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1. Abstract

This paper presents an implementation in R of the Cluster Estimated Standard Error (CESE)

proposed by Jackson (2019). The method estimates the covariance matrix of the estimated coefficients

of linear models in grouped data sets with correlation among observations within groups. Cluster

Estimated Standard Errors (CESE) is an alternative solution for the classical Cluster Robust Standard

Error (CRSE) (Greene, 2012; Eicker, 1967; White, 1980; Liang and Zeger, 1986; MacKinnon and Webb,

2017), which underestimates the standard errors in most of the situations encountered in practice

(Esarey and Menger, 2018).

2. Introduction

A common problem in regression analysis that requires correction of the estimated standard error

of the regression coefficients is the correlation between the residuals in observations that share some

observed grouping features. For instance, people that live in the same city, state, or country can display
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a more similar behaviour than people randomly sampled from different cities, states, or countries. The

example extends for any data in which some observations have shared characteristics or belong to the

same collective entity or institutional setting. For instance, people from the same school, patients

from the same hospital, or groups of the same gender or race can behave more similarly than people

across those groups. The within group correlation can be caused by unobserved shared characteristics

of the observations in the groups, such as some unobserved school-specific educational policies, or the

unobserved patterns of behavior of doctors in different hospitals.

Non-zero within-group correlations violate a common assumption of classical multivariate regression

models, namely that the residuals are independent, or simply uncorrelated. If one mistakenly assumes

the residuals are independent/uncorrelated, the estimated standard error of the regression coefficients

will be biased downward, which leads to smaller estimated confidence intervals, and therefore lower

chances to reject the hypothesis that the coefficients are null. It can misguide researchers and lead

them to be overconfident that their working hypothesis of non-zero effect is true. We can see that

easily with a simple example.

Suppose we estimate the following population regression model:

y“ Xβ` ε

where X P p1,Rkq, β P Rpk`1qˆ1, y P R, and the last element is the error (or deviance) term ε P R. We

collect i “ 1, ...,n observations to estimate β, which gives the statistical equation for each i with the

following residuals e:

yi “ Xiβ` ei.

We usually take X as given (measured without error) and use the OLS estimator β̂ of β, which is

obtained by finding the argument that minimizes the square residuals (e) between observed outcome

(y) and the outcome if no error had occurred pXβq:

β̂“ argmin
β

eT e“ argmin
β

py´XβqT py´Xβq.

Assuming XT X is invertible, the first order condition gives the solution for that optimization problem:

β̂“ pXT Xq´1XT y.

Up to this point, if we were simply computing an OLS point estimate of β using β̂, no assumptions

would be needed about the distribution of the residuals (ei). We impose assumptions about the distri-

bution of e to go one step further and make inferences about β̂ and investigate its statistical properties1.

The distribution of our estimator β̂, and therefore our inferences, comes from the assumptions about

the distribution of e. Denote that distribution generically by f pe | θq, that is:

e„ f pe | θq.

We can easily derive the first and second moments of β̂:

1Note the assumptions about the distribution of e is needed upfront if we are deriving a maximum likelihood estimator
(MLE) of β instead of the OLS estimator.
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β̂“ pXT Xq´1XT y“ pXT Xq´1XT pXβ` eq “ β`pXT Xq´1XT e

which gives:

µβ “ Erβ̂ | X ,θs “ β`pXT Xq´1XTEre | θs (1)

and

Σ
β̂
“ Varrβ̂ | X ,θs “ pXT Xq´1XTVarre | θsXpXT Xq´1. (2)

Assumptions about f pe | θq will give the small sample properties of the estimator β̂. The classical

assumption is that all residuals e comes from the same normal distribution with mean zero, and that

they are uncorrelated. That is:

e„N p0,σ2Iq (3)

If we assume that Ere | θs “ 0, as in the expression (3), then β̂ is unbiased (Erβ̂ | X ,θs “ β), and

its standard error is simply:

sepβ̂q “
b

pXT Xq´1σ̂2 (4)

with the estimated variance of e given by (Greene, 2012):

σ̂
2 “

py´X β̂qT py´X β̂q

n´pK`1q
.

Equation (4) provides the exact confidence interval for β̂:

CIrβ̂s “ pβ̂´ t ˚ sepβ̂q, β̂` t ˚ sepβ̂qq. (5)

In the expression (5), the value of t comes from a t´distribution and it is given by:

ppT ă |t|q “ 1´α.

The common practice is to choose α“ 0.05, which gives the 95% confidence interval of β̂.

The standard output of the lm() function to estimate linear models in R assumes the zero mean

normal distribution with uncorrelated residuals, which gives the estimated standard errors shown in

equation (4) above (Wilkinson and Rogers, 1973; Chambers, 1992; R Core Team, 2018).

The clustering problem emerges in grouped data. Consider that each observation i belongs to a
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group g; that there are G groups in the data; and that the error terms, (e), for individual observations

in the same group are correlated. Following the examples above, lets say that multiple observations

come from the same schools, hospitals, or countries. It is likely that the assumption of independence

of the residuals is violated because individuals of the same group probably share some unobserved

characteristics that affect their behavior, which creates a non-zero correlation between the residuals

within the observed groups. Then, keeping all the other assumptions of the classical regression model,

the distribution of the disturbances can be more generally denoted by:

e„N p0,Σq.

In this case the standard errors of β̂ under the assumption of independence or zero correlation of

the residuals (sepβ̂q) differ from the standard errors computed when the within-group correlations are

taken into account (seg

´

β̂

¯

):

sepβ̂q “
b

pXT Xq´1σ̂2 ‰

b

pXT Xq´1pXT Σ̂XqpXT Xq´1 “ segpβ̂q

Typically, sepβ̂q ă segpβ̂q. It means that assuming uncorrelated residuals produces confidence inter-

vals of β̂ that are smaller than the true ones, and that the researcher will be overconfident about the

range of estimated values of the linear coefficients that seem consistent with the data.

There are some approaches to deal with that problem. One is to adjust the confidence intervals.

Imbens and Kolesar (2016) adjust the number of the degree of freedom of the t´distribution, producing

larger values of t used to construct the confidence intervals. Another approach uses bootstrap methods

(Cameron et al., 2008; Harden, 2011; MacKinnon and Webb, 2017). These methods only correct the

confidence intervals, but they do not provide an estimate for Σ̂ (see Harden (2011) for an exception).

As a result, hypothesis tests about the nullity of multiple coefficients and interactions are infeasible.

For models with interaction terms, it means marginal effects plots of the interactive terms cannot be

constructed because they require the full Σβ matrix. Only presenting one confidence interval ignores

current best practice recommendations that eschew the use of pre-set p-values, such as those derived

from α“ 0.05, in favor of reporting standard errors and letting readers decide what level of uncertainty

they prefer. (see Wasserstein et al. (2019)). This practice requires estimating and reporting the

elements of Σβ as computing different confidence intervals via the commonly proposed bootstrapping

requires the original data.

Two methods provide an estimate for Σ, which eliminate those problems: Cluster Robust Standard

Errors (CRSE) and Cluster Estimated Standard Errors (CESE). The next section reviews these two

main approaches to correct the estimated standard errors of β̂. The following section presents our

implementation of CESE in R and compare it with the already existing implementation of CRSE. An

introductory example then explores the methods and its implementation.
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3. Clustered Standard Error Corrections

3.1. Cluster Robust Standard Errors (CRSE)

The CRSE is the routine solution used by researchers to deal with the estimation of clustered

standard errors in grouped data (Eicker, 1967; White, 1980; Liang and Zeger, 1986; Esarey and Menger,

2018). If the individual-level observations are divided into groups g (e.g., schools, countries, etc.), and

g“ 1, . . . ,G, we can rewrite the estimated variance of β̂ in equation (2) as:

Σ̂β “ pX
T Xq´1

«

G
ÿ

g“1

XT
g Σ̂gXg

ff

pXT Xq´1 (6)

The key problem is how to estimate Σ̂g, the variance-covariance matrix of the residuals for group g.

The CRSE solution is to use the raw estimated residuals from the OLS estimates of β, and compute

Σ̂g using yg and Xg, the output variable and the covariates, respectively, of observations in group g. It

gives the CRSE estimator Σ̂
CRSE
g as follows:

Σ̂
CRSE
g “ pyg´Xgβ̂qpyg´Xgβ̂qT “ egeT

g

The R package sandwich provides some functions to estimate clustered standard errors using the

CRSE solution (Zeileis, 2004).

MacKinnon and Webb (2017) show that there are three necessary conditions for CRSE to be

consistent: (a) infinite number of clusters, (b) homogeneity across clusters in the stochastic term

distributions; and (c) an equal number of observations per cluster. Moreover, authors have shown

that CRSE are biased downward for small samples and possibly for large samples as well (MacKinnon

and Webb, 2017; Esarey and Menger, 2018). Jackson (2019) also shows other conditions that lead

the Σ̂
CRSE
g to provide values that underestimate the true Σβ, and therefore the confidence intervals of

the regression coefficients. The author proposes an alternative approach to estimate Σg called CESE,

which we discuss next.

3.2. Cluster Estimated Standard Errors (CESE)

Jackson (2019) proposes an approach labeled CESE to estimate the standard errors in grouped data

with within-group correlation in the residuals. The approach is based on the estimated expectation of

the product of the residuals. Assuming that the residuals have the same variance-covariance matrix

within the groups, if we denote by σig “ σ
2
g and ρig “ ρg the variance and the covariance, respectively,

of the residuals within the group g, then the expectation of the product of the residuals is given by

(see Jackson (2019) for details):

Σg “ EregeT
g s “ σ

2
gpIg´Pgq`ρg

„

ιgι
T
g ´pIg´Pgq´pPgιgι

T
g ` ιgι

T
g Pgq

`XgpXT Xq´1

˜

G
ÿ

g“1

XT
g ιgι

T
g Xg

¸

pXT Xq´1Xg

 (7)
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where ιg is a unitary column vector, Ig is a gˆ g identity matrix, and Pg “ XgpXT Xq´1XT
g . Equation

(7) can be rewriten concisely as:

Σg “ σ
2
gQ1g`ρgQ2g. (8)

The equation above explicitly shows that the expectation of the cross-product of the residuals is a

function the data through Q1g and Q2g and the unknown variance σ
2
g and correlation ρg of the residuals

eg in each group g. The CESE solution is to explore the linear structure of equation (8) and to estimate

σ
2
g and ρg as if the estimated values of egeT

g were random deviances from their expectations. Denote

ξ that deviance. Then

egeT
g “ EregeT

g s`ξ

“ σ
2
gQ1g`ρgQ2g`ξ

“ Σg`ξ.

(9)

The estimates of σ
2
g and ρg are obtained using the OLS estimator. That is, if we denote Ωg “

pσ2
g,ρgq

T , q1g (or q2g) the vectorized diagonal and lower triangle of Q1g (or Q2g) stacked into a

ngpng`1q{2 column vector, qg “ rq1g,q2gs, and seg the corresponding elements of egeT
g stacked into a

column vector as well, then the OLS CESE estimator Ω̂g “ pσ̂
2
g, ρ̂gq

T of the variance and correlation of

the residuals in group g is given by

Ω̂g “ argmin
Ωg

pseg´qgΩgq
T pseg´qgΩgq.

As pointed above for the OLS estimator of β, if we assume that qT
g qg is invertible, the first order

condition gives:

Ω̂g “ pqT
g qgq

´1qT
g seg. (10)

We can rewrite the equation (10) as:

«

σ̂
2
g

ρ̂g

ff

“

«

qT
1gq1g qT

1gq2g

qT
2gq1g qT

2gq2g

ff´1«
qT

1gseg

qT
2gseg

ff

. (11)

As explained above for the OLS estimates of β, the estimators of σ
2
g and ρg do not require per

se any assumption on ξ, unless we want to construct confidence intervals for the estimates of those

parameters.

Jackson (2019) shows that CESE produces larger standard errors for the coefficients and much

more conservative confidence intervals than the CRSE, which is known to be biased downward. CESE

is also less sensitive to the number of clusters and to the heterogeneity of the clusters, which can be a

problem for both CRSE and bootstrap methods.
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We implemented CESE in R. It is available in the package named ceser. The next section presents

some details of the implementation as well as an example ilustrating how to use the package in practice.

4. Implementation and Example

4.1. Computing the CESE

The package ceser provides a function vcovCESE() that takes the output of the function lm()

(or any other that produces compatible outputs) and computes the Cluster Estimated Standard Errors

(CESE). The basic structure of the function is:

R> vcovCESE(mod, cluster = NULL, type=NULL)

The parameter mod receives the output of the lm() function. The parameter cluster can receive

a right-hand side R formula with the summation of the variables in the data that will be used to cluster

the standard errors. For instance, if one wants to cluster the standard error by country, one can use:

R> vcovCESE(..., cluster = ~ country, ...)

To cluster by country and gender, simply use

R> vcovCESE(..., cluster = ~ country + gender, ...)

The parameter cluster can also receive, instead of a formula, a string vector with the name of the

variables that contain the groups to cluster the standard errors. If cluster = NULL, each observation

is considered its own group to cluster the standard errors.

The parameter type receives the procedure to use for heterokedasticity correction. Heterokedasticity

occurs when the diagonal elements of Σ are not constant across observations. The correction can also

be used to deal with underestimation of the true variance of the residuals due to leverage produced by

outliers. We include five types of correction. In particular, type can be either ”HC0”, ”HC1”, ”HC2”,

”HC3”, and ”HC4” (Hayes and Cai, 2007). Denote ec the corrected residuals. Each option produce the

following corretion:
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HC0: eic “ ei

HC1: eic “ ei

ĉ

n
n´ k

˙

HC2: eic “ ei

ˆ

1
?

1´hii

˙

HC3: eic “ ei

ˆ

1
1´hii

˙

HC4: eic “ ei

˜

1
a

p1´hiiqδi

¸

where k is the number of covariates, hii is the ith diagonal element of the matrix P “ XpXT Xq´1XT ,

and δi “minp4,hii
n
k
q.

The estimation also corrects for cases in which ρg ą σ
2g. Following Jackson (2019), we use

σ̂
2
g “ pρ̂g`0.02q in those cases.

4.2. Example with application

In applied regression analyses, the practioner is usually interested in estimating the linear coefficients

and their standard error to evaluate if the confidence interval of the point estimates of the coefficients

includes the null value. It means that two quantites of interest are β̂ and sepβ̂q.

In this section, we compare the standard output of the lm() function with the standard errors of the

linear coefficients produced by the CRSE, as computed by the widely used R package sandwich (Zeileis,

2004), and those produced by the ceser package, which contains our implementation of the CESE

method proposed by Jackson (2019). As discussed in the previous section, in general the CESE should

be more conservative, produce larger estimates of the standard errors, and result in wider confidence

intervals.

To ilustrate how to use the ceser package, and to compare the three estimates of the standard

error (raw, CRSE, and CESE), we use the data set dcese provided with the ceser package. The data

set was used in Jackson (2019) and comes from Elgie et al. (2014). It contains information of 310

(i=1,. . . , 310) observations across 51 countries (g=1,. . . ,51). The outcome variable is the number of

effective legislative parties (enep). The explanatory variables are: the number of presidential candi-

dates (enpc); a measure of presidential power (fapres); the proximity of presidential and legislative

elections (proximity); the effective number of ethnic groups (eneg); the log of average district magni-

tudes (logmag); an interaction term between the number of presidential candidates and the presidential

power (enpcfapres = enpc ˆ fapres), and another interaction term between the log of the district

magnitude and the number of ethnic groups (logmag_eneg = logmag ˆ eneg). Elgie et al. (2014)

present regression analyses showing a strong relationship between enpc and fapres, enpc, and their

interaction. The effective number of legislative parties increases with the number of presidential candi-

dates, but decreases with presidential power. The interactive term has a positive coefficient, implying

the negative association between the number of legislative parties and presidential power attenuates as

the number of candidates increases. They use a variety of standard error corrections, including CRSE.

We reproduce their study here, and include the estimation of the standard errors using CESE as in

Jackson (2019).
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Start with the functions that provide the variance covariance matrix of the estimated coefficients

β̂. For all the examples below, we use the HC3 correction. The Table 1 below uses also HC1 for

comparison. After loading the package and the data,

R> library(ceser)

R> data(dcese)

Estimate the linear model using the lm() function.

R> mod = lm(enep ~ enpc + fapres + enpcfapres + proximity

+ eneg + logmag + logmag_eneg , data=dcese)

The estimated raw values of the variance covariance matrix obtained by running the standard R

function from the stats package (R Core Team, 2018) are:

R> vcov(mod)

(Intercept) enpc fapres enpcfapres proximity

(Intercept) 0.34193 -0.080109 -0.06498717 0.0227605 -0.0416369

enpc -0.08011 0.035697 0.02401318 -0.0102825 0.0059204

fapres -0.06499 0.024013 0.02734250 -0.0090018 -0.0004345

enpcfapres 0.02276 -0.010283 -0.00900179 0.0036430 -0.0014388

proximity -0.04164 0.005920 -0.00043452 -0.0014388 0.0776196

eneg -0.03580 -0.001477 -0.00251785 0.0007025 -0.0039084

logmag -0.05448 -0.006981 0.00017420 0.0021400 -0.0023836

logmag_eneg 0.02532 0.001833 -0.00007513 -0.0007721 -0.0009086

eneg logmag logmag_eneg

(Intercept) -0.0358050 -0.0544826 0.02532042

enpc -0.0014768 -0.0069809 0.00183259

fapres -0.0025179 0.0001742 -0.00007513

enpcfapres 0.0007025 0.0021400 -0.00077214

proximity -0.0039084 -0.0023836 -0.00090860

eneg 0.0218856 0.0222887 -0.01190289

logmag 0.0222887 0.0606796 -0.02995518

logmag_eneg -0.0119029 -0.0299552 0.01778317

The CRSE, using countries as the grouping variable, obtained using the vcovCL() function of the

sandwich package (Zeileis, 2004) are:
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R> library(sandwich)

R> vcovCL(mod, cluster = ~country, type="HC3")

(Intercept) enpc fapres enpcfapres proximity

(Intercept) 0.376409 -0.0929549 -0.06620 0.022499 -0.0315432

enpc -0.092955 0.0930327 0.05081 -0.026847 0.0000196

fapres -0.066198 0.0508080 0.07437 -0.024184 -0.0177849

enpcfapres 0.022499 -0.0268474 -0.02418 0.010785 0.0020836

proximity -0.031543 0.0000196 -0.01778 0.002084 0.1029317

eneg 0.001905 -0.0165885 -0.02183 0.007097 -0.0200007

logmag -0.030573 -0.0642203 -0.04945 0.022924 -0.0285040

logmag_eneg -0.002075 0.0124010 0.02094 -0.007229 0.0317879

eneg logmag logmag_eneg

(Intercept) 0.001905 -0.03057 -0.002075

enpc -0.016589 -0.06422 0.012401

fapres -0.021832 -0.04945 0.020940

enpcfapres 0.007097 0.02292 -0.007229

proximity -0.020001 -0.02850 0.031788

eneg 0.027519 0.06041 -0.039241

logmag 0.060413 0.27344 -0.158061

logmag_eneg -0.039241 -0.15806 0.120629

In a similar fashion, the CESE are obtained by simply running the function vcovCESE() of the

ceser package:

R> vcovCESE(mod, cluster = ~country, type="HC3")

(Intercept) enpc fapres enpcfapres proximity

(Intercept) 1.59804 -0.3565890 -0.326045 0.0928614 -0.086959

enpc -0.35659 0.1254735 0.104834 -0.0354704 -0.003333

fapres -0.32604 0.1048342 0.143206 -0.0389794 -0.017879

enpcfapres 0.09286 -0.0354704 -0.038979 0.0126978 0.003218

proximity -0.08696 -0.0033328 -0.017879 0.0032179 0.139695

eneg -0.08737 0.0028258 -0.007081 0.0010940 -0.005680

logmag -0.22422 0.0009845 0.006688 0.0038080 0.009776

logmag_eneg 0.08381 -0.0058250 -0.011500 0.0008569 0.004472

eneg logmag logmag_eneg

(Intercept) -0.087372 -0.2242235 0.0838093

enpc 0.002826 0.0009845 -0.0058250

fapres -0.007081 0.0066880 -0.0115004

enpcfapres 0.001094 0.0038080 0.0008569

proximity -0.005680 0.0097761 0.0044718
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eneg 0.039433 0.0481561 -0.0231003

logmag 0.048156 0.2244237 -0.1048418

logmag_eneg -0.023100 -0.1048418 0.0606626

Note that the estimated standard errors are ordered as expected. The raw standard errors are

smaller than CRSE, which by its turn are smaller than CESE for almost all coefficients:

The standard errors for each method are:

R> sqrt(diag(vcov(mod)))

(Intercept) enpc fapres enpcfapres proximity

0.58475 0.18894 0.16536 0.06036 0.27860

eneg logmag logmag_eneg

0.14794 0.24633 0.13335

R> sqrt(diag(vcovCL(mod, cluster=~country, type="HC3")))

(Intercept) enpc fapres enpcfapres proximity

0.6135 0.3050 0.2727 0.1039 0.3208

eneg logmag logmag_eneg

0.1659 0.5229 0.3473

R> sqrt(diag(vcovCESE(mod, cluster=~country, type="HC3")))

(Intercept) enpc fapres enpcfapres proximity

1.2641 0.3542 0.3784 0.1127 0.3738

eneg logmag logmag_eneg

0.1986 0.4737 0.2463

Summary tables with the raw standard errors, CRSE, and CESE are easy to produce. The package

lmtest is specially useful for that purpose. The package ceser plays nicely with the lmtest package

and the function coeftest() of that package, which can be used to create summary tables with the

different standard errors. The raw estimates are:

R> summary(mod)

Call:

lm(formula = enep ~ enpc + fapres + enpcfapres + proximity +

eneg + logmag + logmag_eneg, data = dcese)
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Residuals:

Min 1Q Median 3Q Max

-3.559 -0.819 -0.361 0.377 9.039

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7043 0.5848 4.62 0.0000056 ***

enpc 0.3040 0.1889 1.61 0.10871

fapres -0.6118 0.1654 -3.70 0.00026 ***

enpcfapres 0.2078 0.0604 3.44 0.00066 ***

proximity -0.0224 0.2786 -0.08 0.93589

eneg -0.0657 0.1479 -0.44 0.65748

logmag -0.1815 0.2463 -0.74 0.46193

logmag_eneg 0.3605 0.1334 2.70 0.00727 **

---

codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.65 on 291 degrees of freedom

Multiple R-squared: 0.378,Adjusted R-squared: 0.363

F-statistic: 25.3 on 7 and 291 DF, p-value: <0.0000000000000002

We can obtain the summary with CRSE by country by running:

R> library(lmtest)

R> coeftest(mod, vcov = vcovCL, cluster = ~ country, type="HC3")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7043 0.6135 4.41 0.000015 ***

enpc 0.3040 0.3050 1.00 0.320

fapres -0.6118 0.2727 -2.24 0.026 *

enpcfapres 0.2078 0.1039 2.00 0.046 *

proximity -0.0224 0.3208 -0.07 0.944

eneg -0.0657 0.1659 -0.40 0.693

logmag -0.1815 0.5229 -0.35 0.729

logmag_eneg 0.3605 0.3473 1.04 0.300

---

codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Similary, to use CESE instead of CRSE, simply run
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R> coeftest(mod, vcov = vcovCESE, cluster = ~ country, type="HC3")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7043 1.2641 2.14 0.033 *

enpc 0.3040 0.3542 0.86 0.391

fapres -0.6118 0.3784 -1.62 0.107

enpcfapres 0.2078 0.1127 1.84 0.066 .

proximity -0.0224 0.3738 -0.06 0.952

eneg -0.0657 0.1986 -0.33 0.741

logmag -0.1815 0.4737 -0.38 0.702

logmag_eneg 0.3605 0.2463 1.46 0.144

---

codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 1 shows how the confidence intervals differ for the different estimates of the standard error of

the coefficients. The CRSE are shown with both the HC1 and HC3 adjustments to the residuals. We

can see how the CESE is more conservative, particulary for the two covariates, fapres (presidential

power) and enpcfapres [the interaction between effective number of legislative parties (enpc) and

presidential power (fapres)]. For them, the null value is consistent with the data when the CESE is

used, but not if the other standard errors are adopted for the computation of the confidence intervals.

Std. Errors
Covariate Estimate Raw CRSEHC1 CRSEHC3 CESE
(Intercept) 2.7043 0.5848 0.4886 0.6135 1.2641
enpc 0.3040 0.1889 0.2517 0.3050 0.3542
fapres -0.6118 0.1654 0.2038 0.2727 0.3784
enpcfapres 0.2078 0.0604 0.0826 0.1039 0.1127
proximity -0.0224 0.2786 0.2544 0.3208 0.3738
eneg -0.0657 0.1479 0.1415 0.1659 0.1986
logmag -0.1815 0.2463 0.4387 0.5229 0.4737
logmag eneg 0.3605 0.1334 0.2883 0.3473 0.2463

Confidence Intervals
Covariate Estimate Raw CRSEHC1 CRSEHC3 CESE
(Intercept) 2.7043 (1.558, 3.85) (1.747, 3.662) (1.502, 3.907) (0.227, 5.182)
enpc 0.3040 (-0.066, 0.674) (-0.189, 0.797) (-0.294, 0.902) (-0.39, 0.998)
fapres -0.6118 (-0.936, -0.288) (-1.011, -0.212) (-1.146, -0.077) (-1.354, 0.13)
enpcfapres 0.2078 (0.089, 0.326) (0.046, 0.37) (0.004, 0.411) (-0.013, 0.429)
proximity -0.0224 (-0.568, 0.524) (-0.521, 0.476) (-0.651, 0.606) (-0.755, 0.71)
eneg -0.0657 (-0.356, 0.224) (-0.343, 0.212) (-0.391, 0.259) (-0.455, 0.324)
logmag -0.1815 (-0.664, 0.301) (-1.041, 0.678) (-1.206, 0.843) (-1.11, 0.747)
logmag eneg 0.3605 (0.099, 0.622) (-0.205, 0.926) (-0.32, 1.041) (-0.122, 0.843)

Table 1: Comparing raw standard errors, CRSE, and CESE.
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