logm′
rr − logmrr) +

1

2m2

N∑
i=1

D∑
s=1

( D∑
r=s

mrs(xir − µr)

)2

−

(
D∑
r=s

m′
rs(xir − µr)

)2


= N(logm′
rr − logmrr) +

1

2m2

(
(m2

rr −m′2
rr)

N∑
i=1

(xir − µr)
2+

2(mrr −m′
rr)

N∑
i=1

(xir − µr)

D∑
d=r+1

mdr(xid − µd)
)
.

The log likelihood ratio lmrs for an update of parameter mrs is:

lmrs = log

(
P(X|µ,M ′)

P(X|µ,M)

)

=
1

2m2

N∑
i=1

D∑
s=1

( D∑
r=s

mrs(xir − µr)

)2

−

(
D∑
r=s

m′
rs(xir − µr)

)2


=
1

2m2

(m2
rs −m′2

rs)
N∑
i=1

(xir − µr)
2 + 2(mrs −m′

rs)
N∑
i=1

(xir − µr)
D∑

d=s,d ̸=r

mds(xid − µd)

 .

Note that if D = 1, parameter mrs is non-existant and mrr is superficial and fixed to 1, such
that only m is estimated.
For the initialization of the prior parameters, we calculate the MLE of µ and M . The MLE for
one µ̂d is given by:

µ̂d =
1

N

N∑
i=1

xid. (37)

If the prior is defined on a vector of P parameters, the MLE is given by

µ̂d =
1∑P

p=1Np

P∑
p=1

Np∑
i=1

x
(p)
id .

The MLE for Σ is given by:

Σ̂ =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)T . (38)

If the prior is defined on a vector of parameters, the MLE is given by

Σ̂ =
1∑P

p=1Np

P∑
p=1

N∑
i=1

(x
(p)
i − µ̂)(x

(p)
i − µ̂)T .

We can calculate M by Cholesky factorization from the inverse of Σ with 34. We then set m = 1
and mrr and mrs to the respective elements in M .
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1.5.3.20 prior::TTwoMultivariateNormalsMixedModelInferred

This class implements a special mixture model of K = 2 multivariate normal distributions:

P(xi) = (1− zi)Φ(µ,Σ
(0)) + ziΦ(µ,Σ

(1)).

Here, zi is an binary indicator variable representing the two models, and Φ(µ,Σ) denotes the
multivariate normal density with a D-dimensional mean vector µ and DxD variance-covariance
matrix Σ. xi itself is a D-dimensional vector. In this parametrization, the two mixture compo-
nents share a common mean vector µ and the variance-covariance matrix is larger in case zi = 1
than in the case zi = 0.
We achieve this with the following parametrization: The variance-covariance matrix of the null-
model is factorized as for prior::TMultivariateNormalInferred by applying Cholesky factor-
ization to Σ(0), resulting in M (0), which is split into the elements m(0), m(0)

rr and m
(0)
rs . The

density of the null-model is thus given by equation 35. The variance-covariance matrix of the
one-model, Σ(1), is calculated in the following way:

1. Calculate
Σ(0) =

(
M (0)M (0)T

)−1
. (39)

2. Do Eigendecomposition of Σ(0):

Σ(0) = QΛ(0)Q−1. (40)

Here, Λ(0) is a diagonal matrix whose elements are the eigenvalues of Σ(0).

3. Multiply with ρ to get Λ(1), which contains the eigenvalues of Σ(1):

Λ(1) = Λ(0) (1+ ρ) , (41)

in matrix notation:
λ
(1)
1 0 . . . 0

0 λ
(1)
2 . . . 0

...
0 0 . . . λ

(1)
D

 =


λ
(0)
1 0 . . . 0

0 λ
(0)
2 . . . 0

...
0 0 . . . λ

(0)
D




1 + ρ1
1 + ρ2

...
1 + ρD

 .

4. Now construct Σ(1):
Σ(1) = QΛ(1)Q−1. (42)

5. From this, we get M (1) with (34).

6. We split M (1) into the elements m
(1)
rr and m

(1)
rs , and set m(1) = 1.

For ρ > 0, the formulation ensures that the variances and covariances are larger in case zi = 1
than in the case zi = 0. We can think of Σ(1) as a stretched version of Σ(0), as we stretch Σ(0)

in every dimension with ρd.
A multivariate normal mixed model with two components is parametrized by

• A mean vector (for both components), µ of size D (_mus).

• Null-model: A scale factor m(0) of size 1 (_m).
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• Null-model: Diagonal elements m
(0)
rr of size D (_Mrr).

• Null-model: Off-diagonal elements m
(0)
rs of size T (_Mrs), see (36).

• Indicator variables z of size N (_z).

• Stretching parameter ρ of size D (_rhos).

The parameter on which this prior is defined, X, must have dimensions N ×D, i.e. the number
of dimensions of the multivariate normal prior should be the columns of X. This is beneficial
for cache handling: When calculating the prior densities, we always need one row xi from X,
which corresponds to one consecutive chunk of memory because we store matrices in a row-major
order.
The multivariate normal distribution is a non-iid prior, as the prior density of one xid depends
on all xi. The log prior density of a value xid with parameters µ, M (0) = {m,m

(0)
rr ,m

(0)
rs }, M (1)

is given by (57) and the log prior ratio is given by (58) (with µ(k) = µ).
The log likelihood ratio lµd

for an update of µd is:

lµd
= log

(
P(X|µ′

d,M
(0),M (1), z)

P(X|µd,M
(0),M (1), z)

)

=
1

2m(0)2

N∑
i=1

(1− zi)

D∑
s=1

( D∑
r=s

m(0)
rs (xir − µr)

)2

−

(
D∑
r=s

m(0)
rs (xir − µ′

r)

)2
+

1

2m(1)2

N∑
i=1

zi

D∑
s=1

( D∑
r=s

m(1)
rs (xir − µr)

)2

−

(
D∑
r=s

m(1)
rs (xir − µ′

r)

)2


=
1∑

k=0

(
1

2m(k)2

(
(µ2

d − µ
′2
d )

(
d∑

r=1

m
(k)2
dr

)(
N∑
i=1

I(zi = k)

)
+

2(µ′
d − µd)

d∑
r=1

m
(k)2
dr

N∑
i=1

I(zi = k)xid+

2(µ′
d − µd)

N∑
i=1

I(zi = k)
S∑

s=1

m
(k)
ds

D∑
r=s,r ̸=d

m(k)
rs (xir − µr)

))
.

Whenever we update any m(0), m(0)
rr , m(0)

rs and ρd, we need to re-calculate M1. It is important
to realize that the entire matrix M1 changes after any such update. Hence, for each of these
updates, we need to calculate

log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)
=

N∑
i=1

zi

 D∑
r=1

log

(
m

(1)′
rr

m
(1)
rr

)
+

1

2m(1)2

D∑
s=1

( D∑
r=s

m(1)
rs (xir − µr)

)2

−

(
D∑
r=s

m(1)′
rs (xir − µr)

)2
 .
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The log likelihood ratio lm(0) for an update of m(0) is:

lm(0) = log

(
P(X|µ,M (0)′ ,M (1)′ , z)

P(X|µ,M (0),M (1), z)

)

= D(logm(0) − logm(0)′)

N∑
i=i

(1− zi) +
1

2

(
1

m(0)2
− 1

m(0)′2

) N∑
i=1

(1− zi)

D∑
s=1

(
D∑
r=s

m(0)
rs (xir − µr)

)2

+

log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)
.

The log likelihood ratio l
m

(0)
rr

for an update of m(0)
rr is:

l
m

(0)
rr

= log

(
P(X|µ,M (0)′ ,M (1)′ , z)

P(X|µ,M (0)′ ,M (1)′ , z)

)

=
N∑
i=1

(1− zi)

log

(
m

(0)′
rr

m
(0)
rr

)
+

1

2m(0)2

D∑
s=1

( D∑
d=s

m
(0)
ds (xid − µd)

)2

−

(
D∑
d=s

m
(0′)
ds (xid − µd)

)2
+

log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)

= (logm(0)′
rr − logm(0)

rr )

N∑
i=1

(1− zi) +
1

2m(0)2

(
(m(0)2

rr −m(0)′2
rr )

N∑
i=1

(1− zi)(xir − µr)
2+

2(m(0)
rr −m(0)′

rr )
N∑
i=1

(1− zi)(xir − µr)
D∑

d=r+1

m
(0)
dr (xid − µd)

)
+

log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)
.

The log likelihood ratio l
m

(0)
rs

for an update of m(0)
rs is:

l
m

(0)
rs

= log

(
P(X|µ,M (0)′ ,M (1)′ , z)

P(X|µ,M (0)′ ,M (1)′ , z)

)

=
1

2m(0)2

N∑
i=1

(1− zi)

D∑
s=1

( D∑
r=s

m(0)
rs (xir − µr)

)2

−

(
D∑
r=s

m(0)′
rs (xir − µr)

)2


+ log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)

=
1

2m(0)2

(
(m(0)2

rs −m(0)′2
rs )

N∑
i=1

(1− zi)(xir − µr)
2+

2(m(0)
rs −m(0)′

rs )
N∑
i=1

(1− zi)(xir − µr)
D∑

d=s,d ̸=r

m
(0)
ds (xid − µd)

)
+

log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)
.
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Note that if D = 1, m(0)
rs is non-existant and m

(0)
rr is superficial and fixed to 1, such that only m

is estimated.
The log likelihood ratio lρd for an update of ρd is:

lρd = log

(
P(X|µ,M (0),M (1)′ , z)

P(X|µ,M (0)′ ,M (1)′ , z)

)

= log

(
P(X|µ,M (1)′ , z)

P(X|µ,M (1), z)

)
.

The posterior distribution of zi can be calculated analytically, because its values are limited to
few discrete states. We therefore directly sample new values of zi from the posterior distribution
as specified in (1). The likelihood for sampling a specific zi is then given by P(xi|µ,M (zi)), and
the prior by P(zi|π). Note that this hold regardless of the prior distribution, e.g. also for HMMs.
We use an EM algorithm for the initialization of the prior parameters. To simplify the EM,
we assume that the covariance matrix of the null-model (Σ(0)) is independent of the covariance
matrix of the one-model (Σ(1)). The EM algorithm then runs exactly as described on page 86,
except for the update step of µ. Since µ is now independent of component k, we can directly
estimate it with its MLE and don’t need to update it during the EM. The initialization of the
EM therefore also proceeds differently:

1. Calculate the overall MLE mean µ and variance-covariance matrix Σ of all X using (37)
and (38), respectively.

2. Calculate the log density logP(xpi|µ,Σ) for each data vector xpi for a given parame-
ter p with (35). Then, calculate the average log density over all parameters as d̄ =
1
P

∑P
p=1 logP(xpi|µ,Σ).

3. Data points with a low density do not fit the overall variance well. Therefore, sort the
densities d̄ in ascending order. Assign the first 10% of the data points X̄ with the lowest
density to z = 1 and the rest to z = 0.

4. Calculate the MLE variance-covariance matrices Σ(0) and Σ(1) based on this classification.

5. Initialize the latent variable zi to the state that maximizes the emission probabilities.

6. Initialize Σ(0) and Σ(1) by re-calculating the MLE variance-covariance matrices based on
this classification.

We have then estimated mean and variance of null- and one-model independently, ignoring the
condition that the variance of the one-model must be larger than the variance of the null-model.
We therefore do eigendecomposition of both Σ(0) and Σ(1) with (40) to obtain two matrices Λ(0)

and Λ(1). We compute the norm of the diagonal ||Λ||2 for both and set the Λ that minimizes
the norm to Λ0 (and assign z and π accordingly). Using (41), we now estimate ρ as:

ρ =
Λ(1)

Λ(0)
− 1,

where we set all ρd < 0 to 0.0001. We then re-calculate Λ(1) with (41), using these ρ, and Σ(1)

with (42).
This class has 2 objects of class TVarCovarMatrix (one per component) that each store four
matrices: _oldM, _M, _oldSigma and _Sigma. TVarCovarMatrix then has a couple of functions
implemented that allow the conversion from M to Σ and back.

44



1.5.4 Deterministic functions

stattools allows for deterministic relationships, specifically for link functions and linear models.

1.5.4.1 TLinkFunction

This class allows for an arbitary invertible link function. The class is parametrized by

• A parameter (_param).

• A function that transforms _param into the value of the node below (below = _fun-
Down(param)).

• A function that transforms the value of the node below to _param (param = _funUp(below)).
This function must be the inverse of _funDown().

The parameter _param is stochastic and is updated. To evaluate its likelihood ratio, however,
it must ask the parameter(s) below for the likelihood ratio. The parameter(s) below are de-
terministic. When calculating the likelihood ratio, they first sets their values deterministically
according to function valueForBelow(), and then ask the box around them to calculate the
likelihood ratio.
To initialize _param, _funUp() is called to transform the values of the parameter below to _param.

1.5.4.2 TExp

This is a common use-case of a link function:

• _funDown() corresponds to the exponential function such that below = exp(param).

• _funUp() corresponds to the natural logarithm such that param = log(below).

This link function is very useful if a parameter should be updated in the log-space. Updating
y = log(x) instead of x is commonly done for strictly positive parameters x to achieve better
mixing. This has two reasons:

1. When updating y = log(x), this naturally imposes an exponential prior with rate 1 on x,
because y ∼ U(−∞,∞) results in x ∼ eU(−∞,∞) = Exp(1).

2. The proposal range scales with the actual value of x. For example, a jump of 1 log-unit on
y corresponds to a little change in x if x is small and to a large change in x if x is large.

In this example, y corresponds to param and x corresponds to below. The class is called TExp
since x = ey (below = exp(param)), and we usually define relationships in this order (below
given above).

1.5.4.3 TLog

This is another common use-case of a link function:

• _funDown() corresponds to the natural logarithm such that below = log(param).

• _funUp() corresponds to the exponential function such that param = exp(below).

Note that this class should not be used when updating a parameter in the log-space, instead use
TExp which does the inverse!
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1.5.4.4 TLogistic

This is another common use-case of a link function:

• _funDown() corresponds to the logistic function such that below = logistic(param).

• _funUp() corresponds to the logit function such that param = logit(below).

The logistic function (also called expit) is defined as x = 1
1+e−y , where y corresponds to param

and x corresponds to below. The logit function is the inverse of the logistic function and defined
as y = log

(
x

1−x

)
.

This link function is useful when an unconstrained parameter y ∈ [−∞,∞] should be transformed
into a probability x ∈ [0, 1].

1.5.4.5 TLogit

This is another common use-case of a link function:

• _funDown() corresponds to the logit function such that below = logit(param).

• _funUp() corresponds to the logistic function such that param = logistic(below).

The logit function is defined as x = log
(

y
1−y

)
, where y corresponds to param and x corresponds

to below. The logistic function (also called expit) is the inverse of the logit function and defined
as y = 1

1+e−x .

1.5.4.6 TLinearModel

This class implements a general linear model of the form

Y = XB,

where Y is a I × J matrix, X is a I × K matrix of covariates and B is a K × J matrix of
regression coefficients to be estimated. The columns of Y and B represent dependent variables
that share the same set of explanatory variables. This is the most general implementation. A
simple linear regression represents the special case I = 1, J = 1 and K = 1. A multiple linear
regression represents the case J = 1 where there is a single dependent variable.
The general model can also be written as:

Yij = β0j + β1jXi1 + β2jXi2 + . . .+ βKjXiK = β0j +
K∑
k=1

βkjXik,

where β0j represents an optional intercept term that can be turned on and off through the
boolean template argument Intercept.
The parameter to be estimated in this model is the matrix B with elements [B]kj = βkj . When
one βkj is updated, one column Y j = Y1j , . . . , YIj changes deterministically. The likelihood ratio
of this update must then be evaluated on this range of values.
To estimate initial values of B, we use an ordinary least squares (OLS) scheme to solve the
equation XBj = Y j for each j = 1, . . . , J using the Armadillo function solve(). To account
for an intercept β0j , we add an extra first row with 1’s to X for the OLS.
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1.6 Parameter definitions

The class TObservationDefinition is the main interface between user, developer and the library
stattools. Inside this class, we can set all variables that “define” a parameter and observation.
These are:

• _priorParameters: The prior parameters, in case these are fixed numbers.

• _simulationFile: The name of the file where simulated values should be written to.

There exists a derived class, TParameterDefinition, that adds extra members specific to MCMC
parameters:

• _isUpdated: Whether the parameter should be updated or not.

• _meanVarFile: File to write posterior mean and value to.

• _statePosteriorsFile: File to write state posteriors for categorical variables to.

• _traceFile: File to write traces to.

• _initPropKernel: Initial jump size for proposals.

• _propKernelDistr: Name of the proposal kernel distribution (e.g. normal, uniform, inte-
ger).

• _oneJumpSizeForAll: Whether all parameters in an array should share the same jump
size for proposing, or alternatively have all a unique jump size.

• _initVal: The initial values (given as string, to enable proper templating).

These two classes offer a variety of set- and get-functions to access these variables. A couple of
other member variables are used to keep track of changed made to the definition.
All of the above variables have default values.

1.7 Providing initial values

If needed, parameters can be initialized based on fixed initial values that are provided as a string
by the user. In this case, the default initialization (based on MLE and other algorithms) is
deactivated.
The string of initial values can be multiple things:

• A comma-separated vector of numbers. The size of this vector must match the total size
of the parameter. This option is chosen if the string contains a comma.

• A single number. All elements of the parameter will be set to this number. This option is
chosen if the string is probably a single number (i.e. contains only numerical characters).

• A filename, containing the initial values. This file can have five formats:

1. A trace file, as written by this framework. This option is chosen if the filename
contains “trace”. The header of the file is then parsed and all columns that start with
the name of the parameter are extracted (note that the number of columns that match
must be equal to the total size of the parameter). The last line (corresponding to the
last iteration) of the file is used to initialize the parameter.
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2. A file containing simulated values, as written by this framework. This option is chosen
if the filename contains “simulated”. The initialization then runs exactly as for the
trace file above, as simulation files have the same format as trace files, except that
they only consist of one line.

3. A file containing the posterior means and variances, as written by this framework.
This option is chosen if the filename contains “meanVar”. The header is then parsed
and all relevant columns are extracted (note that the number of columns that match
must be equal to the total size of the parameter). The first line (corresponding to the
posterior mean) of the file is used to initialize the parameter.

4. A file containing the state posteriors as written by this framework. This option is
chosen if the filename contains “statePosteriors”. The header is then parsed and all
relevant columns are extracted. For each column, the row index with the maximum
value is used to initialize the parameter, since this corresponds to the state with the
highest posterior probability.

5. A file containing only the values for the parameter (i.e. without header), where
all values are in one column and the number of rows matches the total size of the
parameter.

6. A file containing only the values for the parameter (i.e. without header), where
all values are in one row and the number of columns matches the total size of the
parameter.

1.8 Building a DAG

When initializing our framework, we can think of this as building a DAG. Therefore, the class
that assembles all observations and parameters is called TDAGBuilder. This class is available as
a singleton over instances::dagBuilder(). Let’s go through its functionalities in the order we
use them in a program:

• The constructors of TParameter and TObservation automatically add a base class pointer
to instances::dagBuilder(). There is a check for unique parameter/observation names.

• When the MCMC starts, the function buildDAG() is called. This function executes the
following steps:

– First, we create an instance of class TMCMCUserInterface. The idea is that after
the developer has specified this definitions, the user can come in and modify and
potentially override these definitions. Specifically, we:

1. Check if a config file has been defined on the command-line. The config file has
the following format: A header with an mandatory column “name” and optional
columns “observation”, “priorParameters”, “traceFile”, “meanVarFile”, “statePoste-
riorsFile”, “simulationFile”, “update”, “propKernel”, and “sharedJumpSize”. Then,
one row corresponds to one definition. We parse all modifications of one param-
eter/observation and re-set the definitions accordingly. Some columns only make
sense for parameters, but not for observations (i.e. “traceFile”, “meanVarFile”,
“statePosteriorsFile”, “update”, “propKernel” and “sharedJumpSize”). If a user
tries to modify these for an observation, an error is thrown. Also note that the
column “observation” is just for information. If a user attempts to change an
observation to a parameter or vice versa, an error is thrown.
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2. Check if a file with initial values and initial jump sizes has been defined on the
command-line. This file must have the following format: 3 columns that are
name of parameter, initial value and initial jump size. One row corresponds to
one parameter definition. We parse all rows and re-set the definitions accordingly.
Columns can also be empty (e.g. only specify initial value, but not initial jump
size). Note that in here, only parameter definitions are currently allowed. If the
initial values for an observation definition are modified, an error is thrown. The
reason is that the initial values file is usually a file generated by a former run of
the framework, i.e. if you want to restart the MCMC at a given position. In this
file, we don’t write observation values, as they never change during the MCMC.
This is a design choice that can easily be changed, if this is necessary in the future.

3. Check if configs have been defined on the command-line directly. Specifically,
we loop over all config-names (as above: “priorParameters”, “traceFile”, etc.),
and check if a command-line argument matching the pattern paramName.config
exists (e.g. myParam.priorParameters=...). If yes, we re-set the definition of
this parameter/observation accordingly (note that this overrides specifications
from the config file).

4. Check if initial values and/or initial jump sizes have been defined on the command-
line directly. Specifically, we check if a command-line argument matching the pat-
tern paramName and paramName.jumpSize exists. If yes, we re-set the definition
accordingly (note that this overrides specifications from the init-file).

– We check for a valid DAG. A valid DAG must have 1) at least 1 observation and 2)
no parameter at bottom of DAG (this must be an observation). We then initialize an
instance of class TDAG. To illustrate this, consider the following complicated DAG, rep-
resented in Figure 5. Currently, we only have pointers to each parameter/observation
in the DAG (note: we don’t have pointers to the priors!). Parameters that belong to
the same prior (e.g. b and c) must always be simulated/initialized/updated together.
Imagine we would now treat each node of the DAG (i.e. each parameter and obser-
vation) independently. The problem then is that we will simulate/initialize/update
shared prior parameters multiple times, which would be a waste of computational
time (or even worse). For example, if we would tell first x1 to initialize its values, and
then x2 to initialize its values, we would initialize b and c twice. We therefore need an
unique path through a DAG, which we can follow while simulating/initializing, and
which guarantees us to visit each node exactly once. To find such a path, we use the
following recursive algorithm:

1. Create two vectors that store pointers to TNodeTyped: final and tmp.
2. Start at first observation at the bottom of the DAG.
3. Call function constructDAG() on current observation/parameter. This function

first add the this-pointer (a pointer to TNodeTyped) to tmp.
4. The function then goes to the prior. The prior checks:

(a) If all children (i.e. all parameters/observations that share this prior) are
present in tmp, the prior adds the pointer to the first parameter/observation
to final. Then, the prior will call constructDAG() of all its prior parameters,
i.e. repeat steps 3) and 4).

(b) Else (not all children are present in tmp): Do nothing. The recursion stops.
5. Re-start recursion at next observation at bottom of DAG and repeat steps 3) to

5) until all observations have been visited.
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Figure 5: DAG of a complicated model. We have multiple observations at the bottom of the
DAG. A complicated hierarchical model is defined on these observations. We have some pa-
rameters/observations that share a common prior (e.g. observations x1/x2 share a prior, and
parameters a,b,c also share a prior).

The resulting vector (final) is stored inside class TDAG. For Figure 5, we obtain a
vector {y, x1, a, z, d, e, i, j, h}. Whenever we want to...

∗ Initialize values (with MLE/EM etc.): Go from left → right through the vector
(i.e. from bottom to top through DAG). Call function guessInitialValues()
on each element. This will re-direct to the prior, which will initialize its prior
parameters.

∗ Simulate values: Go from right→ left throught the vector (i.e. from top to bottom
throught DAG). Call function simulateUnderPrior() on each element. This will
re-direct to the prior, which will fill each of child (i.e. each parameter/observation
on which this prior is defined) with random values from the prior distribution.

To update parameters, we use another vector of base class pointers. This is because i)
for updating, the order does not matter and ii) we do not want to update deterministic
parameters. The function update() will be called for each parameter present in this
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vector.

• In the last step, the function initializeStorage() is called, that will go through the
DAG and initialize the dimensions, storage and dimension names of all parameters (by
comparing the expectations based on the prior with the developer-defined dimensions).
This function can only be executed after all observations have been filled with data, since
the dimensions of some parameters depend on the dimensions of the observations that only
known after reading the data.

1.9 MCMC files

We distinguish four types of MCMC files:

1. Trace files. During the MCMC, every _thinning’st iteration, we write the parameter values
to a trace file. The header contains the parameter name(s) (if the parameter is an array,
it creates one column per element of the array). The rows are the values of this parameter
per iteration.

2. MeanVar files. These contain the posterior mean and variance of the parameter and are
written at the end of the MCMC. The header contains the parameter name(s) and there
are two rows: mean and variance.

3. State posterior files. For categorical variables, these contain the posterior probability for
each state, P(z = Z|D). This corresponds to the fraction of times the parameter took this
value during the MCMC. The names of the trace, meanVar and statePosteriors file are
given by the parameter definition. If multiple parameters share the same file, they will be
written as adjacent columns. Note that all parameters that share a state posterior file must
have the same number of states (otherwise the number of rows in the file don’t match).
This is checked upon construction.

4. State file. This file has three columns: name, value and jump size. It contains the current
values and jump sizes for all parameters of a certain iteration. The idea is that this file
is written every ith iteration (and is overwritten every time), as well as after the last
iteration. It can then be used as a init-file for re-starting another MCMC exactly at the
location where the old one has stopped, e.g. if the program crashed or if the MCMC has
not reached convergence.

Finally, we write all parameter configurations to a config-file. This file has the same format
as the config-file that can be read when initializing the parameters, and can hence be used to
re-start an MCMC with the same configurations as a previous MCMC.

1.10 The MCMC

Class TMCMC is the class that a developer needs to instantiate. A typical procedure would be:

1. Read the data into a TMultiDimensionalStorage object.

2. Create all parameters and observations, as well as their corresponding priors.

3. Create an instance of class TMCMC. Call function runMCMC(). This will first initialize all
parameters with MLE/EM etc., and then run the MCMC algorithm.

General MCMC parameters are (specified over the command line):
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• _iterations: The number of iterations for the MCMC.

• _burnin: The number of iterations for the burnin.

• _numBurnin: The number of burnins to run.

• _thinningStateFile: Write a state file every ith iteration. By default, no state file is
written.

• _writeBurnin: Write the trace after the initialization adn during the burnin, too.

• _thinning: Write to the trace file every ith iteration.

1.11 Simulations

The function simulate() of class TSimulator simulates values under the prior distribution
(top-down in DAG), also filling observations with random values. The simulated values will be
written to file specified in the definition. Note that if values should be read in specific file format
for observations, the developer will again need to get the pointer to the observation and write
the values himself, because the framework does not know how to handle specific file formats.
Parameters will only be simulated if no initial values have been set.

2 The EM algorithm

The expectation-maximization (EM) algorithm is an iterative algorithm that provides maximum-
likelihood estimates of parameters in the presence of latent variables. Let us denote by X the
observed data, by θ the model parameters and by z the hidden (latent) variables. We will
assume the most general model with K independent observations X = x(1), . . . ,x(K), where
each x(k) = x

(k)
1 , . . . , x

(k)
N is of length N with k = 1, . . . ,K.

The EM algorithm seeks to obtain parameter estimates of θ that maximize the marginal likeli-
hood L(θ):

L(θ) = P(X|θ) =
∑
z

P(X, z|θ) =
∑
z

Lc(θ).

Here, Lc(θ) denotes the complete data likelihood that treats z as observed. The EM algorithm
proceeds by iterating between two steps. In the expectation step (E-step), the Q-function

Q(θ|θ′) = E
[
logLc(θ)|X,θ′] =∑

z

logP(X, z|θ)P(z|X,θ′)

is calculated using the current parameter estimates θ′. This can be factorized to

Q(θ|θ′) =
K∑
k=1

N∑
i=1

Z∑
z=1

logP(x(k)i , z|θ)P(z|x(k)i ,θ′), (43)

where Z denotes the number of hidden states. The weights P(z|x(k)i ,θ′) can be calculated with
the aid of Bayes’ Theorem as

P(z|x(k)i ,θ′) =
P(x(k)i , z|θ′)∑Z
h=0 P(x

(k)
i , h|θ′)

. (44)

In the maximization step (M-step), the values θ that maximize the Q-function are determined:
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θ̃ = argmax
θ

Q(θ|θ′),

and these estimates θ̃ are then used as θ′ in the next EM iteration.
In many models, hierarchical parameters π ⊆ θ are used to model the distribution of the hidden
states z. The complete data likelihood Lc(θ) can then be factorized as

Lc(θ) = P(X, z|θ) = P(X|z,ϕ)P(z|π),

where ϕ = θ−π denotes the parameter vector θ without π. In such cases, the Q-function from
equation (43) can be written as

Q(ϕ,π|ϕ′,π′) =
K∑
k=1

N∑
i=1

Z∑
z=1

(
logP(x(k)i |z,ϕ) + logP(z|π)

)
P(z|x(k)i ,ϕ′,π′),

and the corresponding EM weights P(z|x(k)i ,ϕ′,π′) can be calculated as

P(z|x(k)i ,ϕ′,π′) =
P(x(k)i |z,ϕ

′)P(z|π′)∑Z
h=0 P(x

(k)
i |h,ϕ

′)P(h|π′)
. (45)

stattools partitions the EM algorithm in three main classes. Class TLatentVariableWithRep
represents the observation model P(x(k)i |z,ϕ). Class TEMPriorIndependent_base represents the
distribution of the hidden states P(z|π). And finally, class TEM runs the EM algorithm and
coordinates the interaction between the latent variable and EM prior. In the following, these
classes are described in more detail.

2.1 TLatentVariableWithRep and TLatentVariable

The class TLatentVariableWithRep represents the observational model and is in charge of cal-
culating P(X, z|ϕ). It is the most general representation of a latent variable model that also
allows for multiple independent observations (replicates). In many applications, however, there
is a single observation and the additional index k is superfluous. The class TLatentVariable
inherits from TLatentVariableWithRep and provides a simpler interface without the index k.
Apart from this, both classes follow the same logic and structure. In the following, we will de-
scribe the interface of TLatentVariableWithRep, as this is the more general case, but we note
that the interface of TLatentVariable is the same except that all replicate indices k are omitted
from the function definition.
Both classes are abstract base classes and define a single pure virtual function:

1. calculateEmissionProbabilities(size_t i, size_t k, TDataVector v): This func-
tion calculates the probabilities P(x(k)i , z|ϕ) at index i and replicate k for all possible
hidden states z = 1, . . . , Z and stores these probabilities in the vector v.

A developer who wishes to implement the EM algorithm must therefore derive from TLatent-
VariableWithRep (if there are replicates) or TLatentVariable otherwise, and override the func-
tion calculateEmissionProbabilities(). Both classes provides more virtual functions that
may be overridden if needed. There are three main use-cases that can be combined in any way:
i) run EM, ii) calculate likelihood and iii) estimate state posteriors. The functions that need to
be implemented for each use-case are described in the following three sections.
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2.1.1 Run EM

If the goal is to obtain MLE estimates of ϕ, the following functions should be considered for
overriding. Note that it might not be necessary to override all of them, e.g. if there is no memory
to be allocated for storing EM results, some functions may be omitted. We will describe these
functions in the order they are called.
Before the EM starts, these two functions are called:

1. prepareEMParameterEstimationInitial(): Initialize temporary values or allocate mem-
ory needed to store the EM weights (only if necessary).

2. initializeEMParameters(): Estimate an initial guess of ϕ.

Then, in each EM iteration, these functions are called:

1. prepareEMParameterEstimationOneIteration(): Called right in the beginning of the
iteration. This function should reset temporary values for the new iteration (only if neces-
sary).

2. handleEMParameterEstimationOneIteration(size_t i, size_t k, TDataVector v): The
vector v contains the EM weights P(z|x(k)i ,ϕ′,π′) that were calculated within stattools
according to equation (45). Depending on the M-step, the developer will need to either
store the weights or sum them up.

3. finalizeEMParameterEstimationOneIteration(): Called at the end of the iteration.
This function should perform the M-step.

4. reportEMParameters(): Called at the end of the iteration. Provides the possibility to
report the updated parameters ϕ to the logfile.

At the very end of the EM, this function is called:

1. finalizeEMParameterEstimationFinal(): Clear temporary variables or memory (only if
necessary).

2.1.2 Calculate likelihood

To calculate the likelihood, the following functions should be considered for overriding.

1. prepareLLCalculation(): Initialize temporary values or allocate memory needed to store
the EM weights (only if necessary).

2. finalizeLLCalculation(): Clear temporary variables or memory (only if necessary).

2.1.3 Estimate state posterior probabilities

To estimate the state posterior probabilities P(z|X,ϕ,π) for all z = 1, . . . , Z, the following
functions should be considered for overriding.

1. prepareStatePosteriorEstimation(): Initialize temporary values or allocate memory
needed to store the EM weights (only if necessary).

2. handleStatePosteriorEstimation(size_t i, size_t k, TDataVector v): The vector
v contains the state posterior probabilities (i.e. the EM weights) P(z|x(k)i ,ϕ′,π′) that were
calculated within stattools according to equation (45). Depending on the objective, these
probabilities can be stored or processed.
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3. finalizeStatePosteriorEstimation(): Clear temporary variables or memory (only if
necessary).

A common use-case is to write the state posterior probabilities to a file. In such a case, the base
class TLatentVariableWithRep already implements the following functions:

1. prepareStatePosteriorEstimationAndWriting(): Opens file and writes header.

2. handleStatePosteriorEstimationAndWriting(): Writes state posterior probabilities P(z|x(k)i ,ϕ′,π′)
to file.

3. finalizeStatePosteriorEstimationAndWriting(): Clear temporary variables or mem-
ory (only if necessary).

If necessary, these functions can be overridden by the developer to write custom files.

2.2 TEMPriorIndependent_base

The class TEMPriorIndependent_base represents the hierarchical model on the hidden states
z and is in charge of calculating P(z|π). It is an abstract base class and defines a single pure
virtual function:

1. operator(size_t i, size_t z): This function calculates the probability P(zi|π) at index
i

A developer who whishes to implement the EM algorithm must therefore derive from TEMPri-
orIndependent_base and override the function operator(). The class provides more virtual
functions that may be overridden if needed. If the goal is to obtain MLE estimates of π, the
following functions should be considered for overriding.
Before the EM starts, the following functions are called:

1. prepareEMParameterEstimationInitial(): Initialize temporary values or allocate mem-
ory needed to store the EM weights (only if necessary).

2. initializeEMParameters(): Estimate an initial guess of π. By default, the initial guess
is obtained by one full loop over all X, calculating the maximum likelihood state ẑ for each
index i and calling handleEMParameterInitialization() with this state.

3. handleEMParameterInitialization(size_t i, size_t z): Store or sum the guess of
the hidden state z.

4. finalizeEMParameterInitialization(): Get an initial guess for π based on the guesses
of the hidden states z obtained by the previous function.

Then, in each EM iteration, these functions are called:

1. prepareEMParameterEstimationOneIteration(): Called right in the beginning of the
iteration. This function should reset temporary values for the new iteration (only if neces-
sary).

2. handleEMParameterEstimationOneIteration(size_t i, TDataVector v): The vector v
contains the EM weights P(z|x(k)i ,ϕ′,π′) that were calculated within stattools according
to equation (45). Depending on the M-step, the developer will need to either store the
weights or sum them up.
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3. finalizeEMParameterEstimationOneIteration(): Called at the end of the iteration.
This function should perform the M-step.

4. reportEMParameters(): Called at the end of the iteration. Provides the possibility to
report the updated parameters ϕ to the logfile.

At the very end of the EM, this function is called:

1. finalizeEMParameterEstimationFinal(): Clear temporary variables or memory (only if
necessary).

A typical EM prior is the categorical distribution, as described in section 1.5.3.10. The prior
prior::TCategoricalInferred inherits from TEMPriorIndependent_base and and can be read-
ily used for any latent variable model where z|π ∼ Categorical(π).

2.3 TEM

Class TEM runs the EM algorithm and the coordinates the interaction between classes TLatent-
VariableWithRep and TEMPriorIndependent_base. In line with the use-cases described before,
it provides three main functionalities:

1. runEM(): Run the EM algorithm to find the ML estimates of ϕ and π.

2. calculateLL(): Calculate the marginal likelihood L(ϕ,π) given fixed estimates ϕ and π.

3. estimateStatePosteriors(): Estimate the state posterior probabilities P(z|X,ϕ,π) for
all states z = 1, . . . , Z given fixed estimates ϕ and π. If called with a filename, the state
posterior probabilities will automatically be written to a file.

The EM algorithm will iterate until i) the difference in log-likelihoods between two iterations
is smaller than some threshold (default 10−4) or until ii) the maximum number of iterations is
reached.

2.3.1 SQUAREM

The EM algorithm is very stable and guarantees a monotonic increase of the likelihood. However,
the EM algorithm is also infamous for its slow, linear convergence, which can result in very
long run times, especially for high-dimensional problems. Multiple acceleration schemes have
been proposed. stattools implements the SQUAREM method (Varadhan and Roland, 2008),
which provides an off-the-shelf solution applicable to any model. The SQUAREM algorithm
in stattools is adapted from (Varadhan and Roland, 2008; Du and Varadhan, 2020), and
one SQUAREM cycle runs as described in algorithm 1. The SQUAREM cycles are repeated
until convergence or when a maximum number of iterations is reached. The SQUAREM is
implemented within TEM and is called through the function runSQUAREM().
It is well possible that the SQUAREM proposes non-valid parameter values (e.g. negative values
for parameters that need to be positive). It therefore rejects all updates that result in invalid
parameters.
The SQUAREM algorithm requires direct access to get and set the EM parameters in both latent
variable and EM prior. If a SQUAREM is used, both the latent variable and EM prior class
must override the following functions:

• getParameters(): Return the current values of all EM parameters θ.
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Algorithm 1 One SQUAREM cycle
θ1 ← EMupdate(θ0)
if converged then

stop
end if
θ2 ← EMupdate(θ1)
if converged then

stop
end if
Lθ2 ← CalculateLL(θ2)
r = θ1 − θ0

v = (θ2 − θ1)− r

α = − ||r||
||v||

θsq = θ0 − 2αr + α2v
if θsq is not valid then

θ0 ← θ2

continue to next iteration
end if
Lθsq ← CalculateLL(θsq)
if Lθsq > Lθ2 then

θ0 ← EMupdate(θsq)
else

θ0 ← θ2

end if
continue to next iteration

• setParameters(coretools::TConstView<PrecisionType> Params): Set all EM parame-
ters θ according to values given in Params. Must return true if these parameters are valid,
and false otherwise.

If the SQUAREM is used, but these functions are not implemented, an error is thrown.

3 Hidden Markov Models

A Hidden Markov Model (HMM) assumes that a hidden, underlying Markov model emits noisy
observations. The states z = (z0, . . . , zN ) of the Markov model can thus not be observed directly,
but only inferred through the data x = (x0, . . . , xN ). We will assume that the hidden states are
discrete and denote by Z the number of hidden states such that zi ∈ 1, . . . , Z for all i = 1, . . . , N .
A HMM is characterized by three probabilities: the transition probabilities, the initial state prob-
ability and the emission probabilities. In the following sections, I will describe those probabilities
and how they are modelled within stattools.

3.1 Transition probabilities

The transition probabilities P(zi|zi−1) model the Markov assumption of the hidden states. Tran-
sition probabilities can be organized into a transition matrix Q whose element [Q]jk represents
the probability of moving from state j to state k. The transition probabilities may be either
parametrized directly or through a transition rate matrix. A transition rate matrix Λ is an
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infinitesimal generator of a transition matrix and is defined such that the rows sum to zero,
[Λ]jj = −

∑
k ̸=j [Λ]jk, while [Λ]jk ≥ 0 for j ̸= k. The transition matrix is then given by the

matrix exponential of the transition rate matrix, Q = eΛ (Suhov and Kelbert, 2008). However,
it generally makes sense to assume that the transition probabilities are affected by the distance
δi between two neighbouring observations i and i− 1. A classic example is the distance between
two genetic markers (in space) or the distance between two recordings (in time). We therefore
define Q(δi) for a distance δi as

Q(δi) = eδiΛ.

Since the number of possible distances is large and the computation of the transition probabilities
for a specific distance expensive, we group the distances δi into E + 1 ensembles such that

ei = ⌈log2 δi + 1⌉ − 1, ei = 0, . . . , E, (46)

for every data point i. By using the log2-transformation, the bin size scales with the dis-
tance: all points with distance 1 go in the first group, all points with distance 2-3 into the
second, all points with distance 4-7 in the third etc. This is implemented in class genome-
tools::TDistancesBinned.
We then use the same transition matrix Q(2e) for all data points in ensemble e. We thus only
need to calculate the transition matrix for the first ensemble e = 0 where Q(20) = Q(1), which
corresponds to the transition matrix for a distance of δ = 1. The transition matrices for all other
ensembles can then be obtained through the recursion Q(e) = Q(e− 1)2, which is relatively
cheap to calculate.
In the following sections, we will describe the transition matrices that are implemented in stat-
tools.

3.1.1 TTransitionMatrixBool

This transition matrix generalizes the concept of a Bernoulli prior to a Markov chain by defining
two parameters:

• π: The stationary probability for z = 1. This is equivalent to the success probability of
the Bernoulli prior.

• γ: Modulates the expected peak width, i.e. the amount of clustering.

Our transition matrix is:

Q =
1

1 + γ

(
1− π + γ π
1− π π + γ

)
.

The stationary probability then is exactly π:
π

π + 1− π
= π.

The parameter γ modulates the expected peak width. For γ = 0, the transition matrix is:

Q =

(
1− π π
1− π π

)
.

meaning that the probability to be in a specific state zi is completely independent of the previous
state zi−1: this corresponds to a “memory-less” Bernoulli process. For any γ > 0, the expected
peak width increases relative to the peak width under a Bernoulli process. In fact, the expected
peak length is given by

E(peak width) =
1

Q1→0
=

1 + γ

1− π
,

where the peak width under the Bernoulli model is simply 1
1−π .
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3.1.2 TTransitionMatrixCategorical

This transition matrix generalizes the concept of a categorical prior to a Markov chain by defining
three parameters:

• π: The stationary probability for z ̸= 0.

• γ: Modulates the expected peak width, i.e. the amount of clustering.

• ρ = (ρ1, . . . , ρZ): Model the probability to jump into a certain state z.

Our goal is to define a transition matrix of form

Q =


1−

∑Z
z=1 λz λ1 λ2 . . . λZ

λ0 1− λ0 0 . . . 0
λ0 0 1− λ0 . . . 0
...

...
...

. . .
...

λ0 0 0 . . . 1− λ0

 .

as a function of parameters π, γ and ρ. The stationary distribution of this transition matrix can
be derived from the following system of linear equations:

P0 =

(
1−

Z∑
z=1

λz

)
P0 + λ0

Z∑
z=1

Pz

and

P0 +
Z∑

z=1

Pz = 1,

which results in

π =

Z∑
z=1

Pz =

∑Z
z=1 λz

λ0 +
∑Z

z=1 λz

. (47)

We have thus defined π as the stationary distribution to be in a non-zero state.
We note that the expected peak width for this transition matrix is:

E(peak width) =
1

Z

Z∑
z=1

1

Qz→0
=

1

λ0
,

whereas the expected peak width for a Bernoulli process is 1
1−π . We now parametrize our

transition matrix such that the peak width corresponds to the Bernoulli process if γ = 0, but
results in more clustering if γ > 0:

E(peak width) =
1 + γ

1− π
.

Solving for λ0 results in

λ0 =
1− π

1 + γ
.

With these equations at hand, we readily define
∑Z

z=1 λz as:

Z∑
z=1

λz =
π

1 + γ
.
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So far, our parametrization acts on all λz jointly, as we defined π and γ on
∑Z

z=1 λz. In addition,
we now want the model the probability to jump into a certain state z by a parameter ρz such
that

λz =
ρzπ

1 + γ
,

where we have the constraint that
∑Z

z=1 ρz = 1.
Our transition matrix then is:

Q =
1

1 + γ


1 + γ − π ρ1π ρ2π . . . ρZπ
(1− π) γ + π 0 . . . 0
(1− π) 0 γ + π . . . 0

...
...

...
. . .

...
(1− π) 0 0 . . . γ + π

 .

3.1.3 TTransitionMatrixBoolGeneratingMatrix

This transition matrix is defined through a 2×2 transition rate matrix Λ, which is parametrized
by λ1 and λ2:

Λ =

(
−λ1 λ1

λ2 −λ2

)
. (48)

The stationary probabilities are calculated with

P(z0 = 0|λ1, λ2) =
λ2

λ1 + λ2

and
P(z0 = 1|λ1, λ2) = 1− P(z0 = 0|λ1, λ2).

This transition rate matrix is implemented in the class TGeneratingMatrixBool. As described
above, the transition matrix for a distance δ = 1 is given by the matrix exponential of the
generating matrix.

3.1.4 TTransitionMatrixLadder

This transition matrix is defined through a Z × Z ladder-type transition rate matrix Λ, which
is parametrized by κ:

Λ = κ ·


−1 1 0 . . . 0 0
1 −2 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1

 .

The stationary probabilities are simply 1
Z for each state.

This transition rate matrix is implemented in the class TGeneratingMatrixLadder. As described
above, the transition matrix for a distance δ = 1 is given by the matrix exponential of the
generating matrix.
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3.1.5 TTransitionMatrixScaledLadder

This transition matrix is defined through a Z × Z ladder-type transition rate matrix Λ with an
attractor state, which is parametrized by κ, ν and µ (Galimberti et al., 2020):

Λ = κ ·



−1 1 0 0 . . . 0 0 0 0
µ −1− µ 1 0 . . . 0 0 0 0
0 µ −1− µ 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 −1− µ µ 0
0 0 0 0 . . . 0 1 −1− µ µ
0 0 0 0 . . . 0 0 1 −1


,

where the middle row of this matrix (the attractor) is given by

( 0 . . . 0 νµ −2νµ νµ 0 . . . 0) .

The parameter µ models the rate of moving towards the peripheral states of the matrix. If µ ≈ 1,
it is equally likely up or down, whereas if µ ≈ 0, it is very unlikely to move towards the periphery
of the matrix. The parameter ν models the rate of leaving the attractor. If ν ≈ 1, it is likely to
leave the attractor, whereas if ν ≈ 0, it is very unlikely to leave the attractor.
The stationary distribution for this Markov Chain can be calculated directly from the parameters
of the generator matrix as:

Π = c ·
(

1 1
µ

1
µ2 . . . 1

µT−1
1

µT ν
1

µT−1 . . . 1
µ2

1
µ 1

)
,

where

c =
(µ− 1)νµT

2νµ(µT − 1) + µ− 1
.

Here, T = Z−1
2 denotes the number of states on one side of the attractor state, where we enforce

that Z is an odd number.
If µ = 1, this equation results in a division by zero. For this case, we use the following equation
to calculate the stationary:

Π = c ·
(
ν ν ν . . . ν 1 ν . . . ν ν ν

)
,

where
c =

1

Zν − ν + 1
.

κ, µ and ν all must be strictly positive. However, only if µ and ν are in (0,1], the attractor state
is actually attracting. We therefore constrain µ and ν to [0,1] by running optimization in the
logistic space.
This transition rate matrix is implemented in the class TGeneratingMatrixScaledLadder. As
described above, the transition matrix for a distance δ = 1 is given by the matrix exponential of
the generating matrix.

3.1.6 TTransitionMatrixScaledLadderAttractorShift

This transition matrix is defined through a Z × Z ladder-type transition rate matrix Λ with an
attractor state, which is parametrized by κ, ν and µ. This parametrization is exactly equivalent to
the previous one (TGeneratingMatrixScaledLadder) with the only difference that the attractor
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row does not need to be in the middle row. There is thus an extra parameter ix that corresponds
to the row index of the attractor (0 corresponding to the top row, 1 to the second row etc).
If there are only two states, the transition rate matrix Λ is given by:

Λ =


κ ·

(
−ν ν

1 −1

)
if ix = 0

κ ·

(
−1 1

ν −ν

)
if ix = 1.

Note that in this case, there is no µ, since the matrix would be over-parametrized.
If there are three states, the transition rate matrix Λ is given by:

Λ =



κ ·

 −νµ νµ 0

1 −1− µ µ

0 1 −1

 if ix = 0

κ ·

 −1 1 0

ν −2ν ν

0 1 −1

 if ix = 1

κ ·

 −1 1 0

µ −1− µ 1

0 νµ −νµ

 if ix = 2.

Note that in the case of three states and ix=1, there is no µ since also here, µ and ν are
non-identifiable.
The stationary is complicated to calculate explicitly. We instead solve a system of normal
equations, as explained in section 3.2.
This transition rate matrix is implemented in the class TGeneratingMatrixScaledLadderAt-
tractorShift. As described above, the transition matrix for a distance δ = 1 is given by the
matrix exponential of the generating matrix.

3.1.7 TTransitionMatrixScaledLadderAttractorShift2

This transition matrix is defined through a Z × Z ladder-type transition rate matrix Λ with an
attractor state, which is parametrized by κ, ν and µ as well as a index ix that corresponds to
the row index of the attractor (0 corresponding to the top row, 1 to the second row etc.). This
parametrization is similar to the previous one (TGeneratingMatrixScaledLadderAttractorShift),
with the exception that the attractor row is parametrized only by ν (without µ) to improve con-
vergence.
The transition rate matrix Λ is given by:

Λ = κ ·



−1 1 0 0 . . . 0 0 0 0
1− µ −2 1 + µ 0 . . . 0 0 0 0
0 1− µ −2 1 + µ . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 + µ −2 1− µ 0
0 0 0 0 . . . 0 1 + µ −2 1− µ
0 0 0 0 . . . 0 0 1 −1


,
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where the attractor row is

( 0 . . . 0 ν −2ν ν 0 . . . 0) .

The parameter µ models the rate of moving away from the periphery towards the attractor. If
µ ≈ 0, it’s equally likely to move up or down. If µ ≈ 1, it is much more likely to move towards
the attractor. The parameter ν models the rate of leaving the attractor. If ν ≈ 0, it’s very
unlikely to leave the attractor. If ν ≈ 1, it becomes more and more likely to leave the attractor.
If there are only two states, the transition rate matrix Λ is given by:

Λ =


κ ·

(
−ν ν

1 −1

)
if ix = 0

κ ·

(
−1 1

ν −ν

)
if ix = 1.

Note that in this case, there is no µ, since the matrix would be over-parametrized.
If there are three states, the transition rate matrix Λ is given by:

Λ =



κ ·

 −ν ν 0

1 + µ −2 1− µ

0 1 −1

 if ix = 0

κ ·

 −1 1 0

ν −2ν ν

0 1 −1

 if ix = 1

κ ·

 −1 1 0

1− µ −2 1 + µ

0 ν −ν

 if ix = 2.

Note that in the case of three states and ix=1, there is no µ.
The stationary is complicated to calculate explicitly. We instead solve a system of normal
equations, as explained in section 3.2.
This transition rate matrix is implemented in the class TGeneratingMatrixScaledLadderAt-
tractorShift2. As described above, the transition matrix for a distance δ = 1 is given by the
matrix exponential of the generating matrix.

3.2 Initial state distribution

The initial state distribution P(z0) models the distribution of the first hidden state z0. It often
makes sense to assume that the initial state distribution follows the stationary distribution of
the Markov chain, which is given by the transition matrix Q. Depending on the parametrization
of Q, the stationary distribution may be calculated explicitly, as it is the case for the transition
matrices described in sections 3.1.1, 3.1.2, 3.1.3, 3.1.4 and 3.1.5.
If this is not possible, the stationary distribution can be calculated from the transition matrix
Q using normal equations as follows. We are attempting to find a solution for

π = πQ,

such that
Z∑

z=1

πz = 1.
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We can re-arrange the above expressions to

π − πQ = 0

π(I −Q) = 0.

We can add the constraint that all π must sum to one by adding an extra column of 1’s to
(I −Q) and an extra 1 to the zero vector (call this new vector b). To simplify the notation, we
will write π as a column vector and hence transpose I −Q (call this new matrix A):

1−Q11 −Q21 . . . −QZ1

−Q12 1−Q22 . . . −QZ2
...

...
. . .

...
−Q1Z −Q2Z . . . 1−QZZ

1 1 . . . 1



π1
π2
...
πZ

 =


0
0
...
0
1


We now solve Aπ = b, which is overdetermined, and can be solved with the normal equation

ATAπ = ATb.

This is achieved using the matrix library Armadillo (Sanderson and Curtin, 2016; Sanderson and
Curtin, 2019).

3.3 Emission probabilities

The emission probabilities P(x(k)i |zi) represent the observational model. In fact, the emission
probabilities by themselves are “ignorant” of the Markov assumption of the hidden states z and
as such not different from any other latent variable model. In stattools, they are simply latent
variables deriving from the class TLatentVariableWithRep, as described in 2.1, regardless if the
latent variable has a Markov property or not.

3.4 The forward-backward algorithm

Given the transition probabilities P(zi|zi−1) , the initial state probability P(z0) and the emission
probabilities P(xi|zi), we can define the joint distribution of the HMM as

P(z,x) = P(z0)
N∏
i=1

P(zi|zi−1)
N∏
i=0

P(xi|zi).

Note that this is easily extendable to multiple K independent observations. For simpler notation,
we will omit the index x(k) in the following equations.
A major goal is to estimate P(zi|x) for all data points i, which is the state posterior probability
of the hidden state zi given all the data x. This can be calculated efficiently with the forward-
backward algorithm, which relies on the fact that by conditioning on the state zi at index i, we
can break the chain into two parts, the past and the future. This allows us to factorize the joint
distribution to

P(zi,x0:N ) = P(zi,x0:i)P(xi+1:N |zi) := αi(zi)βi(zi).

Here, αi(zi) := P(zi,x0:i) is the probability to observe the past data up index i and to be in state
zi, and βi(zi) := P(xi+1:N |zi) is the probability of all future data given that the hidden state at
index i is zi. The state posterior probability P(zi|x0:N ) is then given by:
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P(zi|x0:N ) =
αi(zi)βi(zi)∑
zi
αi(zi)βi(zi)

. (49)

This state posterior probability is commonly denoted by γi(zi) = P(zi|x0:N ). In stattools, this
equation in implemented in class THMMPosteriorGamma.
Both αi(zi) and βi(zi) can be calculated efficiently with recursions.

3.4.1 The forward recursion

The forward probabilities αi(zi) can be calculated efficiently by starting with α0(z0) = P(x0|z0)P(z0)
and then propagating to the index on the right where αi(zi) is given by

αi(zi) = P(xi|zi)
Z∑

zi−1=1

P(zi|zi−1)αi−1(zi−1).

Since these probabilities can get very small, we normalize them at each step:

P(zi|x0:i) =
αi(zi)∑
zi
αi(zi)

.

The forward recursion is implemented in the stattools class THMMForwardAlpha.

3.4.2 The backward recursion

The backward probabilities βi(zi) can be calculated efficiently by starting at β(zN ) = 1 and then
propagating to the index on the left where βi(zi) is given by

βi(zi) =
Z∑

zi+1=1

P(zi+1|zi)P(xi+1|zi+1)β(zi+1),

As above, we normalize the probabilities at each step.
The backward recursion is implemented in the stattools class THMMBackwardBeta.

3.5 The Baum-Welch algorithm

The Baum-Welch algorithm is a special case of the expectation-maximization (EM) algorithm
used for maximum likelihood estimation in HMMs. The following description of the Baum-Welch
algorithm is mostly based on Wegmann and Leuenberger (2019). Using the same notation as in
section 2, we denote by X the observed data, by θ the model parameters and by z the hidden
(latent) variables. We will assume the most general model with K independent observations
X = x(1), . . . ,x(K), where each x(k) = x

(k)
0 , . . . , x

(k)
N is of length N with k = 1, . . . ,K.

The model parameters θ govern all initial distributions P(z0), the transition probabilities P(zi|zi−1)

and the emission probabilities P(x(k)i |zi). The complete data log likelihood is given by

ℓc(θ) =

K∑
k=1

[
logP(z(k)0 ) +

N∑
i=1

logP(z(k)i |z
(k)
i−1) +

N∑
i=0

logP(x(k)i |z
(k)
i )

]
.

Maximum likelihood estimates of θ can be obtained by iteratively maximizing the Q-function
Q(θ|θ′) = E[ℓc(θ)|θ′,X], which is defined as
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Q(θ|θ′) =

K∑
k=1

E
[
logP(z(k)0 )|x(k)

0:N ,θ′
]
+

K∑
k=1

N∑
i=1

E
[
logP(z(k)i |z

(k)
i−1)|x

(k)
0:N ,θ′

]
+ . . .

+
K∑
k=1

N∑
i=0

E
[
logP(x(k)i |z

(k)
i )|θ′

]
=

K∑
k=1

∑
z0

γ
(k)
0 (z0) logP(z0) +

K∑
k=1

N∑
i=1

∑
zi

∑
zi−1

ξ
(k)
i (zi, zi−1) logP(zi|zi−1) + . . .

+
K∑
k=1

N∑
i=0

∑
zi

γ
(k)
i (zi) logP(x

(k)
i |zi),

where the γ(k)i (zi) and ξ
(k)
i (zi, zi−1) denote the expectation weights P(zi|x(k)

0:N ) and P(zi, zi−1|x(k)
0:N ),

respectively. These weights can be calculated efficiently with the forward-backward algorithm,
where the γ

(k)
i (zi) are given by

γ
(k)
i (zi) =

α
(k)
i (zi)β

(k)
i (zi)∑

h α
(k)
i (h)β

(k)
i (h)

.

and all ξ(k)i (zi, zi−1) by

ξ
(k)
i (zi, zi−1) := P(zi, zi−1|x(k)

0:N ) ∝ α
(k)
i−1(zi−1)P(zi|zi−1)β

(k)
i (zi)P(x

(k)
i |zi), (50)

where one has to normalize such that the sum over zi adds up to one. In stattools, this is
implemented in class THMMPosteriorXi.
In line with the EM algorithm, stattools partitions the Baum-Welch algorithm in three main
classes. Class TLatentVariableWithRep represents the observation model P(x(k)i |zi) and is ex-
actly the same as in the EM framework. Class TTransitionMatrix_baseWithRep represents the
transition probabilities P(zi|zi−1). And finally, class THMM runs the forward-backward and/or the
Baum-Welch algorithm and coordinates the interaction between the latent variable and transition
matrix. In the following, the latter two classes are described in more detail.

3.6 TTransitionMatrix_base

The class TTransitionMatrix_base represents the transition probabilities and is in charge of
calculating P(zi|zi−1). It is an abstract base classes and defines two pure virtual functions:

1. operator(size_t i, size_t from, size_t to): This function calculates the transition
probability P(z = to|z = from) at data point i.

2. stationary(size_t z): This function calculates the stationary probability P(z).

The class has a pre-defined implementation of initial probabilities, which are simply estimated
as the expected number of the K independent runs that started in state z0:

P(z0) =
1

K

K∑
k=1

γ
(k)
0 (z0).

We will assume that this implementation will be used in all applications, and won’t describe
the functions needed to override this default below for simplicity. However, we note that every
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function listed below that is applicable to TransitionProbabilities can also be defined for
InitialDistribution (e.g. handleEMParameterEstimationOneIterationTransitionProba-
bilities() and handleEMParameterEstimationOneIterationInitialDistribution()), and
can be easily overridden if needed.
A developer who whishes to implement an HMM must derive from TTransitionMatrix_base
and override the functions operator() and stationary(). The class class provides more virtual
functions that may be overridden if needed. If the goal is to run a Baum-Welch algorithm, the
following functions should be considered for overriding.
Before the EM starts, the following functions are called:

1. prepareEMParameterEstimationInitial(): Initialize temporary values or allocate mem-
ory needed to store the EM weights (only if necessary).

2. initializeEMParameters(): Estimate an initial guess of the transition matrix parame-
ters. By default, the initial guess is obtained by one full loop over all X, calculating the
maximum likelihood state ẑ for each index i and calling handleEMParameterInitializa-
tionTransitionProbabilities() with this state.

3. handleEMParameterInitializationTransitionProbabilities(size_t i, size_t from,
size_t to): Store or sum the guess of the hidden state from to hidden state to.

4. finalizeEMParameterInitializationTransitionProbabilities(): Get an initial guess
for the transition matrix parameters based on the guesses of the hidden states z obtained
by the previous function.

Then, in each EM iteration, these functions are called:

1. prepareEMParameterEstimationOneIterationTransitionProbabilities(): Called right
in the beginning of the iteration. This function should reset temporary values for the new
iteration (only if necessary).

2. handleEMParameterEstimationOneIterationTransitionProbabilities(size_t i, THMM-
PosteriorXi Xi): The object Xi contains the EM weights ξ

(k)
i (zi, zi−1) that were calcu-

lated within stattools according to equation (50). Depending on the M-step, the devel-
oper will need to either store the weights or sum them up.

3. finalizeEMParameterEstimationOneIterationTransitionProbabilities(): Called at
the end of the iteration. This function should perform the M-step.

4. reportEMParameters(): Called at the end of the iteration. Provides the possibility to
report the updated parameters to the logfile.

At the very end of the EM, this function is called:

1. finalizeEMParameterEstimationFinal(): Clear temporary variables or memory (only if
necessary).

In addition, the class TTransitionMatrix_base provides functions to simulate hidden states
based on the transition matrix:

1. simulateStates(Container Data): Fills a (templated) container with hidden states ac-
cording to the transition probabilities. Iteratively calls the function sampleNextState().

2. sampleNextState(size_t i, size_t from: Samples the next state given the previous
state from according to the transition probabilities.
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3.6.1 TTransitionMatrixDistances

As described in section 3.1, stattools implements a collection of transition matrices that are
scaled with the distance between two neighbouring data points. The class TTransitionMa-
trixDistances inherits from TTransitionMatrix_base and overrides all virtual functions de-
scribed above such that the parameters of any arbitrarily parametrized transition matrix can be
estimated.
The most important member variables of TTransitionMatrixHMMDistancesBase are:

• _distances: A pointer an instance of class TDistancesBinnedBase that handles the dis-
tances δi between adjacent data points. As described in section 3.1, these distances are
binned to E ensembles for computational reasons.

• _tau_allDist: A vector of size E+1 that stores the current transition matrices (Q(0),Q(1), . . . ,Q(E))
as Armadillo matrices. Here, Q(0) represents the stationary distribution P(z0), and all
subsequent Q(e) represent the transition matrices for ensemble e.

• _tau_allDist_old: A vector of size E + 1 of Armadillo matrices. If used within an
MCMC, these correspond to the old transition matrices. If used within an Baum-Welch,
these store the EM sums ξ.

• _optimizer: A pointer to a derived class of TTransitionMatrixDistancesOptimizerBase,
which handles the optimization of the transition matrix parameters in the M-step.

The following virtual functions of class TTransitionMatrix_base are overridden:

1. operator(size_t i, size_t from, size_t to): This function returns the transition
probability P(z = to|z = from) at data point i, which is stored in _tau_allDist[e]
for ensemble e of index i.

2. stationary(size_t z): This function returns the stationary probability P(z), which is
stored in _tau_allDist[0].

3. initializeEMParameters(): Three initialization types are supported (enum TypeTrans-
MatInitialization). none implies no initialization and keeps the user-provided values.
ML implies maximum-likelihood estimation through handleEMParameterInitialization-
TransitionProbabilities(). defaultValues implies that the default values of the tran-
sition matrix parameters are used, which are defined in the corresponding transition matrix
class.

4. handleEMParameterInitializationTransitionProbabilities(size_t i, size_t from,
size_t to): This sums up all the transitions from→ to for all data points that fall within
the same ensemble e.

5. finalizeEMParameterEstimationOneIterationTransitionProbabilities(): If initial-
ization type is ML, this will call the function finalizeEMParameterEstimationOneItera-
tionTransitionProbabilities(), which is also used at the end of a regular EM iteration.

6. prepareEMParameterEstimationOneIterationTransitionProbabilities(): This fills _tau_-
allDist_old with zeros.

7. handleEMParameterEstimationOneIterationTransitionProbabilities(size_t i, THMM-
PosteriorXi Xi): This sums up all Xi for all data points that fall within the same en-
semble e. finalizeEMParameterEstimationOneIterationTransitionProbabilities():
This class asks the _optimizer to maximize the Q-function.
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In addition, the class provides functions to simulate distances (simulateDistances()) and to
simulate hidden states according to the transition matrix parameters and distances (sampleNextState()).
Also, it is possible to activate the reporting of EM parameters to the logfile through the function
report().

3.6.2 TTransitionMatrixDistancesOptimizerBase and derived classes

The class TTransitionMatrixDistancesOptimizerBase is an abstract base class that defines
the interface of the optimizer classes. It defines the pure virtual function maximizeQFunction()
that is called at the M-step of the Baum-Welch algorithm. In addition, it defines the pure virtual
functions _fillTransitionProbabilities() and _fillStationaryDistribution() that fill a
vector of Armadillo matrices with the estimated transition matrices for all distance groups.
The class TTransitionMatrixDistancesExponential derives from the base class. It is used as
a base class for all transition matrices that calculate all transition matrices of ensemble e > 1
by squaring the transition matrix of the previous ensemble e. The class is templated with
TypeTransMat that defines the type of transition matrix from section 3.1. The class holds an
instance of such a transition matrix, and the function _fillTransitionProbabilities() fills a
vector of Armadillo matrices by repeatedly squaring this transition matrix.
The following classes derive from TTransitionMatrixDistancesExponential:

3.6.2.1 TOptimizeTransMatLineSearch

Uses a line search to find parameters maximizing the Q-function. This only works for transition
matrices parametrized by a single parameter, i.e. for TTransitionMatrixLadder.

3.6.2.2 TOptimizeTransMatNelderMead

Uses the Nelder-Mead algorithm to find parameters maximizing the Q-function. This is used
for transition matrices with multiple parameters, i.e. for TTransitionMatrixBool, TTran-
sitionMatrixCategorical, TTransitionMatrixBoolGeneratingMatrix and TTransitionMa-
trixScaledLadder. Unfortunately, it is not possible to take the derivative of the Q-function
with respect to the transition matrix parameters for these transition matrices due to the matrix
exponential. We therefore resort to numerically optimize the relevant term of the Q-function in
every EM-iteration using the Nelder-Mead algorithm (see section 4):

f =
N∑
i=1

∑
zi

∑
zi−1

ξi(zi, zi−1) logP(zi|zi−1),

=

E∑
e=0

∑
zi

∑
zi−1

logP(zi|zi−1, e)

N∑
i=1

I(ei = e)ξi(zi, zi−1),

Here, we sum up all ξ for one distance group and multiply with the transition probability for that
distance group. For the first Nelder-Mead (in the first EM iteration), we choose a initial vertex
based on the initial values of the transition matrix parameters, and define some displacement.
In the subsequent iterations, we simply use the last simplex of the previous EM iteration. In
addition, we dynamically adjust the termination threshold depending on the fractional difference
between the best vertex of the current and previous EM-iteration. If the estimate of the previous
run was already very good, we want to be very precise. If the estimate of the previous run was
rough, we want to be preciser than before, but don’t waste time with finding the exact root,
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because the value is likely to change after the next EM iteration anyways. Therefore, the Nelder-
Mead algorithm will have a rather high termination threshold in the first iterations, leading to
little computational overhead.

3.6.2.3 TOptimizeTransMatNelderMeadAttractorShift

Uses the Nelder-Mead algorithm to find parameters maximizing the Q-function, but runs the
Nelder-Mead algorithm for each attractor index separately. This is used for transition matrices
that have an attractor, i.e. TTransitionMatrixScaledLadderAttractorShift and TTransi-
tionMatrixScaledLadderAttractorShift2.

3.6.3 HMM with combined states

Certain models are defined by multiple parallel HMMs where the transition probabilities are
calculated independently for each chain, but the emission probabilities are calculated on the
combination of states of all chains jointly. For example, for chromosome painting in a diploid
organism, two seperate HMMs run on the haplotypes. The transition probabilities are defined
for each haplotype seperately. However, the emission probability is defined on the combination
of the two haplotypes.
Class TCombinedStatesTransitionMatrices inherits from TTransitionMatrix_base to account
for such cases. It is written as a wrapper around a vector of pointers to TTransitionMatrixH-
MMDistancesBase that represent the individual chains. Generally speaking, all functions of the
class either decompose the combined states into the individual states per chain, or the other way
around.
The transition probability of the combined states (implemented in function operator()) takes
as an argument the combined states of the particular transition. The function decomposes these
combined states into the individual states for each chain by determining the subscripts of the
linear index based on the number of states per chain. The combined transition probability is
then simply the product of the transition probabilities for these individual states of each chain.
The same logic applies for calculating the stationary probability.
During the EM, the class received the EM weights ξ of the combined states in the function
handleEMParameterEstimationOneIterationTransitionProbabilities(). This function “bu-
dles” these weights for each individual HMM by summing over the states of the other HMMs.
Currently, this is done by a double loop over all combined states, and determining the relevant
individual states. However, this algorithm could be improved, since the states are represented
as “blocks”, and certain terms could be re-used. One would need to think on how to do this in a
clever way.

3.7 THMM

Class THMM runs the forward-backward and/or the Baum-Welch algorithm and the coordinates
the interaction between classes TLatentVariableWithRep and TTransitionMatrix_base. In line
with the EM algorithm and class TEM (section 2.3, it provides three main functionalities:

1. runEM(): Run the Baum-Welch algorithm to find the ML estimates of emission, initial
state and transition matrix parameters.

2. calculateLL(): Run the forward recursion to calculate the marginal likelihood L(θ) given
fixed estimates of emission, initial state and transition matrix parameters.

3. estimateStatePosteriors(): Run the forward-backward algorithm to estimate the state
posterior probabilities P(z|X,θ) for all states z = 1, . . . , Z given fixed estimates of emission,
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initial state and transition matrix parameters. If called with a filename, the state posterior
probabilities will automatically be written to a file.

The Baum-Welch algorithm will iterate until i) the difference in log-likelihoods between two
iterations is smaller than some threshold (default 10−4) or until ii) the maximum number of
iterations is reached.

3.8 HMM in MCMC

The class prior::THMMPrior derives from TTransitionMatrixHMMDistancesBase and coordi-
nates the Hastings ratios of transition matrix parameters in MCMCs. Prior distributions that
represent an HMM (e.g. THMMBoolInferred, THMMBoolGeneratingMatrixInferred and THMM-
LadderInferred) are then straightforward to implement: They need to define their transition
matrix, and manage its parameter(s). All the rest is either implemented in TTransitionMa-
trixHMMDistancesBase (i.e. initialization via Baum-Welch) and in THMMPrior (i.e. MCMC
updates of z and transition matrix parameters).

3.9 Smart initialization of transition matrix parameters

Assume we have a model with a transition matrix and a latent variable that specifies an emission
probability P(x(k)i |zi), which is the probability to observe data x

(k)
i at position i and replicate k

given hidden state zi ∈ (0, . . . , Z−1) where Z is the number of states. To initialize the transition
matrix parameters, a simple approach is to calculate the maximum likelihood state, which is
the state zi that maximizes the emission probabilities, and running a single optimization (e.g.
Nelder-Mead) based on these states. However, the maximum likelihood state is very noisy and
an initialization of the transition matrix based on this can move the transition matrix parameters
to a very bad initial estimate.
We instead propose to run an initial Baum-Welch algorithm on a “simplified” version of the
latent variable that is based on a smoothed version of the mean posterior state. In this case,
the observed data is the mean posterior state y

(k)
i at position i and replicate k, projected to the

interval [0,1], which is given by

y
(k)
i =

1

Z − 1

Z−1∑
z=0

z
P(x(k)i |z)∑Z−1

h=0 P(x(k)i |h)
.

We model the emission probabilities P(y(k)i |zi) using a Beta distribution parametrized in terms
of mode m and concentration κ, which are given by

m =
α− 1

α+ β − 2
and κ = α+ β − 2, (51)

with the constraints 0 ≤ m ≤ 1 and κ ≥ 0 and α, β ≥ 1. We parametrize the mode m of the
Beta distribution as a function of ϕ and of the hidden state zi as:

m(zi) =
1

2
(1− ϕ) + ϕ

zi
Z − 1

,

where ϕ is a measure of information content with ϕ = 1 meaning positive correlation and ϕ = 0

meaning no correlation between y
(k)
i and zi.

Solving equation (51) for α and β, we get

α(zi) = 1 + κm(zi),
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β(zi) = 1 + κ(1−m(zi)).

The emission probability is then given by the density of the Beta distribution

y
(k)
i |zi ∼ Beta(α(zi), β(zi)).

To update the EM parameters ϕ and κ, we use a Nelder-Mead algorithm that searches the values
of ϕ and κ that maximize the following term of the Q-function:

Q =
K∑
k=1

N∑
i=0

∑
zi

logP(y(k)i |zi)γ
(k)
i (zi),

where we need to store all γ
(k)
i (zi) in memory to do this calculation. As the Nelder-Mead

algorithm can not handle parameter constraints, it operates on p = logit(ϕ) and k = log(κ). In
addition, to prevent the algorithm from being stuck at ϕ = 0 (meaning no correlation at all),
we set ϕ = δ + logistic(p)(1 − δ), where δ is some fixed small noise term. This simple latent
variable is very useful for initialization of the transition matrices and is implemented in class
TLatentVariableInitialization.

4 The Nelder-Mead algorithm

The Nelder-Mead algorithm (also called downhill simplex or amoeba algorithm) is a derivative-
free multidimensional optimization algorithm that is used to find the minimum of a function with
more than one independent variable (Nelder and Mead, 1965; Press et al., 2007). The method
is a direct search method that only requires function evaluations, but no derivatives.
Consider a function f(x) of N unknown variables x = x1, . . . , xN . The goal is to find the
variables xm that minimize this function. To explore the function space of f , the algorithm
evaluates the function values at different points with a geometrical shape named simplex. A
simplex is the simplest volume in the N -dimensional space and consists of N + 1 points. In one
dimension, a simplex is a line, in two dimensions, it is a triangle, in three dimensions, it is a
tetrahedron, etc. Each point of the simplex corresponds to a set of variables xi, and for each
point, we can calculate the value of the function f(xi) we aim to minimize. The algorithm then
proceeds as follows. We first define a starting guess for all N + 1 points. One possibility is to
determine one initial starting point x1 only, and to define all other N points as

xi = x1 +∆ei,

where ei are N unit vectors and ∆ is a constant that represents a guess of the length of the
function, i.e. how large the initial simplex should be. The implemented algorithm in this
framework provides an interface for 1) starting with an initial vertex x1 and ∆, 2) starting
with an initial vertex x1 and all ei displacement vectors, and 3) starting with a full initial
simplex. Based on this initial guess, the algorithm proceeds with the following steps:

1. Order: Order the N + 1 points by their function value f(x1) ≤ . . . ≤ f(xN ) ≤ f(xN+1).
Here, x1 is the point with the lowest function value (i.e. the best point), f(xN ) is the
point with the second-highest function value (i.e. the second-worst point), and f(xN+1) is
the point with the highest function value (i.e. the worst point).

2. Terminate: Calculate the fraction

ϵ =
2|f(xN+1)− f(x1)|
|f(xN+1)|+ |f(x1)|+ ν

, (52)
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where ν is an arbitrarily small number to avoid any division by zero. Given a threshold
δ, terminate the algorithm if ϵ < δ. Otherwise, determine the centroid of all points except
xN+1 as xo =

1
N

∑N
i=1 xi and go to Step 3.

3. Reflection: Reflect the worst point of the simplex through the opposite face. Calculate
the reflected point as xr = xo + α(xo − xN+1) with α > 0, and evaluate f(xr):

• If the reflected point is the best point (f(xr) < f(x1)), go to 4.
• Else, if the reflected point is better than the second worst point (f(xr) < f(xN )),

replace the worst point xN+1 with xr, and go to step 1.
• Else, the reflected point is worse than the second worst (f(xr) ≥ f(xN )). Go to step

5.

4. Expansion: Reflection was successful, so the algorithm will try to push the new point
even a bit further in this beneficial direction. Calculate the expanded point as xe =
xo + γ(xr − xo) with γ > 1, and evaluate f(xe):

• If the expanded point is better than the reflected point (f(xe) < f(xr)), replace the
worst point xN+1 with xe, and go to step 1.

• Else (f(xe) ≥ f(xr)), replace the worst point xN+1 with xr, and go to step 1.

5. Contraction: Reflection was not successful, for instance because it overshot the peak, so
the algorithm will contract the simplex by moving the worst point closer to the centroid.
Calculate the contracted point as xc = xo + ρ(xN+1 − xo) with 0 < ρ ≤ 0.5, and evaluate
f(xc):

• If the contracted point is better than the worst point (f(xc) < f(xN+1)), replace the
worst point xN+1 with xc, and go to step 1.

• Else (f(xc) ≥ f(xN+1)), go to step 6.

6. Shrinkage: If contraction was also not successful, the simplex is shrank by moving all
other points towards the best one. Replace all points of the simplex except the best point
x1 with the shrunken values xi = x1 + σ(xi − x1), and go to step 1.

Standard values for the reflection, expansion, contraction and shrink coefficients are α = 1, γ =
2, ρ = 0.5 and σ = 0.5.
The default value for the termination threshold δ is 10−15 but can easily be changed depending on
the precision required. Press et al., 2007 recommends to let δ be of order the machine precision,
however, in my tests, the algorithm never reached this precision. To avoid infinite loops in
such cases, the algorithm will stop after _maxNumFuncEvaluations function calls (default value:
20000). In addition, there is an option to dynamically adjust the termination tolerance based
on some reference value. This was implemented for a scenario where the Nelder-Mead algorithm
was used for maximizing the Q-function of an EM. In the first EM iterations, there is no need
for Nelder-Mead to be precise, as the values will anyways be optimized further in the next EM
iteration. However, towards the end of the EM, the Nelder-Mead should be increasingly precise.
To achieve this, we pass a reference value (e.g. the function value of the best vertex of the
previous Nelder-Mead run) and a precision factor to the algorithm. After a few function calls
(by default 10), the algorithm will determine a new threshold δ′ by computing the fractional
range between the function value at the current best vertex x1 and the reference value xref

analogous to (52), and scaling this with the precision factor τ :

δ′ = τ
2|f(xref )− f(x1)|
|f(xref )|+ |f(x1)|+ ν

.
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5 The Newton-Raphson algorithm

5.1 One-dimensional problems

The Newton-Raphson algorithm is a very popular algorithm for finding the root of a function,
that is, the value where the function equals zero. It requires the evaluation of both the function
f(x) and the derivative f ′(x) at arbitrary points x. Based on an initial guess x0, the algorithm
iteratively improves the current value by linearly projecting the location at which f(x) = 0 using
the derivative. In each iteration, the step size s is computed as

s =
f(xi)

f ′(xi)
,

a new value xi+1 is obtained with
xi+1 = xi − s.

The algorithm terminates if either the function value |f(xi)| is smaller than some convergence
criterion ϵ, or if the maximal number of iteration was reached.
Newton-Raphson is very powerful because it converges quadratically to the root, that is, the
number of significant digits approximately doubles with each step when being close to the root.
However, it is also very sensitive to bad initial guesses x0 that are so far away from the root
such that the iteration step overshoots, with little hope of recovery. One way to overcome this
issue is to backtrack along the direction of s, until the step results in a value where the func-
tion is closer to zero than before: While |f(xi+1)| > |f(x)|, only propose a step of s

2 ,
s
4 ,

s
8 etc,

until the step does not overshoot. This variant is implemented in the function runNewtonRaph-
son_withBacktracking(). Another possibility to deal with overshooting is a combination of
bisection and Newton-Raphson (Press et al., 2007). This algorithm requires some initial guess
of bounds, i.e. some values xmin and xmax that enclose the root. The algorithm will then take a
bisection step whenever Newton-Raphson result in a value that is outside the bounds or whenever
Newton-Raphson is not reducing the size of the bounds rapidly enough. For the first case, the
step is out of bounds if xi > xmax or xi < xmin. For the second case, we require the function
value at the current iteration f(xi) to be at maximum twice as large than in the previous step
f(xi−1), by assuming that the derivative remains constant between two iterations and checking
if

|2f(xi)| > |si−1f
′(xi)|.

If one of these conditions is true, we calculate an adjusted step that spans half of the range,
s = 1

2(xmax − xmin), which corresponds to a standard Newton step. If not, the step is accepted.
After each iteration, the bounds are adjusted to narrow the range. This algorithm is implemented
in the function runNewtonRaphson_withBisection(). This Newton-Raphson variant can has the
option to deal with functions that have a root, but then also converge towards zero. For certain
initial values, the standard implementation would bisect into the flat part of the function and
the algorithm would terminate since the value is very close to zero. However, there is a true
root that is exactly zero. To overcome this issue, we define a template parameter that does not
allow termination after a bisection step. The algorithm can thus only terminate after a Newton-
Raphson step, and will therefore always find the true root (at the cost of potentially some extra
iterations).
Both Newton-Raphson variants are templated to take 1) a class object, 2) a function f of that
class whose root should be found, and 3) the derivative of that function, f ′. In many applications,
the peak of a function (e.g. the MLE of a likelihood) can be obtained by Newton-Raphson by
providing the first and second derivative of that function to the algorithm, since the peak is the
place where the first derivative is zero.
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The default value for the termination threshold ϵ is 10−10 but can easily be changed depending
on the precision required. To avoid infinite loops in such cases, the algorithm will stop after
_maxIterations function calls (default value: 1000). In addition, there is an option to dynam-
ically adjust the termination tolerance based on some reference value. This was implemented
for a scenario where the Newton-Raphson algorithm was used for maximizing the Q-function of
an EM. In the first EM iterations, there is no need for Newton-Raphson to be precise, as the
values will anyways be optimized further in the next EM iteration. However, towards the end
of the EM, the Newton-Raphson should be increasingly precise. To achieve this, we can call the
function dynamicallyAdjustTolerance() and give some precision factor τ (e.g. 1000) to the
algorithm. The algorithm will stop if

|f(xi)|
|f(xref )|

< τ,

where xref is the inital value, since this corresponds to the last value of the previous Newton-
Raphson run in the EM setting described above.

5.2 Multi-dimensional problems

For multidimensional problems, i.e. if nonlinear systems of equations must be solved, the problem
becomes slightly more complex, as we now have a vector of functions F to be zeroed, involving
variables xj :

Fj(x0, x1, . . . xN−1) = 0; j = 0, . . . , N − 1.

In addition, we need the matrix of partial derivatives, the so-called Jacobian matrix J with
entries

Jjk =
∂Fj

∂xk
.

The Newton step here is
x′ = x+ δx,

where
δx = −J−1F .

We implemented a globally convergent Newton-Raphson algorithm with backtracking as de-
scribed in Press et al., 2007, Chapter 9.7. This algorithm always tries a full Newton step at
first, which guarantees quadratic convergence if close enough to the solution. However, in order
to prevent overshooting, there is a check at each iteration whether the decreases the function
value sufficiently. If not, the algorithm backtracks along the direction of the step until the step
is accepted.
We further introduced (optional) interval checks. In some cases, there are constraints on the
parameter values, e.g. they need to be (strictly) positive. However, the standard Newton-
Raphson algorithm does not know about these constraints and may propose parameter values
that violate the constraints. We implemented two solutions:

• The user can specify minimal and/or maximal values for each parameter using the functions
setMin() and setMax(). If a Newton-Raphson step result in a value x′j that violates its
interval mj , we calculate the back-tracking factor λ such that we instead jump exactly to
the boundary of the interval:

λ =
mj − xj

δxj

If multiple values j violate the intervals, the take the minimal λ to guarantee that the step
is valid. This is a very effective way to do backtracking in case of bounded values.
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• If the conditions of a valid step are more complex than simple intervals on the parameter
values, there is also an option to communicate to the algorithm that the step was invalid.
Specifically, the user-defined function Fun(), which calculates the functions to be zeroed
F , must return a pair: i) the function F and ii) whether or not the proposed values x are
valid or not. If the values are not valid, Newton-Raphson will do standard backtracking
by halving the proposed step, instead of the more elaborate backtracking algorithm as
described in Press et al. (2007).

This algorithm is implemented in class TMultiDimensionalNewtonRaphson. Note that the same
dynamical termination threshold is implemented as described above for the one-dimensional
Newton-Raphson. Specifically, the algorithm will stop if

maxj=0,...,N−1 |Fj(x)|
maxj=0,...,N−1 |Fj(xref )|

< τ.

5.2.1 Approximations to the Jacobian matrix

In some cases, calculating the Jacobian is not possible analytically. Class TApproxJacobian
calculates the necessary partial derivatives of function F numerically by finite differences (see
Press et al., 2007, Chapter 5.7 and 9.7 for a description of the algorithm). This class is readily
used in combination with the Newton-Raphson algorithm described above.

6 Line search algorithm

The line search is a very simple algorithm used to find the minimum, maximum or root of a
one-dimensional function f . Based on some initial guess x0, it iteratively proposes steps s into
one direction, and changes that direction when f(xi+1) > f(xi) (for finding the minimum),
f(xi+1) < f(xi) (for finding the maximum), or when f(xi+1) · f(xi) > 0 (for finding the root).
The third case holds because of a sign change: if f(xi+1) and f(xi) are both positive or both neg-
ative, the product will always be positive; however, if one is positive and the other isn’t, it means
we have crossed the root and need to go back. The root-finding line search also needs to make
sure that the first step goes into the correct direction by checking if either f(xi+1) ·f(xi) > 0 (we
crossed the root) or |f(xi+1)| > |f(xi)| (the function gets larger, so we are walking away from
the root). For all cases, the step size is decreased by si+1 = − si

exp(1) after a change of direction,
in order to encroach the target. The algorithm terminates if either the step s is smaller than
some convergence criterion ϵ, or if the maximal number of iteration was reached. All variants
(findMax(), findMin() and findZero()) are implemented in class TLineSearch and are tem-
plated to take a class object as well as a function f of that class whose minimum/maximum/root
should be found.

7 K-Means Clustering

The K-Means clustering algorithm assigns each of N data points to one of K possible clusters
S = S1, . . . , SK such that the within-cluster sum of squares is minimized:

argmin
S

K∑
k=1

∑
x∈Sk

||x− µk||,

where x is a d-dimensional data point and µk is the mean of all data points in cluster Sk. The
naive clustering algorithm proceeds iteratively using a simple EM algorithm as follows:
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1. E-step: Assign each data point xi to the cluster k with the nearest mean µk in terms of
squared Euclidean distance.

2. M-step: For each cluster k, re-calculate µk as the mean of all data points xi assigned to
cluster k.

These two steps are repeated until the E-step does not change an assignment of any data point.
Using random initial estimates of µk can result in poor performance of the K-means algorithm.
We therefore also implemented the k-means++ algorithm from David Arthur and Sergei Vassil-
vitskii to have an educated guess of the initial cluster means µk. This algorithm proceeds as
follows:

1. Pick one data point x at random and set the mean of the first cluster to this value, µ1 = x.

2. For each data point x, find the nearest mean µk that has already been assigned, and record
the distance ||x− µk||.

3. Pick a data point at random as a new mean µk by sampling from a weighted probability
distribution given by the distances to the nearest mean.

4. Repeat steps 2 and 3 until all means have been assigned.

Intuitively, while the first cluster is chosen at random, all other clusters are chosen such that it is
more likely to select a cluster distant from all previously assigned clusters, leading to far-spread
initial means µk.

8 Tests

8.1 Unit tests

Most functions of this framework have one or multiple unit tests that check if the expected
behaviour is fulfilled. All test files are stored inside the directory tests/unittests/, where the
filename of the test file corresponds to the file name of the source file being tested. The unittests
run with Google Tests (and Google Mock). When compiling with CMake, the executable to run
the unit tests is automatically created and can be run with: ./unitTestMCMC. Whenever code is
changed, make sure that all tests pass.

8.2 Integration tests

Unit tests only test certain functions or rarely the interplay of multiple functions. To complement
this, an integration test investigates the entire program - from defining parameters to building
the correct DAG, running the MCMC, estimating prior parameters, writing to file etc. In order
to have an automated and reliable test of various priors, we implemented a integration testing
framework that makes it easy and fast to add tests for certain priors.
An integration test suceeds if the posterior distribution of the inferred parameters fulfills certain
properties of a probability distribution. Specifically, if the posterior distribution is a probability
distribution, we can take a random value from it and calculate the empirical cumulative dis-
tribution function (ECDF). We expect the position of the random value inside the ECDF to
follow an uniform distribution - independent of the type of posterior distribution. The so-called
probability integral transform (PIT) (Held and Sabanés Bové, 2014) is the value of the posterior
distribution F at the simulated value xo:

PIT(xo) = F (xo) = P(X ≤ xo)
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For many replicates of simulation and MCMC, the distribution of PIT(xo) is expected to follow
the standard uniform distribution, PIT(xo) ∼ U(0, 1), if the posterior distribution is well cali-
brated. If it is not (possibly due to some bug), the distribution of PIT(xo) will deviate from the
uniform distribution.
To test for this, we then apply a Kolmogorov-Smirnov (KS) test. The KS test compares two
cumulative distribution functions by calculating the maximum value of the absolute difference
between these functions: D = max |SN (x)−P (x)|. In our case, SN (x) corresponds to cumulative
distribution function of the ECDF, and P (x) corresponds to the known cumulative distribution
of a uniform distribution between 0 and 1. We can then calculate a p-value to check whether the
distributions are the same (null hypothesis) or not. The integration test passes if the p-value is
not significant, that is, that the ECDF of the true value in the posterior distribution is indeed
uniform.
For parameters with few discrete states (typically latent factors), we resort to another calibration
measure, since the KS-test is not applicable for parameters with discrete values (e.g. if we
simulated xo = 1, PIT(1) = 1. For these parameters, we resort to Sanders’ calibration, which is
a measure of how well the posterior probabilities represent the (binned) simulated values (Held
and Sabanés Bové, 2014). It implies that on average πi · 100% of the events actually occur with
posterior probability πi. To do so, the posterior probabilites need to be grouped in J roughly
equally-sized groups. For each group, πj is the mean posterior probability, nj is the number of
samples and x̄j is the mean of all simulated values. The total number of samples is denoted by
N =

∑J
j=1 nj . Sanders’ calibration is then defined as

SC =
1

N

J∑
j=1

nj(x̄j − πj)
2

Perfect calibration would result in SC=0. In order to have a statistical measure of significance,
we randomly sample simulated values from the posterior probabilities π, and calculate Sanders’
calibration SCr for many such replicates. We obtain a p-value by simply counting the number
of replicates where SCr was larger than the observed SCo:

p =
1

R

R∑
r=1

SCr ≥ SCo

If the observed SC is larger than what we would expect by chance, the p-value will be small and
we will reject the null hypothesis that the parameter is well calibrated.
There is one integration test per implemented prior. All integration test files are stored inside
tests/integrationtests/. This integration test might also serve as an example for developers
that want to implement their own MCMC based on this library. An R-File called plotTraces.R
is provided that has some functions pre-implemented in order to plot the trace files, in case a
test does not pass.

9 Additional chapters

The following sections contain ideas of algorithms that were not or only partially implemented.

9.1 Predicting the acceptance of an update

In complex “Big Data” settings, calculating the likelihood for the Hastings-ratio may require
the evaluation of a large number of terms for every update of a parameter. This represents a
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major bottleneck of the MCMC. To tackle this problem, the algorithm of delayed acceptance
has been proposed (Banterle et al., 2015). This algorithm partitions the acceptance step into
several blocks, where each block is consecutively compared to a random uniform number. The
first block that is rejected terminates the update. Consequently, an update can only be accepted
after all blocks were evaluated. We have implemented this algorithm, but found it very hard to
tune the parameters such that it would work for any possible model. In addition, the acceptance
of an update still requires the evaluation of all terms, which is still a computational effort.
Instead, we propose a novel algorithm that predicts the acceptance or rejection of an update.
The key idea is to use a subset of the terms composing the likelihood ratio to predict whether
or not a update will be accepted or rejected. If the prediction is not certain enough, then more
terms are added to the subset, until eventually the prediction is good enough or all terms have
been evaluated. This prediction model thus evaluates as little Hasting ratios as possible while
maintaining the same behaviour as if the overall Hastings ratio was evaluated.
In similar spirit to delayed acceptance (Banterle et al., 2015), we partition our data into D blocks
such that the overall Hastings ratio is given by:

P(x′)P(x′|D)
P(x)P(x|D)

=
P(x′)
P(x)

N∏
i=1

P(x′|Di)

P(x|Di)
=

D∏
d=1

ρd(x, x
′),

where

ρd(x, x
′) =

P(x′)
P(x)

J/N J∏
j=d1

P(x′|Dj)

P(x|Dj)
(53)

is the Hastings ratio of all the elements of the dth block.
The block Hastings ratio are likely to be correlated with the overall Hastings ratio, altough
certain blocks might be more informative about the overall Hastings ratio than others. Our goal
is therefore to evaluate highly informative blocks first, since these yield a better prediction of the
overall Hastings ratio. To do so, we must rank the blocks based on the correlation of the block
Hastings ratio with the overall Hastings ratio. We track this correlation in an extra round of
burnin (after the usual burnin rounds). Note that we still accept and reject based on the overall
Hastings ratio. We then rank the blocks as follows: The highest-ranking block will be the block
that maximizes the correlation of block Hastings ratio to overall Hastings ratio. We add this
block to our final set B. After this, we find the block b that maximizes the joint correlation of
{b, B} to the overall Hastings ratio, and add it to B. We repeat this step until all blocks are
contained in B.
Based on this ranking, we then fit a linear model to each cumulative block. That is, we fit a
linear model to the block B1, a linear model to the blocks B1:2, a linear model to the blocks
B1:3 etc. In particular, we estimate the intercept β0 as well as the slope β1 and the standard
deviation of the error σ for each cumulative block using linear regression:

htot = β0 + β1hblocks + ϵ, (54)

where htot is the overall Hastings ratio, hblocks is the (cumulative) block Hastings ratio and
ϵ ∼ N (0, σ).
For the subsequent chain, we use the following scheme when updating a parameter:

1. Propose a new value x′ based on x.

2. Calculate the log prior ratio P(x′)
P(x) .
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3. Draw a random number from an uniform distribution, r ∼ U(0, 1).

4. Loop over all blocks according to the block ranking. For each block, calculate the log
Hastings ratio for all elements within that block, as given by equation 53.

5. Predict the overall Hastings ratio based from the coefficients of the linear regression of that
block, as given by equation 54.

6. Terminate update if we are significantly certain that the update will be accepted or rejected.
For this, we use the normal error of the linear model. The probability that the predicted
overall Hastings ratio is larger than the random value r is given by the cumulative density of
the normal distribution: F = log(1−Φ(r)) where Φ is the cumulative density of the normal
distribution with mean htot and standard deviation σd. If F is larger than a threshold t,
we reject the update and terminate. If F is smaller than the threshold 1− t, we accept the
update and terminate.

7. Else add next block and repeat steps 4-7, until all blocks were evaluated.

This scheme is implemented in classes TLogHCalculatorRegular, TLogHCalculatorBlocks, TLogH-
Correlation, , TTotalLogH and TMultiLogHCalculatorBlocks. Here is a short overview of these
classes:

1. TLogHCalculatorRegular: implements the regular case where the log Hastings ratio is
evaluated based on all terms. This is used for all parameters that do not evaluate their
Hastings ratio in blocks.

2. TLogHCalculatorBlocks: implements the case where the log Hastings ratio is evaluated
successively in blocks, as described above. Contains an instance of TLogHCorrelation to
keep track of the correlation between block and overall log Hastings ratio.

3. TLogHCorrelation: stores the block and overall Hastings ratio, and calculates correlation
as well as linear models based on these. Unfortunately, since we need to calculate the
correlation based on merged blocks, we cannot sum the coefficients while the burnin, but
must store every block Hastings ratio in memory. If this is problematic at some point, an
alternative would be to write them to a file and reading it at the end of the tuning round,
or to split the round in two, where in the first half we only keep track of the covariance
(which can be done efficiently without the need to store all ratios), then determine the
block order, and then directly learn the values for the relevant combination of blocks.

4. TTotalLogH: for the overall Hastings ratio, we do not need to store all terms, but only the
summed up values (x and x2), which is done in this class.

5. TMultiLogHCalculatorBlocks: If a parameter has a proposal kernel that not shared but
is specific for each element, we also might want the prediction of the acceptance rate to be
specific for each element. This class stores a vector of TLogHCalculatorBlocks and makes
sure the correct logH-calculator is used for each update.

These classes are implemented but not in use, as the use-case for which this feature was developed
was abolished. What is lacking is the effective use of these classes in TParameter.
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9.2 prior::TNormalMixedModelInferred

A mixture model of K normal distributions is defined as:

xi|zi = k ∼ N (µk, σ
2
k).

Here, zi is a categorical variable denoting the component of observation xi, and µk and σ2
k denote

mean and variance of component k.
A normal mixture model is parametrized by

• A vector of means, one for each component, µ (_mus).

• A vector of variances, one for each component, σ2 (_vars).

• Categorical variables z (_z) that indicate the component k for each observation xi. These
are linear with size N .

Here, _mus and _vars are vectors of pointers to TParameter, and _z is a pointer to TParameter.
There is a check that the size of z matches the size of the parameter x.
Note that a natural choice for a prior on z would be zi ∼ Categorical(π), with one πk per
component. Then, we can impose a Dirichlet distribution on π. This has the advantages that
1) all π then sum to one and 2) that we have a way to force the MCMC to pick one of the K!
solutions that are possible if there are no constraints. If we didn’t impose any constraints or
priors, the MCMC would switch between the components, such that the posterior would be a
smear of all components.
The log prior density of a value xi is:

logP(xi|µk, σ
2
k, zi = k) = −1

2
log(σ2

k)−
1

2
log(2π)− 1

2σ2
k

(xi − µk)
2. (55)

The log prior ratio is:

log px = log

(
P(x′i|µk, σ

2
k, zi = k)

P(xi|µk, σ
2
k, zi = k)

)
=

1

2σ2
k

(
(xi − µk)

2 − (x′i − µk)
2
)
.

The log likelihood ratio lµk
for an update of µk is

lµk
= log

(
P(x|µ′

k, σ
2
k, z)

P(x|µk, σ
2
k, z)

)
=

1

2σ2
k

N∑
i=1

I(zi = k)
(
(xi − µk)

2 − (xi − µ′
k)

2
)
,

where I(zi = k) is an indicator variable that takes value one if zi = k and zero otherwise.
The log likelihood ratio lσ2

k
for an update of parameter σ2

k is

lσ2
k
= log

(
P(x|µk, σ

2′
k , z)

P(x|µk, σ
2
k, z)

)

=
1

2
log

(
σ2
k

σ2′
k

) N∑
i=1

I(zi = k) +
1

2

(
1

σ2
k

− 1

σ2′
k

) N∑
i=1

I(zi = k)(xi − µk)
2.

The posterior distribution of zi can be calculated analytically, because its values are limited to
few discrete states. We therefore directly sample new values of zi from the posterior distribution
as specified in (1). The likelihood for sampling a specific zi is then given by P(xi|µzi , σ

2
zi), and

the prior by P(zi|π). Note that this hold regardless of the prior distribution, e.g. HMMs.
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We use an Expectation-Maximization (EM) algorithm for the initialization of the prior param-
eters . Let θ = {µ,σ2} be the parameters of the mixed model, and π be the prior parameters
on z. The Q-function is:

Q(θ, π|θ′,π′) := E
[
lc(θ,π)

∣∣∣x,θ′,π′
]
,

where lc(θ,π) is the complete data log-likelihood given by

lc(θ,π) = logP(x, z|θ,π) =
P∑

p=1

N∑
i=1

(logP(xpi |zi = k,θ) + logP(zi = k|π)) .

Here, logP(xpi |zi,θ) is given by (55), and P(zi|π) depends on the prior on zi.
E-step. Given a current estimate θ′,π′, we now determine the Q-function:

Q(θ, π|θ′, π′) =
P∑

p=1

N∑
i=1

K∑
k=1

(logP(xpi |z = k,θ) + logP(z = k|π))P(z = k|xpi ,θ′, π′),

where with aid of Bayes’ Theorem we have

ρki := P(z = k|xpi ,θ′, π′) =
P(z = k|π′)

∏P
p=1 P(xpi |z = k,θ′)∑K

j=1 P(z = j|π′)
∏P

p=1 P(xpi |z = j,θ′)
. (56)

M-step. The Q-function splits into separate terms for each parameter µk, σ
2
k and πk. In order

to optimize the Q-function with respect to a parameter, we calculate the derivative and set it to
zero. We obtain

µk =

∑N
i=1 ρki

∑P
p=1 xpi

P
∑N

i=1 ρki

and

σ2
k =

∑N
i=1 ρki

∑P
p=1 (xpi − µk)

2

P
∑N

i=1 ρki
.

Although the next value for πk depends on the prior distribution on z and is as such not part of
this class, we note that under a Categorical distribution (which is the most natural prior choice),
πk is given by:

πk =

∑N
i=1 ρki
N

.

The EM algorithm will then proceed as follows:

1. Initialization: Set t = 0 and choose θ(t), π(t) according to the following procedure:

(a) First calculate the mean for each data point x̄i across all parameters on which the
prior is defined, x̄i = 1

P

∑P
i=1 xip.

(b) Assign the first data point x̄1 to the first component, k = 1.
(c) For all remaining components k, apply the following steps:

i. Go over all data points x̄. For each data point x̄i, store the minimal distance to all
previous components (this corresponds to the distance to the closest component).
To do so, calculate the Euclidean distance DM (x̄i) to each previous component
j = 1, . . . , k − 1. Then, take the minimal values among DM (x̄i).

ii. The center of component k is now given as the value x̄i that maximizes DM (x̄i)
(i.e. we pick the component that is furthest away from all previous components).
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(d) Finally, we go over all data again and assign each data point to its closest group,
which serves as the initialization of the latent factors z.

(e) We then calculate the mean and variance of each group and initialize µk and σ2
k

accordingly.

2. For t = 1, . . . , T − 1:

(a) E-step: Calculate the EM-weight ρ
(t)
ki according to (56).

(b) M-step: Update the parameters µ
(t)
k , σ

2(t)
k , π

(t)
k as described above.

We stop the EM after 100 iterations or as soon as the difference between the old and new log
likelihood is smaller than 10−3. The log likelihood is obtained by integrating out the latent
variable z:

logP(x|θ, π) =
K∑
k=1

N logP(z = k|πk) +
P∑

p=1

N∑
i=1

logP(xpi|z = k,θ)

 .

We finally initialize z to the value k that maximizes their posterior
∑P

p=1 P(zi|xpi,θ, π). For
this, we simply re-compute the EM weights with (56) one more time (using the final estiates for
θ and π) and pick the zi that maximizes the posterior.
Note that there is an elegant way to estimate the parameters of a univariate normal distribution
with 2 components via method of moments estimators (Cohen, 1967). If the mean of the two
components is equal, the algorithm gets even simpler. This has not been implemented yet, but
would be a powerful and fast alternative to the EM algorithm.
This should be solved using a general mixture model.

9.3 prior::TMultivariateNormalMixedModelInferred

This class implements a mixture model of K multivariate normal distributions:

xi|zi = k ∼ N (µ(k),Σ(k)).

Here, zi is a categorical variable denoting the component of the D-dimensional observation vector
xi, and µ(k) and Σ(k) denote the D-dimensional mean vector and the DxD-dimensional variance-
covariance matrix of the multivariate normal distribution of component k.
We parametrize the multivariate normal distribution of each component as described above
for TPriorMultivariateNormalWithHyperPrior: We apply Cholesky factorization to Σ(k) and
obtain M (k), which is factorized into the elements m(k), m

(k)
rr and m

(k)
rs . The density of the

each component k is thus given by equation 35. Therefore, a multivariate normal mixed model
is parametrized by

• A vector of means, one for each component. Each µ(k) has size D (_mus).

• A vector of scale factors m(k), one for each component. Each m(k) has size 1 (_m).

• A vector of diagonal elements m(k)
rr , one for each component. Each m

(k)
rr has size D (_Mrr).

• A vector of off-diagonal elements m
(k)
rs , one for each component. Each m

(k)
rs has size T

(_Mrs), see (36).

• Categorical variables z of size N (_z).

83



Here, _mus, _m, _Mrr _Mrs are vectors of pointers to TParameter, and _z is a pointer to TParam-
eter.
The parameter on which this prior is defined, X, must have dimensions NxD, i.e. the number
of dimensions of the multivariate normal prior should be the columns of X. This is beneficial for
cache handling: When calculating the prior densities, we always need one row xi from X, which
corresponds to one consecutive chunck of memory because we store matrices in a row-major
order.
Note that a natural choice for a prior on z would be zi ∼ Categorical(π), with one π(k) per
component. Then, we can impose a Dirichlet distribution on π. This has the advantages that
1) all π then sum to one and 2) that we have a way to force the MCMC to pick one of the K!
solutions that are possible if there are no constraints. If we didn’t impose any constraints or
priors, the MCMC would switch between the components, such that the posterior would be a
smear of all components.
The multivariate normal distribution is a non-iid prior, as the prior density of one xid depends
on all xi. The log prior density of a value xid with parameters µ(k), M (k) = {m(k),m

(k)
rr ,m

(k)
rs }

is

logP(xid|µ(k),M (k), zi = k)

= −D logm(k) +

D∑
r=1

m(k)
rr −

D

2
log(2π)− 1

2m(k)2

D∑
s=1

(
D∑
r=s

m(k)
rs (xir − µ(k)

r )

)2

. (57)

The log prior ratio for xid is:

log pxid
= log

(
P(x′id|µ(k),M (k), zi = k)

P(xid|µ(k),M (k), zi = k)

)
=

=
1

2m(k)2

D∑
s=1

( D∑
r=s

m(k)
rs (xir − µ(k)

r )

)2

−

(
D∑
r=s

m(k)
rs (x

′
ir − µ(k)

r )

)2


=
1

2m(k)2

(
d∑

r=1

m
(k)2
dr

(
x2id − x′2id + 2µ

(k)
d (x′id − xid)

)
+

2(xid − x′id)
S∑

s=1

m
(k)
ds

D∑
r=s,r ̸=d

m(k)
rs (xir − µ(k)

r )

)
,

(58)

where S = min(d,D − 1).
The log likelihood ratio l

µ
(k)
d

for an update of µ(k)
d is:

l
µ
(k)
d

= log

(
P(X|µ(k)′

d ,M (k), z)

P(X|µ(k)
d ,M (k), z)

)

=
1

2m(k)2

N∑
i=1

I(zi = k)

D∑
s=1

( D∑
r=s

m(k)
rs (xir − µ(k)

r )

)2

−

(
D∑
r=s

m(k)
rs (xir − µ(k)′

r )

)2


=
1

2m(k)2

(
(µ

(k)2
d − µ

(k)′2
d )

(
d∑

r=1

m
(k)2
dr

)(
N∑
i=1

I(zi = k)

)
+ 2(µ

(k)′

d − µ
(k)
d )

d∑
r=1

m
(k)2
dr

N∑
i=1

I(zi = k)xid+

2(µ
(k)′

d − µ
(k)
d )

N∑
i=1

I(zi = k)

S∑
s=1

m
(k)
ds

D∑
r=s,r ̸=d

m(k)
rs (xir − µ(k)

r )

)
,

84



where I(zi = k) is an indicator variable that takes value one if zi = k and zero otherwise.
The log likelihood ratio lm(k) for an update of m(k) is:

lm(k) = log

(
P(X|µ(k),M (k)′ , z)

P(X|µ(k),M (k), z)

)

= D
(
logm(k) − logm(k)′

) N∑
i=i

I(zi = k)+

1

2

(
1

m(k)2
− 1

m(k)′2

) N∑
i=1

I(zi = k)

D∑
s=1

(
D∑
r=s

m(k)
rs (xir − µ(k)

r )

)2

.

The log likelihood ratio l
m

(k)
rr

for an update of m(k)
rr is:

l
m

(k)
rr

= log

(
P(X|µ(k),M (k)′ , z)

P(X|µ(k),M (k)′ , z)

)

=
N∑
i=1

I(zi = k)

log

(
m

(k)′
rr

m
(k)
rr

)
+

1

2m(k)2

D∑
s=1

( D∑
d=s

m
(k)
ds (xid − µ

(k)
d )

)2

−

(
D∑
d=s

m
(k)′

ds (xid − µ
(k)
d )

)2


= (logm(k)′
rr − logm(k)

rr )
N∑
i=1

I(zi = k) +
1

2m(k)2

(
(m(k)2

rr −m(k)′2
rr )

N∑
i=1

I(zi = k)(xir − µ(k)
r )2+

2(m(k)
rr −m(k)′

rr )

N∑
i=1

I(zi = k)(xir − µ(k)
r )

D∑
d=r+1

m
(k)
dr (xid − µ

(k)
d )
)
.

The log likelihood ratio l
m

(k)
rs

for an update of m(k)
rs is:

l
m

(k)
rs

= log

(
P(X|µ(k),M (k)′ , z)

P(X|µ(k),M (k)′ , z)

)

=
1

2m(k)2

N∑
i=1

I(zi = k)
D∑
s=1

( D∑
r=s

m(k)
rs (xir − µ(k)

r )

)2

−

(
D∑
r=s

m(k)′
rs (xir − µ(k)

r )

)2


=
1

2m(k)2

(
(m(k)2

rs −m(k)′2
rs )

N∑
i=1

I(zi = k)(xir − µ(k)
r )2+

2(m(k)
rs −m(k)′

rs )

N∑
i=1

I(zi = k)(xir − µ(k)
r )

D∑
d=s,d ̸=r

m
(k)
ds (xid − µ

(k)
d )

)
.

Note that if D = 1, m(k)
rs is non-existant and m

(k)
rr is superficial and fixed to 1, such that only

m(k) is estimated.
The posterior distribution of zi can be calculated analytically, because its values are limited to
few discrete states. We therefore directly sample new values of zi from the posterior distribution
as specified in (1). The likelihood for sampling a specific zi is then given by P(xi|µ(zi),M (zi)),
and the prior by P(zi|π). Note that this hold regardless of the prior distribution, e.g. also for
HMMs.
This prior requires the library Armadillo to be installed. If Armadillo is not found while compi-
lation, the stattools library still compiles, but this class can not be used (an error is throwed
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when its constructor is called).
We use an EM algorithm for the initialization of the prior parameters . Let θ = {µ(k),Σ(k)} be
the parameters of the mixed model, and π be the prior parameters on z. The Q-function is:

Q(θ,π|θ′,π′) := E
[
lc(θ,π)

∣∣∣X,θ′,π′
]
,

where lc(θ,π) is the complete data log-likelihood given by

lc(θ,π) = logP(X, z|θ,π) =
P∑

p=1

N∑
i=1

(
logP(xpi |zi = k,θ) + logP(zi = k|π(k))

)
.

Here, logP(xpi |zi = k,θ) is given by

P(xpi |zi = k,θ) = −1

2
log |Σ(k)| − 1

2
(xpi − µ(k))TΣ(k)−1

(xpi − µ(k))− D

2
log(2π).

and P(zi = k|π(k)) depends on the prior on zi.
E-step. Given a current estimate θ′,π′, we now determine the Q-function:

Q(θ,π|θ′,π′) =

P∑
p=1

N∑
i=1

K∑
k=1

(logP(xpi |z = k,θ) + logP(z = k|π))P(z = k|xpi ,θ
′,π′)

where with aid of Bayes’ Theorem we have

ρki := P(z = k|Xi,θ
′,π′) =

P(z = k|π′)
∑P

p=1 P(xpi |z = k,θ′)∑K
j=1 P(z = j|π′)

∑P
p=1 P(xpi |z = j,θ′)

. (59)

M-step. The Q-function splits into separate terms for each parameter µ(k),Σ(k) and π(k). In
order to optimize the Q-function with respect to a parameter, we calculate the derivative and
set it to zero. We obtain

µ(k) =

∑N
i=1 ρki

∑P
p=1 xpi

P
∑N

i=1 ρki

and

Σ(k) =

∑N
i=1 ρki

∑P
p=1

(
xpi − µ(k)

) (
xpi − µ(k)

)T
P
∑N

i=1 ρki
.

Although the next value for π(k) depends on the prior distribution on z and is as such not part of
this class, we note that under a Categorical distribution (which is the most natural prior choice),
π(k) is given by:

π(k) =

∑N
i=1 ρki
N

.

The EM algorithm will then proceed as follows:

1. Initialization: Set t = 0 and choose θ(t), π(t) by the following algorithm:

(a) First calculate the mean vector x̄i for each data vector across all parameters on which
the prior is defined, x̄i =

1
P

∑P
p=1 xip.

(b) Assign the first data vector x̄1 to the first component, k = 1.
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(c) For all remaining components k, apply the following steps:
i. Go over all data vectors x̄i. For each data vector x̄i, store the minimal distance

to all previous components (this corresponds to the distance to the closest com-
ponent). To do so, calculate the Euclidean distance DM (x̄i) to each previous
component j = 1, . . . , k − 1 with value mjd by

DM (x̄i) =

√√√√ D∑
d=1

(x̄id −mjd)2.

Then, take the minimal values among DM (x̄i).
ii. The center of component k is now given as the value x̄i that maximizes DM (x̄i)

(i.e. we pick the component that is furthest away from all previous components).
(d) Finally, we go over all data again and assign each data point to its closest group,

which serves as the initialization of the latent factors z.
(e) We then calculate the mean and variance of each group and initialize µ(k) and Σ(k)

accordingly.

2. For t = 1, . . . , T − 1:

(a) E-step: Calculate the EM-weight ρ
(t)
ki according to (59).

(b) M-step: Update the parameters π
(k)
(t) ,µ

(k)
(t) and Σ

(k)
(t) as described above.

We stop the EM after 100 iterations or as soon as the difference between the old and new log
likelihood is smaller than 10−3. The log likelihood is obtained by integrating out the latent
variable z:

logP(X|θ,π) =
K∑
k=1

N logP(z = k|π(k)) +

P∑
p=1

N∑
i=1

logP(xpi|z = k,θ)

 .

We finally initialize z to the value that maximizes their posterior
∑P

p=1 P(zi|xpi,θ,π). For this,
we simply re-compute the EM weights with (59) one more time (using the final estimates for θ
and π) and pick the zi that maximizes the posterior.
This should be solved using a general mixture model.

9.4 Adaptive burnin

A burnin has two major goals. First, it lets the Markov chain move towards its stationary
distribution before actually sampling from the chain. Second, it optimizes the mixing of the
chain by scaling the proposal kernels until an acceptance rate of approx. 0.44 is obtained. The
first goal is difficult to evaluate. However, we can benefit from a significant speedup if we tune the
burnins to reach the second goal as fast as possible, because burnins are “wasted” computational
time, and we do not want to invest more iterations than necessary.
Estimating the acceptance rate is a binomial problem: In each MCMC iteration i, a parameter
update is either accepted (x = 1) or rejected (x = 0), therefore following a Bernoulli distribution.
The total number of accepted updates T =

∑n
i=1 xi then follows a Binomial distribution, T ∼

Binom(n, a). The acceptance rate a is calculated as a = 1
nT

The idea of the following algorithm is to run multiple burnins and tune their length such that we
get a reliable estimate of the acceptance rate. In general, the longer a single burnin, the smaller
the binomial variance and the more precise the estimate of the acceptance rate. However, running
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many long burnins is a bad strategy, because a precise estimate of the acceptance rate only makes
sense if it is already close to the ideal acceptance rate of 0.44. If the acceptance rate is far off,
it is better to stop the burnin, adjust the proposal kernels, and re-start it again.
We propose to run the burnin until some termination criteria is met. However, while running
the burnin, we might realize at some point that there is no chance to reach the termination
criteria after a fixed number of iteration. For example, when the acceptance rate after a couple
of iterations is far away from 0.44, there is really no point to continue until the end, since we’re
anyways going to reject the critera. We therefore propose the following algorithm:

1. Run nadj (typically few) burnin iterations.

2. Evaluate: continue or restart?

(a) Calculate the values of kl and ku corresponding to the 90% quantile of the binomial
distribution for the current iteration i and an acceptance rate of 0.44.

(b) For each parameter: Check if the observed number of accepted updates k is within
the interval [kl, ku].

(c) Continue burnin if a certain fraction qadj of updates lies within the 90% quantile of
the binomial distribution. Else re-start burnin.

3. Terminate? After a fixed number of iterations, ncrit:

(a) Calculate the values of kl and ku corresponding to the 90% quantile of the binomial
distribution for iteration ncrit and an acceptance rate of 0.44.

(b) For each parameter: Check if the observed number of accepted updates k is within
the interval [kl, ku].

(c) Terminate burnin if a certain fraction qcrit of updates lies within the 90% quantile of
the binomial distribution. Else re-start burnin.

This is fully parametrized by ncrit, qcrit, nadj and qadj . Here, qcrit and qadj can be the same if we
want to be strict; or qadj < qcrit if we want the burnins to run longer before re-starting.
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