IPUMS data are free, but do require registration. New users can register with a particular IPUMS project by clicking the Register link at the top right of the project website.
IPUMS data are obtained by creating and submitting an extract request. This specifies the data to be included in the resulting extract (or data extract). A submitted extract request will be processed by the IPUMS servers. When complete, the extract containing the requested data can be downloaded.
Extracts typically contain both data and metadata files. Data files typically come as .dat (for fixed-width files) or .csv (for comma-delimited files). Metadata files contain information about the data file and its contents, including variable descriptions and parsing instructions for fixed-width data files. Microdata projects provide metadata in DDI (.xml) files. Aggregate data projects provide metadata in either .txt or .csv formats.
Registered users can download IPUMS data from a particular project through the interactive extract system found on that project’s website. For some projects, data can also be downloaded within R by interacting with the IPUMS API.
To create a new extract request, navigate to the extract interface for the IPUMS project of interest by clicking Select Data in the heading of the project website. The project extract interface allows you to specify the data you’d like to download. The data selection parameters will differ across projects; see each project’s documentation for more details on the available options. If you’ve never created an extract for the project you’re interested in, start by watching the project-specific video on creating extracts hosted on the IPUMS Tutorials page.
Once your extract is ready, click the green Download button to download the data file. Then, right-click the DDI link in the codebook column, and select Save Link As… (see below).
Note that some browsers may display different text, but there should be an option to download the DDI file as .xml. For instance, on Safari, select Download Linked File As…. The most important thing is that you download the file in .xml format, not .html format.
Simply download an extract’s data by clicking the green Tables button (for tabular data) and/or GIS Files button (for spatial boundary data) in the Download Data column.
Extract requests can also be created and submitted from within R by interacting with the IPUMS API. The IPUMS API currently supports the following collections:
IPUMS USA
IPUMS CPS
IPUMS International
IPUMS NHGIS
The workflow for requesting and downloading data via API is straightforward. First, define the parameters of your extract. The available extract definition options will differ by IPUMS data collection. See the microdata API request and NHGIS API request vignettes for more details on defining an extract.
cps_extract_request <- define_extract_cps(
description = "2018-2019 CPS Data",
samples = c("cps2018_05s", "cps2019_05s"),
variables = c("SEX", "AGE", "YEAR")
)
nhgis_extract_request <- define_extract_nhgis(
description = "NHGIS Data via IPUMS API",
datasets = ds_spec(
"1990_STF1",
data_tables = c("NP1", "NP2", "NP3"),
geog_levels = "state"
)
)
Next, submit your extract definition. After waiting for it to complete, you can download the files directly to your local machine without ever having to leave R:
submitted_extract <- submit_extract(extract_request)
downloadable_extract <- wait_for_extract(submitted_extract)
data_files <- download_extract(downloadable_extract)
You can also get the specifications of your previous extract requests, even if they weren’t made with the API:
See the introduction to the IPUMS API for more details about how to use ipumsr to interact with the IPUMS API.
Once your extract is downloaded, you can load your data into R with
the family of read_*()
functions in ipumsr. These functions
expand on those provided in readr in two ways:
ipumsr anticipates standard IPUMS file structures, limiting the need for users to manually extract and organize their downloaded files before reading.
ipumsr uses an extract’s metadata files to automatically attach contextual information to the data. This allows users to easily identify variable names, variable descriptions, and labeled data values (from haven), which are common in IPUMS files.
For microdata files, use the read_ipums_micro_*()
family:
cps_file <- ipums_example("cps_00157.xml")
cps_data <- read_ipums_micro(cps_file)
#> Use of data from IPUMS CPS is subject to conditions including that users should cite the data appropriately. Use command `ipums_conditions()` for more details.
head(cps_data)
#> # A tibble: 6 × 8
#> YEAR SERIAL MONTH ASECWTH STATEFIP PERNUM ASECWT INCTOT
#> <dbl> <dbl> <int+lbl> <dbl> <int+lbl> <dbl> <dbl> <dbl+lbl>
#> 1 1962 80 3 [March] 1476. 55 [Wisconsin] 1 1476. 4883
#> 2 1962 80 3 [March] 1476. 55 [Wisconsin] 2 1471. 5800
#> 3 1962 80 3 [March] 1476. 55 [Wisconsin] 3 1579. 999999998 [Missin…
#> 4 1962 82 3 [March] 1598. 27 [Minnesota] 1 1598. 14015
#> 5 1962 83 3 [March] 1707. 27 [Minnesota] 1 1707. 16552
#> 6 1962 84 3 [March] 1790. 27 [Minnesota] 1 1790. 6375
For NHGIS files, use read_nhgis()
:
nhgis_file <- ipums_example("nhgis0972_csv.zip")
nhgis_data <- read_nhgis(nhgis_file)
#> Use of data from NHGIS is subject to conditions including that users should cite the data appropriately. Use command `ipums_conditions()` for more details.
#> Rows: 71 Columns: 25
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (9): GISJOIN, STUSAB, CMSA, PMSA, PMSAA, AREALAND, AREAWAT, ANPSADPI, F...
#> dbl (13): YEAR, MSA_CMSAA, INTPTLAT, INTPTLNG, PSADC, D6Z001, D6Z002, D6Z003...
#> lgl (3): DIVISIONA, REGIONA, STATEA
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(nhgis_data)
#> # A tibble: 6 × 25
#> GISJOIN YEAR STUSAB CMSA DIVISIONA MSA_CMSAA PMSA PMSAA REGIONA STATEA
#> <chr> <dbl> <chr> <chr> <lgl> <dbl> <chr> <chr> <lgl> <lgl>
#> 1 G0080 1990 OH 28 NA 1692 Akron, OH… 0080 NA NA
#> 2 G0360 1990 CA 49 NA 4472 Anaheim--… 0360 NA NA
#> 3 G0440 1990 MI 35 NA 2162 Ann Arbor… 0440 NA NA
#> 4 G0620 1990 IL 14 NA 1602 Aurora--E… 0620 NA NA
#> 5 G0845 1990 PA 78 NA 6282 Beaver Co… 0845 NA NA
#> 6 G0875 1990 NJ 70 NA 5602 Bergen--P… 0875 NA NA
#> # ℹ 15 more variables: AREALAND <chr>, AREAWAT <chr>, ANPSADPI <chr>,
#> # FUNCSTAT <chr>, INTPTLAT <dbl>, INTPTLNG <dbl>, PSADC <dbl>, D6Z001 <dbl>,
#> # D6Z002 <dbl>, D6Z003 <dbl>, D6Z004 <dbl>, D6Z005 <dbl>, D6Z006 <dbl>,
#> # D6Z007 <dbl>, D6Z008 <dbl>
ipumsr also supports the reading of IPUMS spatial boundary files into
the sf
format provided by the sf package:
shp_file <- ipums_example("nhgis0972_shape_small.zip")
nhgis_shp <- read_ipums_sf(shp_file)
head(nhgis_shp)
#> Simple feature collection with 6 features and 8 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -129888.4 ymin: -967051.1 xmax: 1948770 ymax: 751282.5
#> Projected CRS: USA_Contiguous_Albers_Equal_Area_Conic
#> # A tibble: 6 × 9
#> PMSA MSACMSA ALTCMSA GISJOIN GISJOIN2 SHAPE_AREA SHAPE_LEN GISJOIN3
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 3280 3282 41 G3280 3280 2840869482. 320921. G32823280
#> 2 5760 5602 70 G5760 5760 237428573. 126226. G56025760
#> 3 1145 3362 42 G1145 1145 3730749183. 489789. G33621145
#> 4 1920 1922 31 G1920 1920 12068105590. 543164. G19221920
#> 5 0080 1692 28 G0080 0080 2401347006. 218892. G16920080
#> 6 1640 1642 21 G1640 1640 5608404797. 415671. G16421640
#> # ℹ 1 more variable: geometry <MULTIPOLYGON [m]>
ipumsr is primarily designed to read data produced by the IPUMS extract system. However, IPUMS does distribute other files, often available via direct download. In many cases, these can be loaded with ipumsr. Otherwise, these files can likely be handled by existing data reading packages like readr (for delimited files) or haven (for Stata, SPSS, or SAS files).
See the vignette on reading IPUMS data for more information.
Load a file’s metadata with read_ipums_ddi()
(for
microdata projects) and read_nhgis_codebook()
(for NHGIS).
These provide file- and variable-level metadata for a given data source,
which can be used to interpret the data contents.
Summarize the variable metadata for a dataset using
ipums_var_info()
:
ipums_var_info(cps_meta)
#> # A tibble: 8 × 10
#> var_name var_label var_desc val_labels code_instr start end imp_decim
#> <chr> <chr> <chr> <list> <chr> <dbl> <dbl> <dbl>
#> 1 YEAR Survey year "YEAR r… <tibble> "YEAR is … 1 4 0
#> 2 SERIAL Household seria… "SERIAL… <tibble> "SERIAL i… 5 9 0
#> 3 MONTH Month "MONTH … <tibble> <NA> 10 11 0
#> 4 ASECWTH Annual Social a… "ASECWT… <tibble> "ASECWTH … 12 22 4
#> 5 STATEFIP State (FIPS cod… "STATEF… <tibble> <NA> 23 24 0
#> 6 PERNUM Person number i… "PERNUM… <tibble> "PERNUM i… 25 26 0
#> 7 ASECWT Annual Social a… "ASECWT… <tibble> "ASECWT i… 27 37 4
#> 8 INCTOT Total personal … "INCTOT… <tibble> "99999999… 38 46 0
#> # ℹ 2 more variables: var_type <chr>, rectypes <lgl>
You can also get contextual details for specific variables:
ipums_var_desc(cps_data$INCTOT)
#> [1] "INCTOT indicates each respondent's total pre-tax personal income or losses from all sources for the previous calendar year. Amounts are expressed as they were reported to the interviewer; users must adjust for inflation using Consumer Price Index adjustment factors."
ipums_val_labels(cps_data$STATEFIP)
#> # A tibble: 75 × 2
#> val lbl
#> <int> <chr>
#> 1 1 Alabama
#> 2 2 Alaska
#> 3 4 Arizona
#> 4 5 Arkansas
#> 5 6 California
#> 6 8 Colorado
#> 7 9 Connecticut
#> 8 10 Delaware
#> 9 11 District of Columbia
#> 10 12 Florida
#> # ℹ 65 more rows
ipumsr also provides a family of lbl_*()
functions to
assist in accessing and manipulating the value-level metadata included
in IPUMS data. This allows for value labels to be incorporated into the
data processing pipeline. For instance:
# Remove labels for values that do not appear in the data
cps_data$STATEFIP <- lbl_clean(cps_data$STATEFIP)
ipums_val_labels(cps_data$STATEFIP)
#> # A tibble: 5 × 2
#> val lbl
#> <int> <chr>
#> 1 19 Iowa
#> 2 27 Minnesota
#> 3 38 North Dakota
#> 4 46 South Dakota
#> 5 55 Wisconsin
# Combine North and South Dakota into a single value/label pair
cps_data$STATEFIP <- lbl_relabel(
cps_data$STATEFIP,
lbl("38_46", "Dakotas") ~ grepl("Dakota", .lbl)
)
ipums_val_labels(cps_data$STATEFIP)
#> # A tibble: 4 × 2
#> val lbl
#> <chr> <chr>
#> 1 19 Iowa
#> 2 27 Minnesota
#> 3 38_46 Dakotas
#> 4 55 Wisconsin
See the value labels vignette for more details.