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Abstract

We describe the R package causalweight for causal inference based on inverse probabil-
ity weighting (IPW). The causalweight package offers a range of semiparametric methods
for treatment or impact evaluation and mediation analysis, which incorporates interme-
diate outcomes for investigating causal mechanisms. Depending on the method, identifi-
cation relies on selection on observables assumptions or on instrumental variables when
selection is on unobservables, approaches that may also be applied to tackle non-random
outcome attrition and sample selection. Inference is based on the bootstrap.

Keywords: Treatment effect, selection on observables, sample selection, mediation analysis,
instrumental variable, IPW.

1. Introduction
Researchers in epidemiology, economics, political sciences, or other social sciences frequently
aim at evaluating the causal effect of some binary intervention or treatment, as well as learn-
ing about the mechanisms through which a causal effect operates. This paper introduces
the R package causalweight for analyzing the causal effect of a binary treatment as well as
its mechanisms (based on mediation analysis that incorporates intermediate outcomes called
mediators) under various identifying assumptions. All estimators rely on some form of inverse
probability weighting (IPW), by weighing outcomes by the inverse of a specific conditional
probability or propensity score. The causalweight package includes treatment evaluation un-
der treatment selection on observables with and without controlling for non-random outcome
attrition or sample selection (Huber 2012, 2014b), instrumental variable-based estimation of
local average treatment effects when controlling for observed covariates (Frölich 2007), and
mediation analysis for investigating causal mechanisms with selection on observables or in-
strumental variable assumptions (Huber 2014a; Frölich and Huber 2017). The nonparametric
identification strategies underlying the estimators avoid imposing strong functional form re-
strictions in the structural models considered. Estimation of the propensity scores relies on
probit or logit specifications.
In the next chapters, we discuss various treatment effect models along with methods for
analysing them and demonstrate the functionalities of the R package causalweight by means
of examples with simulated data. Section 2 presents an overview of the functions available
in the causalweight package. Section 3 discusses a treatment effect model with treatment
selection on observables and non-random outcome attrition or sample selection. It also intro-
duces the function treatweight, which allows treatment evaluation with and without sample
selection correction, either based on observables or an instrument for selection. Section 4
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presents causal mediation models based on selection on observables assumptions along with
the medweight function for estimating causal mechanisms. Section 5 discusses treatment
effect evaluation based on an instrument when controlling for observed covariates and its
implementation in the lateweight function. Section 6 considers mediation analysis with dis-
tinct instruments for the treatment and the mediator when controlling for observed covariates,
as implemented in the medlateweight function. Section 7 concludes.

2. Overview of the causalweight package
The causalweight package consists of four functions aimed at user-friendly treatment eval-
uation and mediation analysis. The following table illustrates the structure of the causal-
weight package by assigning to each of the main functions the corresponding treatment ef-
fect/mediation model.

Table 1: Main functions of the causalweight package
Functions in R Treatment effect models
treatweight Treatment evaluation with or without sample selection correction (Sec-

tion 3).
medweight Causal mediation analysis (Section 4).
lateweight Local average treatment effect with covariates (Section 5).
medlateweight Causal mediation analysis with instrumental variables (Section 6).

The function treatweight implements treatment evaluation under treatment selection on ob-
servables, optionally with correcting for sample selection or non-ignorable outcome attrition
based on either a selection on observables/missing at random assumption or an instrument. To
tackle the double selection problem into the treatment and into the subpopulation with non-
missing outcomes, it makes use of both treatment and selection propensity scores to appro-
priately reweigh observations by IPW, see Huber (2012, 2014b). The function treatweight
allows computing the average treatment effect in the total population (ATE) and on the
treated (ATET).
The function medweight implements mediation analysis to investigate the causal mechanisms
of a binary treatment under selection on observables based on IPW. More specifically, it
computes (i) the (total) average treatment effect, (ii) the average natural indirect effect,
which operates through an intermediate outcome (or mediator) situated on the causal path
between the treatment and the outcome, and (iii) the (unmediated) average natural direct
effect, see Huber (2014a). The indirect and direct effect estimates are returned under either
potential treatment state. The function treatweight allows computing the effects for both
the total population and the subpopulation of the treated.
The function lateweight returns the local average treatment effect (LATE) of a binary en-
dogenous treatment based on IPW using a binary endogenous instrument that is conditionally
valid given observed covariates, see Frölich (2007). In addition, it returns the intention-to-
treat effect of the instrument on the outcome, as well as first-stage effect of the instrument
on the treatment. The function lateweight permits estimating the local average treatment
effect among all subjects whose treatment complies with the instrument (LATE) and among
treated compliers (LATTs) by weighing units by the inverse of their instrument propensity
scores.
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The function medlateweight computes the causal mechanisms (natural direct and indirect
effects) of a binary treatment among treatment compliers based on distinct instrumental vari-
ables (IVs) for the treatment and the mediator, which are assumed to be conditionally valid
given a set of observed covariates. The treatment and its instrument are assumed to be bi-
nary while the mediator and its instrument are assumed to be continuous. This motivates
combining the LATE approach with a control function approach for tackling mediator en-
dogeneity, see Theorem 1 in Frölich and Huber (2017). The function medlateweight yields
(i) the (total) local average treatment effect (LATE) among compliers based on IPW, (ii)
the average natural direct and indirect effects under either potential treatment state among
compliers based on IPW, and (iii) parametric direct and indirect effect estimates (imposing
effect homogeneity across treatment states) based on regression.
Details on the models and the implementation of the corresponding estimators in the causal-
weight package are provided in the following Sections 3 to 6.

3. Treatment evaluation with sample selection correction
The function treatweight implements treatment effect evaluation when the treatment se-
lection is related to observed covariates, optionally with considering sample selection/non-
random outcome attrition. The latter case constitutes a double selection problem (i) into the
treatment (selection on observables) and (ii) into the subpopulation for which the outcome
is observed (selection on unobservables). The function treatweight computes the average
treatment effect (ATE) and the average treatment effect on the treated (ATET) by weighing
observations by the inverse of (nested) propensity scores. The nested weights control for
treatment selection bias due to non-random treatment assignment and sample selection bias
in the subpopulation with observed outcomes, see Huber (2012, 2014b).

3.1. Model

When estimating the causal effect of a binary treatment D on an outcome Y , researchers
are typically confronted with the identification issue that take-up of D is selective. As a
further complication, Y might only be observed for a subpopulation that is non-randomly
selected, as indicated by a binary sample selection variable S. We tackle the former issue by
assuming treatment selection on observed covariates X and the latter issue by either assuming
ignorability of sample selection given observables, or the availability of an instrument Z that
is conditionally valid.
We consider a general model, in which outcome Y is an unknown function of two observed
components, the binary treatment D and the vector of covariates X, and a possibly multidi-
mensional unobserved term U :

Y = φ(D,X,U), (1)

where φ(·) is an unknown function.
While D and X are assumed to be observed for everyone, the treatweight function permit for
sample selection, implying that outcome Y is only observed for a subpopulation as indicated by
the binary selection indicator S. Empirical examples for such set-ups include wage equations
(where S is employment), see Gronau (1974) and Heckman (1976, 1974), the evaluation of
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effects of educational interventions on test scores (where S is participation in the test), see
Angrist, Bettinger, and Kremer (2006) and Angrist, Lang, and Oreopoulos (2009), or loss of
outcome follow-up in repeated surveys. In our model, the selection indicator is either assumed
to be a function of the treatment, the covariates, and an unobserved term, or of the previously
mentioned terms and an instrument:

S = I{η(D,X) ≥ V } (scenario 1), (2)
S = I{ζ(D,X,Z) ≥ V } (scenario 2). (3)

I{·} denotes the indicator function and η(·), ζ(·) are unknown functions. Z represents a one
or multi-dimensional instrument which is observable for all units and not directly related with
the outcome. V is an unobserved term. If it is not associated with U , sample selection is
related to observables or missing at random (MAR) in the denomination of Rubin (1976).
If V is associated with U , S is endogenous even when controlling for (D,X). In this case,
identification crucially hinges on the availability of an instrument Z that is relevant for S in
the sense that it shifts the selection probability conditional on (D,X) but does not appear in
φ (exclusion restriction), as in scenario 2 of (2). In general, at least one element in Z needs
to be continuous.
To define the causal effect of D, we utilize the potential outcome framework advocated by
Rubin (1974), among others. We denote the potential outcome for individual i and some
hypothetical treatment D = d as

Yi(d) = φ(d,Xi, Ui). (4)

The difference Yi(1) − Yi(0) would yield the individual treatment effect, but is unknown to
the researcher, because each individual is either treated or not treated and cannot appear in
both states of the world at the same time. The average treatment effect (ATE), which can be
identified under assumptions outlined in the following section, is given by the mean difference
of the potential outcomes under treatment and non-treatment:

∆ = E[Y (1)] − E[Y (0)]. (5)

A further parameter of policy interest, is the mean effect among those receiving the treatment,
the average treatment effect on the treated (ATET):

∆D=1 = E[Y (1)|D = 1] − E[Y (0)|D = 1]. (6)

3.2. Identification

In the absence of sample selection, the ATE is identified if Y (1), Y (0) are independent of
D conditional on X (selection on observables) and the treatment propensity score π(X) ≡
Pr(D = 1|X) is larger than zero and smaller than 1 almost surely (common support), see
Imbens and Wooldridge (2009). The ATE then corresponds to the following expression based
on weighing by the inverse of the propensity score:

∆ = E
[
D · Y
π(X)

]
− E

[(1 −D) · Y
1 − π(X)

]
. (7)
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The idea of inverse probability weighting (IPW) goes back to Horvitz and Thompson (1952),
who first proposed an estimator of the population mean in the presence of non-randomly
missing data. The ATET is obtained by multiplying the expressions in the expectation oper-
ators of (7) by π(X)/Pr(D = 1), see Hirano, Imbens, and Ridder (2003), which corresponds
to:

∆D=1 = E
[

D · Y
Pr(D = 1)

]
− E

[ (1 −D) · Y · π(X)
(1 − π(X)) · Pr(D = 1)

]
. (8)

The ATET is identified under the assumptions that Y (0) is independent of D conditional on
X and π(X) is smaller than 1 almost surely.
Complications prevail if the outcomes are observed for a selective subpopulation only, which
requires further assumptions for identification. One possible condition is that sample selection
S is driven by observable variables but independent of Y conditional on (D,X), i.e. MAR
(see scenario 1 in (2)). When adding this assumption to the previous ones, the ATE is
identified by reweighing observations (additionally to the inverse treatment propensity score)
by the inverse of the sample selection propensity score p(D,X) ≡ Pr(S = 1|D,X), see Huber
(2012):

∆ = E
[

S ·D · Y
p(D,X) · π(X)

]
− E

[
S · (1 −D) · Y

p(D,X) · (1 − π(X))

]
, (9)

which hinges on p(D,X) being larger than 0 almost everywhere as additional common support
restriction.
Alternatively to assuming MAR, sample selection might be tackled by an instrumental vari-
able strategy, see see scenario 2 in (2). In this context, ∆ is identified under the following
assumptions, see Huber (2014b): (i) satisfaction of the selection on observables assumption
in the total population as before, (ii) availability of an instrument for selection that satisfies
the exclusion restriction such that the sample selection propensity score Pr(S = 1|D,X,Z)
is a valid control function, (iii) independence of (U, V ) and (D,Z) conditional on Pr(S =
1|D,X,Z) and X, and (iv) homogeneity of average treatment effects conditional on X. The
ATE on the total population under sample selection is identified by weighing by the inverse
of a nested treatment propensity score as well as the selection propensity score, given that
specific common support conditions on the propensity scores hold:

∆ = E
[

S ·D · Y
p(W ) · π(X, p(W ))

]
− E

[
S · (1 −D) · Y

p(W ) · (1 − π(X, p(W )))

]
. (10)

π(X, p(W )) denotes the treatment propensity score Pr(D = 1|X, p(W )), i.e., the probability
of being treated conditional on X and p(W ), with W ≡ (D,X,Z) and p(W ) ≡ Pr(S =
1|D,X,Z). Analogously to (8), multiplying the expressions in the expectation operators of
(9) and (10) by π(X)/Pr(D = 1) yields the ATET under the respective set of assumptions.

3.3. Estimation

Assuming an i.i.d. sample of n units prior to selection, indexed by i = 1, ..., n, we briefly
discuss the estimation of the ATE under sample selection using an instrument based on the
normalized sample analog of (10). Estimation of treatment effects under different sets of as-
sumptions (i.e. MAR or no sample selection) proceeds analogously. Let p̂(W ) and π̂(X, p̂(W ))
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denote estimates of the sample selection propensity score p(W ) and the treatment propensity
score π(X, p(W )), respectively. A general 3-step estimation approach proceeds as follows:

(a) Estimate p̂(W ) by regressing S on (1, D,X,Z),
(b) estimate π̂(X, p̂(W )) by regressing D on (1, X, p̂(W )),
(c) obtain an estimate of the ATE, denoted by ∆̂, as the normalized sample analogue of (10)
in which p̂(W ) and π̂(X, p̂(W )) are used as plug-in estimates.

The propensity scores are estimated by probit or logit models. The normalized sample ana-
logue of (10) corresponds to

∆̂ =
n∑

i=1

Si ·Di · Yi

π̂(Xi, p̂(Wi))

/ n∑
i=1

Si ·Di

π̂(Xi, p̂(Wi))

−
n∑

i=1

Si · (1 −Di) · Yi

p̂(Wj) · (1 − π̂(Xi, p̂(Wi)))

/ n∑
i=1

Si · (1 −Di)
p̂(Wj) · (1 − π̂(Xi, p̂(Wi)))

. (11)

The normalizations
∑n

i=1
Si·Di

π̂(Xi,p̂(Wi)) and
∑n

i=1
Si·(1−Di)

p̂(Wj)·(1−π̂(Xi,p̂(Wi))) ensure that the weights in
each treatment group add up to unity. This may improve the finite sample properties of
the estimator, see for instance the discussions in Imbens (2004) and Busso, DiNardo, and
McCrary (2014).
This and other semiparametric IPW estimators discussed further below can be expressed as
sequential GMM estimators where parametric propensity score estimation represents the first
step and effect estimation the second step, see Newey (1984). It follows from his results
that our methods are

√
n-consistent and asymptotically normal under standard regularity

conditions. Therefore, the i.i.d. bootstrap is a valid inference method for treatment effect
estimators based on IPW, see also Hirano et al. (2003). The function treatweight allows
specifying the number of bootstrap replications for computing standard errors. Furthermore,
it offers a trimming rule for discarding observations with extreme propensity scores to improve
overlap, see Crump, Hotz, Imbens, and Mitnik (2009). The default is to discard observations
with treatment propensity scores smaller than 0.05 (5%) or larger than 0.95 (95%), when
considering the ATE or larger than 0.95 when considering the ATET. When a sample selection
correction is included, the default is to discard observations with sample selection propensity
scores smaller than 0.05.

3.4. Examples in R

This section presents (i) the input arguments of the treatweight function, (ii) the output
stored in the object generated by treatweight, and (iii) two examples for ATE estimation
with and without sample selection, respectively.

Input arguments of treatweight

The input arguments of treatweight are:
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Table 2: Input arguments of the treatweight function

Variables Features of the variables
y Dependent variable.
d Treatment, must be binary (either 1 or 0), must not contain missings.
x Confounders of the treatment and outcome, must not contain missings.
s Selection indicator. Must be 1 if y is observed (non-missing) and 0 if y is

not observed (missing). Default is NULL, implying that y does not contain
any missings.

z Optional instrumental variable(s) for selection s. If NULL, outcome selection
based on observables (x,d) - known as "missing at random" - is assumed.
If z is defined, outcome selection based on unobservables - known as "non-
ignorable missingness" - is assumed. Default is NULL. If s is NULL, z is
ignored.

selpop Only to be used if both s and z are defined. If TRUE, the effect is estimated
for the selected subpopulation with s = 1 only. If FALSE, the effect is esti-
mated for the total population (note that this relies on somewhat stronger
statistical assumptions). Default is FALSE. If s or z is NULL, selpop is
ignored.

ATET If FALSE, the average treatment effect (ATE) is estimated. If TRUE, the
average treatment effect on the treated (ATET) is estimated. Default is
FALSE.

trim Trimming rule for discarding observations with extreme propensity scores.
If ATET = FALSE, observations with Pr(D = 1|X) < trim or Pr(D = 1|X) >
(1−trim) are dropped. If ATET = TRUE, only those observations with
Pr(D = 1|X) > (1−trim) are dropped. If s is defined and z is NULL, obser-
vations with extremely low selection propensity scores, Pr(S = 1|D,X) <
trim, are discarded, too. If s and z are defined, the treatment propensity
scores to be trimmed change to Pr(D = 1|X,Pr(S = 1|D,X,Z)). If in
addition selpop = TRUE, observation with Pr(S = 1|D,X,Z) < trim are
discarded, too. Default for trim is 0.05.

logit If FALSE, probit regression is used for propensity score estimation. If TRUE,
logit regression is used. Default is FALSE.

boot Number of bootstrap replications for estimating standard errors. Default
is 1999.

The treatweight object

A treatweight object contains six components all of which can be referenced by a dollar sign
($), see the examples in this section below. These components are:



8 The causalweight Package

Table 3: Components of the treatweight object

Components Description of the components
effect Average treatment effect (ATE) if ATET = FALSE or the average treatment

effect on the treated (ATET) if ATET = TRUE.
se bootstrap-based standard error of the effect.
pval p-value of the effect.
y1 mean potential outcome under treatment.
y0 mean potential outcome under control.
ntrimmed number of discarded (trimmed) observations due to extreme propensity

score values.

Example for estimating the ATE without sample selection

This example estimates the ATE based on equation (7) in simulated data. The sample size
n is set to 10’000. The seeds set when generating random variables (set.seed()) enable the
replication of the results. The following chunk of R input code results in the output of the
function treatweight:

> n=10000
> set.seed(100); x=rnorm(n)
> set.seed(101); d=(0.25*x+rnorm(n)>0)*1
> set.seed(102); y=0.5*d+0.25*x+rnorm(n)
> output=treatweight(y=y,d=d,x=x,trim=0.05,ATET=FALSE,logit=TRUE, boot=19)
> cat("ATE: ",round(c(output$effect),3),", standard error: ",
+ round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
> output$ntrimmed

The following chunk of output code displays two lines (based on the treatweight object called
output). The first line gives the ATE estimate, standard error, and p-value, respectively
(rounded to three decimals). The second line provides the number of observations discarded
by the trimming rule.

ATE: 0.488 , standard error: 0.022 , p-value: 0

[1] 0

Example for estimating the ATE under sample selection based on an instrument

This example estimates the ATE under sample selection based on equation (10) in simulated
data. The sample size n is set to 10’000. Matrix e reflects the unobserved terms of equations
(1) and (2) for computing y and s and follows a multivariate normal distribution with covari-
ance matrix sigma. The following chunk of R input code results in the output of the function
treatweight:
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> n=10000
> sigma=matrix(c(1,0.6,0.6,1),2,2)
> set.seed(100); e=(2*rmvnorm(n,rep(0,2),sigma))
> set.seed(101); x=rnorm(n)
> set.seed(102); d=(0.5*x+rnorm(n)>0)*1
> set.seed(103); z=rnorm(n)
> s=(0.25*x+0.25*d+0.5*z+e[,1]>0)*1
> y=d+x+e[,2]; y[s==0]=0
> output=treatweight(y=y,d=d,x=x, s=s,z=z,selpop=FALSE,trim=0.05,ATET=FALSE,
+ logit=TRUE,boot=19)
> cat("ATE: ",round(c(output$effect),3),", standard error: ",
+ round(c(output$se),3), ", p-value: ",round(c(output$pval),3))
> output$ntrimmed

The first line of the next chunk of output code (again based on the treatweight object
called output) provides the ATE under sample selection, the standard error, and the p-value,
respectively (rounded to three decimals). The second line gives the number of observations
discarded by the trimming rule.

ATE: 0.966 , standard error: 0.073 , p-value: 0

[1] 11

4. Causal mediation analysis
The function medweight estimates the causal mechanisms of a binary treatment under selec-
tion on observables, based on inverse probability weighting. More specifically, it provides (i)
the (total) average treatment effect, (ii) the average natural indirect effect of the treatment
operating through an intermediate variable (or mediator) that is situated on the causal path
between the treatment and the outcome, and (iii) the natural direct effect, see Huber (2014a).
The indirect and direct effect estimates are returned under either potential treatment state.
The evaluation of direct and indirect effects is commonly referred to as mediation analysis.
The function treatweight performs causal mediation analysis both for the total population
as well as the subpopulation of the treated.

4.1. Model

In many evaluations not only the (total) treatment effect appears relevant, but also the causal
mechanisms through which it operates. In this case, one would like to disentangle the direct
effect of the treatment on the outcome as well as the indirect ones that materialize through
one or more intermediate variables, so-called mediators. For instance, when assessing the em-
ployment effects of an active labor market policy, policy makers might want to know to which
extent the total impact comes from increased search effort, human capital, or other mediators
that are themselves affected by the policy. However, even experiments do not straightfor-
wardly identify causal mechanisms. As discussed in Robins and Greenland (1992), random
treatment assignment does not imply exogeneity of the mediator. Therefore, the total effect
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cannot be disentangled by simply conditioning on a mediator, because this generally intro-
duces selection bias coming from variables influencing both the mediator and the outcome,
see Rosenbaum (1984).
For defining the parameters of interest, the potential outcome framework is used, which has
been considered in the direct and indirect effects framework for instance by Rubin (2004)
and Albert (2008). Let Y (d),M(d) denote the potential outcome and the potential mediator
state under treatment d ∈ {0, 1}. For each unit only one of the two potential outcomes and
mediator states, respectively, is observed, because the realized outcome and mediator values
are Y = D · Y (1) + (1 −D) · Y (0) and M = D ·M(1) + (1 −D) ·M(0).
The ATE is defined by ∆ = E[Y (1) − Y (0)]. To disentangle this total effect into a direct and
indirect (through M) causal channel, first note that the potential outcome can be rewritten
as a function of both the treatment and the intermediate variable M : Y (d) = Y (d,M(d)). It
follows that the (average) direct effect is identified by

θ(d) = E[Y (1,M(d)) − Y (0,M(d))], d ∈ {0, 1}, (12)

i.e., by exogenously varying the treatment but keeping the mediator fixed at its potential
value for D = d. Equivalently, the (average) indirect effects is defined as

δ(d) = E[Y (d,M(1)) − Y (d,M(0))], d ∈ {0, 1}, (13)

i.e., by exogenously shifting the mediator to its potential values under treatment and non-
treatment but keeping the treatment fixed at D = d. Pearl (2001) refers to these parameters
as natural direct and indirect effects, Robins and Greenland (1992) and Robins (2003) as
total or pure direct and indirect effects.
The ATE is the sum of the direct and indirect effects defined upon opposite treatment states:

∆ = E[Y (1,M(1)) − Y (0,M(0))]
= E[Y (1,M(1)) − Y (0,M(1))] + E[Y (0,M(1)) − Y (0,M(0))] = θ(1) + δ(0)
= E[Y (1,M(0)) − Y (0,M(0))] + E[Y (1,M(1)) − Y (1,M(0))] = θ(0) + δ(1). (14)

This can be seen from adding and subtracting E[Y (0,M(1))] after the first and E[Y (1,M(0))]
after the third equality. The notation θ(1), θ(0) and δ(1), δ(0) indicates that effects are poten-
tially heterogeneous w.r.t. potential treatment state, which permits interaction effects between
the treatment and the mediator. However, the effect remain unidentified without further as-
sumptions, as either Y (1,M(1)) or Y (0,M(0)) is observed for any unit, whereas Y (1,M(0))
and Y (0,M(1)) are never observed. Therefore, identification of direct and indirect effects
hinges on the existence of exogenous variation in the treatment and the mediator.

4.2. Identification

We subsequently discuss the identification of natural direct and indirect effects based on
control variables (for tackling selection into D and M) that are either not affected by the
treatment (Section 4.2.1) or partly a function of the treatment (Section 4.2.2).

Identification given control variables not affected by the treatment
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The identification of direct and indirect effects hinges on selection on observables assump-
tions w.r.t. D and M , see for instance Imai, Keele, and Yamamoto (2010). They imply that
the treatment-mediator and treatment-outcome relations are unconfounded by unobservables
when controlling for observed covariates X and that the mediator-outcome relation is un-
confounded given (D,X). Formally, D must be independent of the potential outcomes and
mediators, {Y (d′,m),M(d)}, given X, while M must be Y (d,m) independent of given (D,X),
with d′, d ∈ {0, 1} and m in the support of M . Importantly, X must not be affected by D,
which is satisfied if both the controls for the treatment and the mediator are pre-treatment
variables. Furthermore, a specific common support assumption must hold which guarantees
that comparable observations in terms of X and in terms of both X and D exist across
treatment states and across mediator states, respectively. Formally, the treatment propensity
score Pr(D = 1|M,X) must be larger than zero and smaller than one almost surely.
Huber (2014a) shows that under these assumptions, the average direct effect is identified by

θ(d) = E
[(

Y ·D
Pr(D = 1|M,X) − Y · (1 −D)

1 − Pr(D = 1|M,X)

)
· Pr(D = d|M,X)

Pr(D = d|X)

]
. (15)

Equation (15) demonstrates that by IPW, the distributions of both M and X are balanced
across treated and non-treated groups such that the direct effect is identified. In particular,
the distribution of the mediator in both groups corresponds to that of M(d) in the total
population. Similarly, the indirect effect, which by (14) corresponds to the difference between
the average and the direct effect defined on the opposite treatment state (δ(d) = ∆−θ(1−d))
is given by

δ(d) = E
[

Y · I{D = d}
Pr(D = d|M,X) ·

(Pr(D = 1|M,X)
Pr(D = 1|X) − 1 − Pr(D = 1|M,X)

1 − Pr(D = 1|X)

)]
. (16)

An attractive feature of expressions (15) and (16) is that they are agnostic about the di-
mension of M such that both scalar or vectors of mediators can be considered. In either
case, identification relies on reweighing by the treatment propensity scores Pr(D = 1|M,X)
and Pr(D = 1|X), which makes estimation straightforward even when M is multidimensional.
Multiplying the expressions in the expectation operators of (15) and (16) by π(X)/Pr(D = 1)
yields the direct and indirect effects, respectively, on the treated.

Identification when some controls are affected by the treatment

We maintain that X reflects control variables not affected by the treatment but now permit
thatD has an effect on observed post-treatment confounders of the mediator-outcome relation,
which we denote by W . This appears particularly important in applications with a non-
negligible time lag between D and M such that X may be insufficient to control for selection
into the mediator. We rewrite the potential mediator and potential outcome as functions of
W , too: M(d) = M(d,W (d)) and Y (d,M(d)) = Y (d,M(d,W (d)),W (d)), where W (d) is the
vector of potential values of W for D = d.
Treatment assignment D must be (i) independent of {Y (d,m,w′),M(d′, w),W (d′′)} given
X, as well as (ii) independent of {Y (d,m,w′′),M(d′, w′)} given W,X, for d, d′, d′′ ∈ {0, 1}
and m,w′, w in the support of M,W . While condition (i) is analogous to the selection
on observables assumption w.r.t. D in Section 4.2.1, condition (ii) requires that treatment
assignment remains ignorable when controlling for post-treatment variables W in addition to
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X. Intuitively, this implies that all covariates affecting both W and M or Y are included in
X. Concerning the mediator, M is assumed to be independent of Y (d,m,w) given (D,X,W ).
This weaker than the corresponding assumption in Section 4.2.2, as post-treatment controls
W are now allowed to enter the conditioning set. Finally, the common support restriction
that Pr(D = 1|M,W,X) is larger than zero and smaller than one almost surely must be
satisfied.
Huber (2014a) shows that these assumptions allow identifying the following direct effect by
IPW:

θ∗(d) = E[Y (1,M(d,W (d)),W (d)) − Y (0,M(d,W (d)),W (d))], (17)

= E
[(

Y ·D
Pr(D = 1|M,W,X) − Y · (1 −D)

1 − Pr(D = 1|M,W,X)

)
· Pr(D = d|M,W,X)

Pr(D = d|X)

]
.

θ(d)∗ corresponds to the change in the mean potential outcome due to an exogenous change in
the treatment, while keeping the mediator and the post-treatment covariates fixed at their po-
tential values given d. This effect generally differs from the direct effect outlined in Section 4.1,
which in the notation of the current section corresponds to θ(d) = E[Y (1,M(d,W (d)),W (1))−
Y (0,M(d,W (d)),W (0))]. That is, while θ(d) may include causal effects of D on Y that op-
erate through W but not M , θ(d)∗ corresponds to the direct effect neither operating through
M , nor W .
Furthermore, the following (partial) indirect effect is identified:

δ∗(d) = E[Y (d,M(1,W (d)),W (d)) − Y (d,M(0,W (d)),W (d))]

= E
[

Y · I{D = d}
Pr(D = d|M,W,X) · Pr(D = d|W,X)

Pr(D = d|X) ·
(Pr(D = 1|M,W,X)

Pr(D = 1|W,X) (18)

1 − Pr(D = 1|M,W,X)
1 − Pr(D = 1|W,X)

)]
.

δ∗(d) is the indirect effect going from D via M to Y but not operating through the post-
treatment confounders, as W is fixed at its potential value under D = d. This effect generally
differs from the indirect effect outlined in Section 4.1, which in the notation of the current
section corresponds to δ(d) = E[Y (d,M(1,W (1)),W (d)) − Y (d,M(0,W (0)),W (d))]. δ(d) is
the total indirect effect in the sense that it also accounts for all effects via M which either come
from D directly or ‘take a devious route’ through W . The devious route is not considered in
δ∗(d), which is in this sense a partial indirect effect.
While the assumptions made in this section permit obtaining θ(d)∗, δ∗(d), the identification
of θ(d), δ(d) would require additional functional form restrictions, see Avin, Shpitser, and
Pearl (2005), which may be less attractive in empirical applications. Finally, multiplying the
expressions in the expectation operators of the second lines of(17) and (18) by π(X)/Pr(D =
1) yields the respective direct and indirect effects on the treated.

4.3. Estimation

Estimation using the function medweight is based on normalized versions of the sample
analogs of the IPW-based identification results in Section 4.2, with estimates of the propen-
sity scores Pr(D = 1|M,X) and Pr(D = 1|X) serving as plug-in parameters. For instance,
the normalized estimators of the direct effects under treatment and non-treatment in Section
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4.2.1 are given by

θ̂(1) =
∑
Yi ·Di/p̂(Xi)∑
Di/p̂(Xi)

−
∑
Yi · (1 −Di) · p̂(Mi, Xi)/[(1 − p̂(Mi, Xi)) · p̂(Xi)]∑

(1 −Di) · p̂(Mi, Xi)/[(1 − p̂(Mi, Xi)) · p̂(Xi)]
, (19)

θ̂(0) =
∑
Yi ·Di · (1 − p̂(Mi, Xi))/[p̂(Mi, Xi) · (1 − p̂(Xi))]∑
Di · (1 − p̂(Mi, Xi))/[p̂(Mi, Xi) · (1 − p̂(Xi))]

−
∑
Yi · (1 −Di)/(1 − p̂(Xi))∑

(1 −Di)/(1 − p̂(Xi))
.

p̂(Mi, Xi) and p̂(Xi) denote the respective estimates of the propensity scores Pr(D = 1|Mi, Xi)
and Pr(D = 1|Xi), obtained by by probit or logit regression. The standard errors returned
by the function medweight are based on the i.i.d. bootstrap. Furthermore, the function
medweight includes an optional trimming rule for discarding observations with extreme
propensity scores to improve overlap, see Crump et al. (2009). The default is to discard
observations with treatment probabilities given the covariates and mediator(s) smaller than
0.05 (5%) or larger than 0.95 (95%).

4.4. Example in R

This section presents the input arguments of the medweight function. It then indicates the
components stored in the object generated by medweight. Finally, it provides an example for
computing the parameters of interest in a setting with post-treatment confounders.

Input arguments of medweight

The input arguments of medweight are:

Table 4: Input arguments of the medweight function

Variables Features of the variables
y Dependent variable, must not contain missings.
d Treatment, must be binary (either 1 or 0), must not contain missings.
m Mediator(s), may be a scalar or a vector, must not contain missings.
x Pre-treatment confounders of the d, m, and/or y, must not contain missings.
w Post-treatment confounders of m and y. Default is NULL. Must not contain

missings.
ATET If FALSE, the average treatment effect (ATE) and the corresponding direct

and indirect effects are estimated. If TRUE, the average treatment effect
on the treated (ATET) and the corresponding direct and indirect effects are
estimated. Default is FALSE.

trim Trimming rule for discarding observations with extreme propensity scores.
In the absence of post-treatment confounders (w = NULL), observations with
Pr(D = 1|M,X) < trim or Pr(D = 1|M,X) > (1−trim) are dropped.
In the presence of post-treatment confounders (w is defined), observations
with Pr(D = 1|M,W,X) < trim or Pr(D = 1|M,W,X) > (1−trim) are
dropped. Default is 0.05.

logit If FALSE, probit regression is used for propensity score estimation. If TRUE,
logit regression is used. Default is FALSE.

continued . . .
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. . . continued
Variables Features of the variables
boot Number of bootstrap replications for estimating standard errors. Default

is 1999.

The medweight object

A medweight object consists of two compontents, which can be referred to by a dollar sign
($), see the example in this section below. These components are:

Table 5: Components of the medweight object

Components Description of the components
results A 3x5 matrix containing the effect estimates in the first row (effects),

standard errors in the second row (se), and p-values in the third row
(p-value). The first column provides the total effect, namely the average
treatment effect (ATE) if ATET = FALSE or the average treatment effect on
the treated (ATET) if ATET = TRUE. The second and third columns provide
the direct effects under treatment and control, respectively (dir.treat,
dir.control), see equation (15) if w = NULL (no post-treatment con-
founders) and equation (17) if w is defined, respectively. If w = NULL,
the fourth and fifth columns provide the indirect effects under treatment
and control, respectively (indir.treat, indir.control), see equation
(16). If w is defined, the fourth and fifth columns provide the partial in-
direct effects under treatment and control, respectively (par.in.treat,
par.in.control), see equation (18).

ntrimmed Number of discarded (trimmed) observations due to extreme propensity
score values.

Illustrative example

This example is based on artificial data. The sample size n is set to 10’000. The seeds set
when generating random variables (set.seed()) enable the replication of the results. The
following chunk of R input code results in the output of the function medweight:

> n=10000
> set.seed(100); x=rnorm(n);
> set.seed(101); d=(0.25*x+rnorm(n)>0)*1
> set.seed(102); w=0.2*d+0.25*x+rnorm(n);
> set.seed(103); m=0.5*w+0.5*d+0.25*x+rnorm(n)
> set.seed(104); y=0.5*d+m+w+0.25*x+rnorm(n)
> output=medweight(y=y,d=d,m=m,x=x,w=w,trim=0.05,ATET=FALSE,logit=TRUE,
+ boot=19)
> round(output$results,3)
> output$ntrimmed
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The first component of the medweight object (output$results) shows the effect estimates,
standard errors, and p-values for the five effect estimators rounded to three decimals. ATE
refers to the (total) average treatment effect. dir.treat, dir.control, par.in.treat,
and par.in.control indicate average direct and partial indirect effects under treatment
and non-treatment, see (17) and (18). The second component of the medweight object
(output$ntrimmed) states the number of observations discarded due to the trimming rule.
The output of medweight is:

ATE dir.treat dir.control par.in.treat par.in.control
effect 1.340 0.530 0.537 0.520 0.517
se 0.033 0.026 0.025 0.029 0.022
p-value 0.000 0.000 0.000 0.000 0.000

[1] 0

5. Local average treatment effect with covariates
The function lateweight returns the local average treatment effect (LATE) of a binary
endogenous treatment based on a binary endogenous instrument that is conditionally valid,
implying that all confounders of the instrument and the outcome are observed. In addition,
it returns the intention-to-treat effect of the instrument on the outcome, as well as first-
stage effect of the instrument on the treatment. The function lateweight computes the
LATE among compliers as well as the local average treatment effect among treated compliers
(LATT) by weighting units by the inverse of their conditional instrument propensities given
the observed covariates.

5.1. Model and identification

Instrumental variable (IV) approaches for evaluating the causal effect of an endogenous treat-
ment D on an outcome Y rest on specific relevance and validity conditions. First, the instru-
ment, denoted by Z, needs to be relevant in the sense that it affects the treatment decision
of (at least) some subjects, the so-called compliers, and does so monotonically (i.e. in the
same direction for everyone). Second, Z needs to be valid in the sense that it does not have a
direct effect on the outcome Y other than through the treatment (exclusion restriction) and
that there exist no confounders jointly affecting Z and Y . Imbens and Angrist (1994) show
that under these assumptions the LATE on compliers is identified in general treatment effect
models.
However, frequently the IV assumptions do not appear plausible without controlling for a
set of covariates X. For instance, Card (1995) uses college proximity (Z) as IV to analyze
the causal link between education (D) and wages (Y ). If the instrument Z were randomly
assigned, it could be used as exogenous source of variation in D. However, college proximity
and place of residence in general are most likely not random but correlated with household
characteristics that might themselves influence the future wages of children (e.g. through social
networks and parental decisions). In such cases, it is necessary to control for confounders of
Z and Y .
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We introduce some further notation to formally state the IV assumptions conditional X in
the LATE framework for a binary Z, see for instance Abadie (2003). Let D(z) denote the
potential treatment state under some instrument value z ∈ {1, 0}. Secondly, let Y (z, d) denote
the potential outcome as a function of both the instrument and the treatment. Relevance
implies that Pr(D(1) > D(0)) > 0, such that compliers exist in the population. Monotonicity
is satisfied if Pr(D(1) ≥ D(0)|X) = 1, such that so-called defiers with D(0) > D(1) are
ruled out conditional on X. As discussed in Vytlacil (2002), monotonicity holds if a general
treatment effect model, say D = χ(Z,X, V ), can be represented by the threshold crossing
model D = I{µ(Z,X) ≥ ψ(V )}, where χ, µ, ψ are unknown functions and V reflects the
unobservables. The potential treatment state is then given by D(z) = I{µ(z,X) ≥ ψ(V )}.
Conditional validity requires that Z is independent of {D(z), Y (z′, d)} givenX and Pr(Y (1, d) =
Y (0, d) = Y (d)|X) = 1 for z, z′, d ∈ {1, 0}. This is satisfied if the outcome model corre-
sponds to Y = φ(D,X,U) (where U is the unobserved term), implying that Z does not
affect Y , and if Z is independent of (U, V ) given X. The potential outcome is then given by
Y (d) = φ(d,X,U). Finally, the common support restriction that Pr(Z = 1|X) is larger than
zero and smaller than one almost everywhere guarantees that no value of X perfectly predicts
Z.
The LATE on compliers is defined as

∆c = E[Y (1) − Y (0)|D(1) −D(0) = 1] (20)

As discussed in Frölich (2007), this parameter is identified by the ratio of to IPW expressions
using Pr(Z = 1|X) that reflect the intention to treat effect of Z on Y (numerator) and the
first stage effect of Z on D (denominator):

∆c = E[Y · Z/π(X) − Y · (1 − Z)/(1 − π(X))]
E[D · Z/π(X) −D · (1 − Z)/(1 − π(X))] , (21)

where π(X) = Pr(Z = 1|X). The LATT, defined as ∆c,D=1 = E[Y (1) − Y (0)|D(1) −D(0) =
1, D = 1], is obtained by multiplying the expressions in the expectation operators of (21) by
π(X)/Pr(Z = 1), yielding

∆c,D=1 = E[Y · Z − Y · (1 − Z) · π(X)/(1 − π(X))]
E[D · Z −D · (1 − Z) · π(X)/(1 − π(X))] . (22)

5.2. Estimation
The estimators returned by function lateweight are based on the ratio of the normalized
sample analogs of the IPW-based identification results for the intention to treat and first
stage effects in Section 5.1. The estimator of the LATT, for instance, is given by:

∆̂c,D=1 =

∑
Yi·Zi∑

Zi
−

∑
Yi·(1−Zi)·

π̂(Xi)
1−π̂(Xi)∑

(1−Zi)
π̂(Xi)

1−π̂(Xi)∑
Di·Zi∑

Zi
−

∑
Di·(1−Zi)·

π̂(Xi)
1−π̂(Xi)∑

(1−Zi)
π̂(Xi)

1−π̂(Xi)

, (23)

where π̂(Xi) denotes a probit or logit-based estimate of the instrument propensity score
Pr(Z = 1|X = x). Standard errors are computed using the i.i.d. bootstrap. Furthermore,
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the lateweight function provides an optional trimming rule for discarding observations with
extreme propensity scores to improve overlap, see Crump et al. (2009). The default is to
discard observations with treatment propensity scores smaller than 0.05 (5%) or larger than
0.95 (95%), when considering the LATE or larger than 0.95 when considering the LATT.

5.3. Example in R

This section presents the input arguments of the lateweight function and shows the output
stored in the object generated by lateweight. Finally, it provides an example for computing
the LATE.

Input arguments of lateweight

The input arguments of lateweight are:

Table 6: Input arguments of the lateweight function

Variables Features of the variables
y Dependent variable, must not contain missings.
d Treatment, must be binary (either 1 or 0), must not contain missings.
z Instrument for the endogenous treatment d, must be binary (either 1 or 0),

must not contain missings.
x Confounders of z and y, must not contain missings.
LATT If FALSE, the local average treatment effect (LATE) among compliers (whose

treatment reacts to the instrument) is estimated. If TRUE, the local average
treatment effect on the treated (LATT) is estimated. Default is FALSE.

trim Trimming rule for discarding observations with extreme propensity scores.
If LATT = FALSE, observations with Pr(Z = 1|X) < trim or Pr(Z = 1|X) >
(1−trim) are dropped. If If LATT = TRUE, only those observations with
Pr(Z = 1|X) > (1−trim) are dropped. Default is 0.05.

logit If FALSE, probit regression is used for propensity score estimation. If TRUE,
logit regression is used. Default is FALSE.

boot Number of bootstrap replications for estimating standard errors. Default
is 1999.

The lateweight object

A lateweight object consists of 10 compontens, which can be referenced by a dollar sign ($).
These components are:

Table 7: Components of the lateweight object

Components Description of the components
effect Local average treatment effect (LATE) among compliers if LATT = FALSE or

the local average treatment effect on treated compliers (LATT) if LATT =
TRUE.

continued . . .
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. . . continued
Components Description of the components
se.effect Bootstrap-based standard error of the effect.
pval.effect p-value of the effect.
first First stage estimate of the complier share if LATT = FALSE or the first stage

estimate among treated if LATT = TRUE.
se.first Bootstrap-based standard error of the first stage effect.
pval.first p-value of the first stage effect.
ITT Intention to treat effect (ITT) of z on y if LATT = FALSE or the ITT among

treated if LATT = TRUE.
se.ITT Bootstrap-based standard error of the ITT.
pval.ITT p-value of the ITT.
ntrimmed Number of discarded (trimmed) observations due to extreme propensity

score values.

Illustrative example

This example is based on simulated data. The sample size n is set to 10’000. The seeds set
when generating random variables (set.seed()) enable the replication of the results. The
following chunk of R input code results in the output of the function lateweight:

> n=10000
> set.seed(100); u=rnorm(n)
> set.seed(101); x=rnorm(n)
> set.seed(102); z=(0.25*x+rnorm(n)>0)*1
> set.seed(103); d=(z+0.25*x+0.25*u+rnorm(n)>0.5)*1
> y=0.5*d+0.25*x+u
> output=lateweight(y=y,d=d,z=z,x=x,trim=0.05,LATT=FALSE,logit=TRUE,boot=19)
> cat("LATE: ",round(c(output$effect),3),", standard error: ",
+ round(c(output$se.effect),3), ", p-value: ",
+ round(c(output$pval.effect),3))
> output$ntrimmed

The output consists of two lines. The first line provides the LATE, the standard error of the
effect, and its p-value, respectively. The second line shows the number of units discarded due
to the trimming rule. The output of lateweight is:

LATE: 0.524 , standard error: 0.059 , p-value: 0

[1] 0

6. Causal mediation analysis with instrumental variables
The function medlateweight computes the causal mechanisms (natural direct and indirect
effects) of a treatment among treatment compliers based on distinct instrumental variables
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(IVs) for the treatment and the mediator. The treatment and its instrument are assumed to
be binary while the mediator and its instrument are assumed to be continuous, see Theorem
1 in Frölich and Huber (2017). The instruments must be conditionally valid given a set
of observed covariates. A control function is used to tackle mediator endogeneity. The
function yields (i) the (total) local average treatment effect (LATE), (ii) the local average
direct effects under either potential treatment state, (iii) the local average indirect effects
under either potential treatment state, and parametric direct and indirect effect estimates
(ruling out effect heterogeneity across potential treatment states), respectively.

6.1. Model

The function medlateweight disentangles the total effect of a binary treatment D on an
outcome Y among treatment compliers into a natural direct effect and a natural indirect effect
operating through a scalar mediator M . Identification is based on two distinct instruments Z1
and Z2 for the endogenous variables D and M . The following mediation model is considered,
which consists of a system of nonparametric equations:

Y = φ(D,M,X,U), M = ζ(D,Z2, X, V ), D = I{ χ(Z1, X,W ) ≥ 0 }, (24)

where φ, ζ, χ are unknown functions. U, V,W comprise unobservables that may be arbitrarily
associated, so that D and M are in general endogenous. X are observed covariates. Z1 is the
binary instrument for tackling the endogeneity of treatment D, henceforth denoted as the first
instrument. Z2 denotes the instrument for mediator M , referred to as the second instrument
hereafter. It is assumed to contain at least one continuous variable, but may contain several
(continuous and discrete) elements.
Making use of the potential outcomes framework, let Y (d,M(d′)) and M(d) (in analogy to
Section 4.1) denote the potential outcome and the potential mediator state under treatment
d, d′ ∈ {0, 1}. In terms of our model, these parameters are defined for d, d′ ∈ {0, 1} as M(d) =
ζ(d, Z2, X, V ) and Y (d,M(d′) = φ(d,M(d′), X, U) = φ(d, ζ(d′, Z2, X, V ), X, U), respectively.
In analogy to Section 5.1, we define potential treatment state D(z1) for z1 ∈ {0, 1}, which in
our model corresponds to D(z1) = I{ χ(z1, X,W ) ≥ 0 }.
The causal parameters of interest are defined in analogy to those in Section 4.1, however,
among the subpopulation of treatment compliers. The LATE (∆c) as well as the natural
direct (θc) and indirect effects (δc(d) among compliers are given by:

∆c = E[Y (1) − Y (0)|D(1) −D(0) = 1] = E[Y (1,M(1)) − Y (0,M(0))|D(1) −D(0) = 1],
θc(d) = E[Y (1,M(d)) − Y (0,M(d))|D(1) −D(0) = 1], (25)
δc(d) = E[Y (d,M(1)) − Y (d,M(0))|D(1) −D(0) = 1], for d ∈ {1, 0}.

6.2. Identification

The identification of θc, δc hinges on the following assumptions, which are discussed in more
detail in Sections 3.1 and 3.2 of Frölich and Huber (2017). Firstly, instruments (Z1, Z2)
are independent of the unobservables (U, V,W ) conditional on covariates X. Secondly, Z1 is
independent of Z2 given X. Both assumptions are satisfied under a separate (i.e. independent)
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randomization of the instruments. By the mediation model outlined in Section 6.1, the
instruments also satisfy the exclusion restriction. That is, Z1 does not directly affect M (other
than through D) and Z2 does not directly affect Y (other than through M). Furthermore and
in analogy to Section 5.1, Z1 must monotonically shift D: Assuming Pr(D(1) > D(0)) > 0
guarantees that compliers exist, while Pr(D(1) ≥ D(0)|X) = 1 rules out defiers conditional
on X. A further condition is the strict monotonicity of the mediator in V , which is assumed
to be a continuously distributed scalar unobservable or index of unobservables. Finally, the
common support restriction that Pr(Z1 = 1|M,V,X,D(1) − D(0) = 1) is larger than zero
and smaller than one almost surely must hold.
While treatment endogeneity is taken care of by LATE-type assumptions similar to Abadie
(2003), mediator endogeneity is tackled by a control function approach, see for instance
Imbens and Newey (2009). We to this end define the control function C = C(M,D,Z2, X),
with

C(m, d, z2, x) = E[(d+D − 1) · (Z1 − π(x))|M ≤ m,Z2 = z2, X = x]
E[D · (Z1 − π(x))|Z2 = z2, X = x]

×FM |Z2,X(m, z2, x). (26)

π(X) = Pr(Z1 = 1|X) denotes the propensity score of the first instrument and FM |Z2,X

the conditional cumulative distribution of the mediator given the second instrument and the
covariates. Under the invoked assumptions, C can be shown to be a one-to-one mapping
of V . Therefore, conditioning on C or V is equivalent to control for mediator endogeneity.
Intuitively, the key idea of the identification approach is to exogenously vary Z1 to affect D,
while keeping M unchanged through an exogenous variation of Z2 that undoes the effect of
Z1 on M (through D). For the latter, conditioning on C is required.
Under these IV assumptions, the potential outcomes are identified by:

E [Y (1,M(1))|D(1) −D(0) = 1] = E [Y ·D · (Z1/π(X) − (1 − Z1)/(1 − π(X)))]
E [D · (Z1/π(X) − (1 − Z1)/(1 − π(X)))] , (27)

E [Y (1,M(0))|D(1) −D(0) = 1] = E [Y ·D · Ω · (Z1/π(X) − (1 − Z1)/(1 − π(X)))]
E [D · (Z1/π(X) − (1 − Z1)/(1 − π(X)))] , (28)

E [Y (0,M(1))|D(1) −D(0) = 1] =
E

[
Y · (D − 1) · 1

Ω · (Z1/π(X) − (1 − Z1)/(1 − π(X)))
]

E [D · (Z1/π(X) − (1 − Z1)/(1 − π(X)))] , (29)

E [Y (0,M(0))|D(1) −D(0) = 1] = E [Y · (D − 1) · (Z1/π(X) − (1 − Z1)/(1 − π(X)))]
E [D · (Z1/π(X) − (1 − Z1)/(1 − π(X)))] , (30)

with weights Ω = E [(D − 1) · {Z1 − Pr (Z1 = 1)} |M,C]
E [D · {Z1 − Pr (Z1 = 1)} |M,C] .

It follows that θc(1) and θc(0) are identified by the difference of (27) and (29) as well as (28)
and (30), respectively. δc(1) and δc(0) are identified by the difference of (27) and (28) as well
as (29) and (30), respectively.

6.3. Estimation

The function medlateweight returns seven parameters. The five semiparametric IV param-
eters consist of estimates of the LATE, ∆c, and the direct effects among compliers under
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either potential treatment state, θc(1) and θc(0), as well as the indirect effects, δc(1) and
δc(0). Furthermore, the function provides two parametric IV estimates of the direct and in-
direct effects assuming effect homogeneity across potential treatment states and thus ruling
out treatment-mediator interactions, such that θc(1) = θc(0) = θc and δc(1) = δc(0) = δc.
Concerning the semiparametric methods, estimation is based on normalized versions of the
identification results (27) to (30). The conditional expectations in the first term on the
right hand side of control function C in (26) are estimated by OLS. The second term, the
conditional cumulative distribution function FM |Z2,X , is estimated by kernel methods with
a Gaussian kernel as implemented in the R np package of Hayfield and Racine (2008). As
default bandwidth, the rule of thumb by Silverman (1986) is used. The remaining conditional
expectations/propensity scores entering equations (27) to (30) are estimated based on probit
or logit models. Optionally, the square of the control function C can be added as regressor
(on top of C) in any estimated function that is conditional on C.
The parametric IV estimators consist of a multi-step algorithm similar to Powdthavee, Lek-
fuangfu, and Wooden (2013). The first step is based on a probit or logit regression of D
on (1, Z1, X) to predict the treatment, denoted by D̃. Next, one linearly regresses M on
(1, Z2, D̃,X) to predict M , denoted by M̃ . As these predictions are based on variation in the
instruments unrelated to (U, V,W ) given X, they are exogenous. Therefore, the estimated
direct effect corresponds to the coefficient on D̃ in an OLS regression of Y on (1, D̃, M̃ ,X).
Finally, we linearly regress M on (1, D̃,X) and estimate the indirect effect as the product of
the coefficient on D̃ in the latter regression and that on M̃ in the regression of Y .
The standard errors returned by the function medlateweight are based on the i.i.d. bootstrap.
An optional trimming procedure is also provided which discards observations with extreme
relative weights in the computation of mean potential outcomes (27) to (30), similar to Huber,
Lechner, and Wunsch (2013). More specifically, the values for trimming refer to the relative
weights determined by D, D − 1, Z1/π(X) − (1 − Z1)/(1 − π(X)), Ω, and 1/Ω, respectively,
in the various mean potential outcomes. The default value for the maximum weight per
observation is set to 0.1, i.e. a maximum weight of 10% per unit in the computation of any
mean potential outcome among compliers.

6.4. Example in R

This section presents the input arguments of the medlateweight function. It then indicates
the components stored in the object generated by medlateweight. Finally, it provides an
example for computing the seven estimands identified in Section 6.2.

Input arguments of medlateweight

The input arguments of medlateweight are:

Table 8: Input arguments of the medlateweight function

Variables Features of the variables
y Dependent variable, must not contain missings.
d Treatment, must be binary (either 1 or 0), must not contain missings.
m Mediator, must be a continuous scalar, must not contain missings.

continued . . .
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. . . continued
Variables Features of the variables
zd Instrument for the treatment, must be binary (either 1 or 0), must not

contain missings.
zm Instrument(s) for the mediator, must contain at least one continuous ele-

ment, may be a scalar or a vector, must not contain missings. If no user-
specified bandwidth is provided for the regressors when estimating the con-
ditional cumulative distribution function F (M |Z2, X), i.e. if bwreg=NULL,
then zm must be exclusively numeric.

x Pre-treatment confounders, may be a scalar or a vector, must not contain
missings. If no user-specified bandwidth is provided for the regressors when
estimating the conditional cumulative distribution function F (M |Z2, X),
i.e. if bwreg=NULL, then x must be exclusively numeric.

trim Trimming rule for discarding observations with extreme weights. Discards
observations whose relative weight would exceed the value in trim in the
estimation of any of the potential outcomes. Default is 0.1 (i.e. a maximum
weight of 10% per observation).

csquared If TRUE, then not only the control function C, but also its square is used as
regressor in any estimated function that conditions on C. Default is FALSE.

boot Number of bootstrap replications for estimating standard errors. Default
is 1999.

cminobs Minimum number of observations to compute the control function C, see
the numerator of equation (26). A larger value increases boundary bias
when estimating the control function for lower values of M, but reduces
the variance. Default is 40, but should be adapted to sample size and the
number of variables in zm and x.

bwreg Bandwidths for zm and x in the estimation of the conditional cumulative
distribution function F (M |Z2, X) based on the np package by Hayfield and
Racine (2008), see equation (26). The length of the numeric vector must
correspond to the joint number of elements in zm and x and will be used
both in the original sample for effect estimation and in bootstrap samples
to compute standard errors. If set to NULL, then the rule of thumb is used
for bandwidth calculation, see the np package for details. In the latter case,
all elements in the regressors must be numeric. Default is NULL.

bwm Bandwidth for m in the estimation of the conditional cumulative distribution
function F (M |Z2, X) based on the np package by Hayfield and Racine
(2008), see equation (26). Must be scalar and will be used both in the
original sample for effect estimation and in bootstrap samples to compute
standard errors. If set to NULL, then the rule of thumb is used for bandwidth
calculation, see the np package for details. Default is NULL.

logit If FALSE, probit regression is used for any propensity score estimation. If
TRUE, logit regression is used. Default is FALSE.

The medlateweight object

A medlateweight object consists of two components, which can be referenced by a dollar
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sign ($), see the example in this section below. These components are:

Table 9: Components of the medlateweight object

Components Description of the components
results A 3x7 matrix containing the effect estimates in the first row (effects),

standard errors in the second row (se), and p-values in the third row
(p-value). The first column provides the total effect, namely the local
average treatment effect (LATE) on the compliers. The second and third
columns provide the direct effects under treatment and control, respec-
tively (dir.treat, dir.control). The fourth and fifth columns provide the
indirect effects under treatment and control, respectively (indir.treat,
indir.control). The sixth and seventh columns provide the parametric
direct and indirect effect estimates (dir.para, indir.para) without inter-
cation terms, respectively. For the parametric estimates, probit or logit
specifications are used for the treatment model, and models for mediator
and outcome apply OLS specifications.

ntrimmed Number of discarded (trimmed) observations due to large weights.

Illustrative example

This example is based on simulated data. The sample size n is set to 10’000. The residual
matrix e (for y, m, and d) refers to equation (24) and follows a multivariate normal distribution
with covariance matrix sigma. The seeds set when generating random variables (set.seed())
enable the replication of the results. The following chunk of R input code results in the output
of the function medlateweight:

> n=3000
> sigma=matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1),3,3)
> set.seed(100); e=(rmvnorm(n,rep(0,3),sigma))
> set.seed(101); x=rnorm(n)
> set.seed(102); zd=(0.5*x+rnorm(n)>0)*1
> d=(-1+0.5*x+2*zd+e[,3]>0)
> set.seed(103); zm=0.5*x+rnorm(n)
> m=(0.5*x+2*zm+0.5*d+e[,2])
> y=0.5*x+d+m+e[,1]
> options(digits=3)
> medlateweight(y,d,m,zd,zm,x,trim=0.1,csquared=FALSE,boot=19,cminobs=40,
+ bwreg=NULL,bwm=NULL,logit=FALSE)

The first component of the medlateweight object ($results) shows the effect estimates, stan-
dard errors, and p-values for five semiparametric and two parametric IV treatment effect esti-
mates. LATE refers to the LATE dir.treat, dir.control, indir.treat, and indir.control
are the average direct and indirect effects under treatment and non-treatment. The two para-
metrically estimated direct and indirect effects are reported by dir.para and indir.para,
respectively. The second component of the medlateweight object ($ntrimmed) states the
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number of observations discarded due to the trimming rule. The output of medlateweight
is:

$results
LATE dir.treat dir.control indir.treat indir.control dir.para

effect 1.40e+00 1.32 9.98e-01 0.40120 0.0756 9.98e-01
se 1.61e-01 1.36 1.27e-01 0.13582 1.3589 4.46e-02
p-value 2.95e-18 0.33 4.50e-15 0.00314 0.9556 8.09e-111

indir.para
effect 0.444446
se 0.133849
p-value 0.000899

$ntrimmed

1

7. Summary
This article describes the functionalities of the causalweight package for analyzing both causal
effects and their causal mechanisms in general treatment effect models based on inverse prob-
ability weighting (IPW). The settings include sample selection models, mediation analyses
(incorporating intermediate outcomes) with selection on observables and unobservables, and
instrumental variable approaches for estimating local effects.
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