labelr is an experimental (“beta”) R package that supports creation and use of multiple types of labels for data.frames and data.frame variables (columns). This vignette provides an ad hoc introduction to core and ancillary labelr functionalities and uses cases.
labelr supports three core types of data.frame labels, the last of which comes in three flavors:
Frame labels - Each data.frame may be given a single “frame label” of 500 characters or fewer, which may describe key general features or characteristics of the data set (e.g., source, date produced or published, high-level contents).
Name labels - Each variable may be given exactly one name label, which is an extended variable name or brief description of the variable. For example, if a variable called “st_b” refers to a survey respondent’s state of birth, then a sensible and useful name label might be “State of Birth”. Or, if a variable called “trust1” consisted of responses to the consumer survey question, “How much do you trust BBC news to give you unbiased information?,” a sensible name label might be “BBC News Trust.” As such, name labels are comparable to what Stata and SAS call “variable labels.”
Value labels - labelr offers three kinds of value labels.
One-to-one labels - The canonical value-labeling use case entails mapping distinct values of a variable to distinct labels in a one-to-one fashion, so that each value label uniquely identifies a substantive value. For instance, an administrative data set might assign the integers 1-7 to seven distinct racial/ethnic groups, and value labels would be critical in mapping those numbers to socially substantive racial/ethnic category concepts (e.g., Which number corresponds to the category “Asian American?”).
Many-to-one labels - In an alternative use case, value labels may serve to distill or “bucket” distinct variable values in a way that deliberately “throws away” information for purposes of simplification. For example, one may wish to give the single label “Agree” to the responses “Very Strongly Agree,” “Strongly Agree,” and “Agree.” Or one may wish to differentiate self-identified “White” respondents from “People of Color,” applying the latter value label to all categories other than “White.”
Numerical range labels - Finally, one may wish to carve a numerical variable into an ordinal or qualitative range, such as dichotomizing a variable or dividing it into quantiles. Numerical range labels support one-to-many assignment of a single value label to a range of numerical values for a given variable.
More specifically, labelr functions support the following actions:
Assigning variable value labels, name labels, and a frame label to data.frames and modifying those labels thereafter.
Generating and accessing simple look-up table-style data.frames to inform or remind you about a given variable’s name label, frame label, or the value labels that correspond to its unique values (i.e., Which racial/ethnic identity category label corresponds to a value of 3?).
Swapping out variable names for variable labels and back again.
Replacing variables’ values with their corresponding labels.
Augmenting a data.frame by adding columns of variable labels that can exist alongside the original columns (variables) from which they were derived.
Engaging in base::subset()
-like row-filtering, using
value labels to guide the filtering but returning a subsetted data.frame
in terms of the original variable values.
Tabulating value frequencies that can be expressed in terms of raw values or value labels – again, without explicitly modifying or converting the raw data.frame values.
Preserving and restoring a data.frame’s labels in the event that some unsupported R operation destroys them.
Applying a single value-labeling scheme to many variables at once (for example, assigning the same set of Likert-scale labels (“Strongly Agree,” etc.) to all variables that share a common variable name character substring.
We’ll start our exploration of core labelr functions with a fake “demographic” data.frame. First, though, let’s load the package labelr.
Note: To minimize dependencies and reduce unexpected behaviors, labelr works exclusively with Base R data.frames and vectors and will coerce any augmented data.frame (e.g., tibble, data.table) to a base data.frame. The suggested workflow is to affix and use labels before coercing to an augmented data.frame if at all. While some augmented data.frames and their functions may “play well” with labelr-style labels, this is not guaranteed.
We’ll use make_demo_data()
(included with labelr) to
create the fictional data set.
add_frame_lab()
We’ll start our labeling session by providing a fittingly fictional high-level description of this fictional data set (labelr calls this a FRAME label).
df <- add_frame_lab(df, frame.lab = "Demographic and reaction time test score
records collected by Royal Statistical Agency of
Fictionaslavica. Data fictionally collected in the year
1987. As published in A. Smithee (1988). Some Fictional Data
for Your Amusement. Mad Magazine, 10(1), 1-24.")
get_frame_lab(df)
### > data.frame
### > 1 df
### > frame.lab
### > 1 Demographic and reaction time test score records collected by Royal Statistical Agency of Fictionaslavica. Data fictionally collected in the year 1987. As published in A. Smithee (1988). Some Fictional Data for Your Amusement. Mad Magazine, 10(1), 1-24.
add_name_labs()
Now, let’s add (some fairly trivial) variable NAME labels
df <- add_name_labs(df, name.labs = c(
"age" = "Age in years",
"raceth" = "Racial/ethnic identity group category",
"gender" = "Gender identity category",
"edu" = "Highest education level attained",
"x1" = "Space Invaders reaction time test scores",
"x2" = "Galaga reaction time test scores"
))
Even if we do nothing else with these name labels, we can access or manipulate a simple lookup table as needed.
get_name_labs(df)
### > var lab
### > 1 id id
### > 2 age Age in years
### > 3 gender Gender identity category
### > 4 raceth Racial/ethnic identity group category
### > 5 edu Highest education level attained
### > 6 x1 Space Invaders reaction time test scores
### > 7 x2 Galaga reaction time test scores
add_val_labs()
Now, let’s do some VALUE labeling. First, let’s use
add_val_labs()
to add one-to-one value labels for the
variable “raceth”. Note: max.unique.vals sets an upper limit on the
number of unique values a variable may have and still be considered
“value-label-able.” Additionally, labelr sets an overall upper limit of
5000 unique value labels permissible per variable.
df <- add_val_labs(df, # data.frame with to-be-value-labeled column
vars = "raceth", # quoted variable name of to-be-labeled variable/column
vals = c(1:7), # label values 1 through 7, inclusive
labs = c(
"White", "Black", "Hispanic", # apply these labels in this order to vals 1-7
"Asian", "AIAN", "Multi", "Other"
),
max.unique.vals = 10 # maximum number of unique values permitted
)
Note that the NA label is generated regardless of whether there are any actual NA values, as a way of letting you know that labelr handles NA (and “irregular”) value-labeling without your help. We’ll illustrate this further later on.
add_val1()
Now let’s add value labels for variable “gender.” Function
add_val1
is a variant of add_val_labs
that
allows you to supply the variable name unquoted, provided you are
value-labeling only one variable. (It’s not evident from the above, but
add_val_labs
supports labeling multiple variables at
once).
df <- add_val1(
data = df,
var = gender, # contrast this var argument to the vars argument demo'd above
vals = c(0, 1, 2), # the values to be labeled
labs = c("Male", "Female", "Other"), # the labels, applied in order to the vals
max.unique.vals = 10
)
Once again, we can create a lookup table with the labels-to-values
mappings. Because we used add_val_labs()
and
add_val
(), each unique value of our value-labeled variables
will (must) have one unique label (one-to-one mapping), and any unique
values that were not explicitly assigned a label will be given one
automatically (the value itself, coerced to character as needed).
get_val_labs(df)
### > var vals labs
### > 1 gender 0 Male
### > 2 gender 1 Female
### > 3 gender 2 Other
### > 4 gender NA NA
### > 5 raceth 1 White
### > 6 raceth 2 Black
### > 7 raceth 3 Hispanic
### > 8 raceth 4 Asian
### > 9 raceth 5 AIAN
### > 10 raceth 6 Multi
### > 11 raceth 7 Other
### > 12 raceth NA NA
add_quant_labs()
Traditionally, value labels are intended for categorical variables,
such as binary, nominal, or (integer) ordinal variables with limited
numbers of distinct categories. Further, as just noted, value labels
that are added using add_val_labs
(or
add_val1
) are constrained to map one-to-one to distinct
values: No two distinct values can share a label or vice versa.
If you wish to apply a label to a range of values of a numerical
variable, such as labeling each value according to the quintile or
decile to which it belongs, you can use add_quant_labs()
(or add_quant1
) to do so.
Here, we will use add_quant_labs
with the partial
argument set to TRUE to apply quintile range labels to all
variables of df that have an “x” in their names (i.e., vars
“x1” and “x2”). We’ll demonstrate this capability further at the end of
this vignette.
Be careful with setting partial to TRUE like this:
If your data set featured a column called “sex” or that featured the
suffix “max,” add_quant_labs()
would attempt to apply the
value labeling scheme to that column as well!
We can use the same function to assign arbitrary, user-specified range labels. Here, we assign numerical range labels based on an arbitrary cutpoint that differentiate values of “x1” and “x2” that are at or below 100 from values that are at or below 150 (but greater than 100).
df_temp <- add_quant_labs(
data = df_temp, vars = "x", vals = c(100, 150),
partial = TRUE
)
### > Warning in add_quant_labs(data = df_temp, vars = "x", vals = c(100, 150), :
### >
### > Some of the supplied vals argument values are outside
### > the observed range of var --x2-- values
Having demonstrated the basic functionality, let’s use
add_quant1
to apply decile range labeling to the single
variable “x1” only. This function only accepts one variable, but its
name can be supplied unquoted.
df <- add_quant1(df, # data.frame
x1, # variable to value-label
qtiles = 5
) # number quintiles to define numerical range labels
We’ll preserve the “x1” range labels going forward, keeping “x2” unlabeled.
add_m1_lab()
If you wish to apply a single label to multiple distinct values, this
can be done through successive calls to add_m1_lab()
(or
add1m1()
, if working with a single variable). Here “m1” is
shorthand for “many to one” (many values get the same one value
label).
Note that each call to add_m1_lab()
applies a single
value label, so,
multiple calls are needed to apply multiple labels. Here, we illustrate
this workflow, applying the label “Some College+” to values 3, 4, or 5
of the variable “edu”, then applying other distinct labels to values 1
and 2, respectively.
df <- add_m1_lab(df, "edu", vals = c(3:5), lab = "Some College+")
df <- add_m1_lab(df, "edu", vals = 1, lab = "Not HS Grad")
df <- add_m1_lab(df, "edu", vals = 2, lab = "HSG, No College")
get_val_labs(df)
### > var vals labs
### > 1 gender 0 Male
### > 2 gender 1 Female
### > 3 gender 2 Other
### > 4 gender NA NA
### > 5 raceth 1 White
### > 6 raceth 2 Black
### > 7 raceth 3 Hispanic
### > 8 raceth 4 Asian
### > 9 raceth 5 AIAN
### > 10 raceth 6 Multi
### > 11 raceth 7 Other
### > 12 raceth NA NA
### > 13 edu 1 Not HS Grad
### > 14 edu 2 HSG, No College
### > 15 edu 3 Some College+
### > 16 edu 4 Some College+
### > 17 edu 5 Some College+
### > 18 edu NA NA
### > 19 x1 82.976 q020
### > 20 x1 95.238 q040
### > 21 x1 106.142 q060
### > 22 x1 117.524 q080
### > 23 x1 157.98 q100
### > 24 x1 NA NA
All of this is nice, but have we really accomplished anything? A casual view of the data.frame raises doubts: it does not appear to have changed from its its initial state.
head(df_copy, 3) # our pre-labeling copy of the data.frame
### > id age gender raceth edu x1 x2
### > T-1 1 59 1 4 5 120.25 0.5928
### > N-2 2 56 1 1 2 67.12 0.9116
### > D-3 3 54 1 6 3 79.28 0.6993
head(df, 3) # our latest, post-labeling version of same data.frame
### > id age gender raceth edu x1 x2
### > T-1 1 59 1 4 5 120.25 0.5928
### > N-2 2 56 1 1 2 67.12 0.9116
### > D-3 3 54 1 6 3 79.28 0.6993
But labeling has introduced unobtrusive but important features for us to use. We’ll put them to work in a moment. But first let’s back them up in case we lose them.
Lose them, you say? labelr labels are data.frame attributes, and
certain Base R functions (like some forms of subsetting) are known to
destroy attributes. For this reason, once you’re done labeling your
data.frame, it’s wise to create an in-session backup of your label
information by assigning it to a stand-alone object. You can do this
with get_all_lab_atts()
, which will return all labels
(frame, name, and value) as a list that you can subsequently (re-)
attach to a data.frame.
Now, we can remove them explicitly, simulating what certain R functions do implicitly.
df <- strip_labs(df) # remove our labels
get_all_lab_atts(df) # show that they're gone
### > named list()
Now, let’s restore them, using the labs.df list object we just created.
df <- add_lab_atts(df, labs.df)
get_all_lab_atts(df)
### > $frame.lab
### > [1] "Demographic and reaction time test score records collected by Royal Statistical Agency of Fictionaslavica. Data fictionally collected in the year 1987. As published in A. Smithee (1988). Some Fictional Data for Your Amusement. Mad Magazine, 10(1), 1-24."
### >
### > $name.labs
### > id
### > "id"
### > age
### > "Age in years"
### > gender
### > "Gender identity category"
### > raceth
### > "Racial/ethnic identity group category"
### > edu
### > "Highest education level attained"
### > x1
### > "Space Invaders reaction time test scores"
### > x2
### > "Galaga reaction time test scores"
### >
### > $val.labs.gender
### > 0 1 2 NA
### > "Male" "Female" "Other" "NA"
### >
### > $val.labs.raceth
### > 1 2 3 4 5 6 7
### > "White" "Black" "Hispanic" "Asian" "AIAN" "Multi" "Other"
### > NA
### > "NA"
### >
### > $val.labs.edu
### > 1 2 3 4
### > "Not HS Grad" "HSG, No College" "Some College+" "Some College+"
### > 5 NA
### > "Some College+" "NA"
### >
### > $val.labs.x1
### > 82.976 95.238 106.142 117.524 157.98 NA
### > "q020" "q040" "q060" "q080" "q100" "NA"
We’re back(ed up)!
In addition to this hack, labelr provides label-preserving variants
of common data management functions, including sfilter()
,
sselect()
, ssubset()
, srename()
,
ssort()
, and others (the “s” prefix is for “safely,” as in,
“your labels will be safely retained”). Other popular packages (e.g.,
“dplyr”) also preserve label attributes. An advantage of labelr
functions like sselect()
is that they they will update the
label attributes of affected columns. For example, if your use of
sselect()
or sdrop
removes a column from the
returned data.frame, any labels associated with that column will be
removed from the data.frame’s attributes, as well.
Now that our data.frame is labeled (and our labels backed up), let’s demonstrate some ways that we can use them.
Base R includes the head()
and tail()
functions, which allow you to show the first n or last n rows of a
data.frame. In addition, the “car” package offers a similar function
called some()
, which allows you to show a random n rows of
a data.frame.
labelr provides versions of these functions that will display value labels in place of values (without actually altering the values in the underlying data.frame). Let’s demonstrate each of the three standard functions, followed by its labelr counterpart (Note: the unconventional rownames, e.g., “T-1,” “N-2,” are unique row identifiers, provided as aid to help you visually locate a literal row that may appear across calls.
head(df, 5) # Base R function utils::head()
### > id age gender raceth edu x1 x2
### > T-1 1 59 1 4 5 120.25 0.5928
### > N-2 2 56 1 1 2 67.12 0.9116
### > D-3 3 54 1 6 3 79.28 0.6993
### > Q-4 4 46 1 5 4 99.59 0.2243
### > E-5 5 18 1 6 4 90.49 0.0099
headl(df, 5) # labelr function headl() (note the "l")
### > id age gender raceth edu x1 x2
### > T-1 1 59 Female Asian Some College+ q100 0.5928
### > N-2 2 56 Female White HSG, No College q020 0.9116
### > D-3 3 54 Female Multi Some College+ q020 0.6993
### > Q-4 4 46 Female AIAN Some College+ q060 0.2243
### > E-5 5 18 Female Multi Some College+ q040 0.0099
tail(df, 5) # Base R function utils::tail()
### > id age gender raceth edu x1 x2
### > Z-996 996 63 0 1 4 92.36 0.0447
### > S-997 997 18 0 4 4 147.40 0.2252
### > K-998 998 45 0 5 2 106.87 0.1610
### > I-999 999 46 1 4 2 119.13 0.7666
### > H-1000 1000 68 0 6 5 70.38 0.5123
taill(df, 5) # labelr function taill() (note the extra "l")
### > id age gender raceth edu x1 x2
### > Z-996 996 63 Male White Some College+ q040 0.0447
### > S-997 997 18 Male Asian Some College+ q100 0.2252
### > K-998 998 45 Male AIAN HSG, No College q080 0.1610
### > I-999 999 46 Female Asian HSG, No College q100 0.7666
### > H-1000 1000 68 Male Multi Some College+ q020 0.5123
set.seed(293)
car::some(df, 5) # car package function car::some()
### > id age gender raceth edu x1 x2
### > F-181 181 44 1 5 2 87.46 0.0965
### > K-248 248 30 1 2 3 129.62 0.4484
### > N-341 341 19 1 5 2 45.21 0.6074
### > F-457 457 58 1 5 4 124.84 0.9890
### > P-458 458 30 1 7 3 96.22 0.5607
set.seed(293)
somel(df, 5) # labelr function somel() (note the "l")
### > id age gender raceth edu x1 x2
### > F-181 181 44 Female AIAN HSG, No College q040 0.0965
### > N-341 341 19 Female AIAN HSG, No College q020 0.6074
### > P-458 458 30 Female Other Some College+ q060 0.5607
### > F-457 457 58 Female AIAN Some College+ q100 0.9890
### > K-248 248 30 Female Black Some College+ q100 0.4484
Note that some()
and somel()
both return
random rows, but they will not necessarily return the same random rows,
even with the same random number seed.
use_val_labs()
and
uvl()
With use_val_labs()
, we can generalize this overlaying
(aka “turning on” aka “swapping in”) of value labels to the entire
data.frame. We might do this temporarily, to visualize the labels in
place of values.
use_val_labs(df)[1:20, ] # headl() is just a more compact shortcut for this
### > id age gender raceth edu x1 x2
### > T-1 1 59 Female Asian Some College+ q100 0.5928
### > N-2 2 56 Female White HSG, No College q020 0.9116
### > D-3 3 54 Female Multi Some College+ q020 0.6993
### > Q-4 4 46 Female AIAN Some College+ q060 0.2243
### > E-5 5 18 Female Multi Some College+ q040 0.0099
### > K-6 6 45 Male Black Some College+ q020 0.9250
### > Y-7 7 57 Male White HSG, No College q060 0.9446
### > C-8 8 46 Male Hispanic HSG, No College q080 0.4053
### > W-9 9 37 Female Black Some College+ q020 0.3998
### > A-10 10 12 Female Other HSG, No College q060 0.5857
### > A-11 11 46 Male Other Some College+ q020 0.7027
### > S-12 12 28 Male Hispanic Some College+ q020 0.6538
### > Z-13 13 15 Female AIAN Some College+ q080 0.6267
### > H-14 14 39 Female AIAN Some College+ q020 0.8989
### > A-15 15 18 Female White Some College+ q100 0.2974
### > B-16 16 48 Male Multi Some College+ q080 0.2212
### > H-17 17 39 Male AIAN Some College+ q060 0.3127
### > F-18 18 52 Male Hispanic Some College+ q060 0.4350
### > F-19 19 33 Male Other Some College+ q100 0.2809
### > A-20 20 29 Male White Some College+ q060 0.8188
We can wrap a call to this function around our data.frame and pass to
other functions, which may yield more interpretable output, depending on
the function. Here is an illustration that passes a
use_val_labvs()
-wrapped data.frame to the
qsu()
function of the collapse package. To save typing,
we’ll use uvl()
, a more compact alias for
use_val_labs()
.
First we show the unwrapped call to collapse::qsu()
,
followed by an otherwise identical call that wraps the data.frame in
uvl()
. Focus your eyes on the leftmost column of the
console outputs of the respective calls.
# `collapse::qsu()`
# with labels "off" (i.e., using regular values of "raceth" as by var)
(by_demog_val <- collapse::qsu(df, cols = c("x2"), by = ~raceth))
### > N Mean SD Min Max
### > 1 156 0.5067 0.2696 0.0018 0.9966
### > 2 147 0.4922 0.2755 0.0041 0.9951
### > 3 144 0.4951 0.299 0.0172 0.9992
### > 4 127 0.5461 0.2873 0.006 0.9885
### > 5 155 0.5476 0.2995 0.0076 0.994
### > 6 140 0.5163 0.2798 0.0099 0.9915
### > 7 131 0.5132 0.2786 0.0014 0.9918
# with labels "on" (i.e., using labels, thanks to `uvl()`)
(by_demog_lab <- collapse::qsu(uvl(df), cols = c("x2"), by = ~raceth))
### > N Mean SD Min Max
### > AIAN 155 0.5476 0.2995 0.0076 0.994
### > Asian 127 0.5461 0.2873 0.006 0.9885
### > Black 147 0.4922 0.2755 0.0041 0.9951
### > Hispanic 144 0.4951 0.299 0.0172 0.9992
### > Multi 140 0.5163 0.2798 0.0099 0.9915
### > Other 131 0.5132 0.2786 0.0014 0.9918
### > White 156 0.5067 0.2696 0.0018 0.9966
Note that the second call would achieve the same result if we used
use_val_labs()
, but uvl()
is more compact for
typing and printing purposes.
with_val_labs()
and
wvn
labelr also offers an option to overlay (“swap out”) value labels
using base::with()
-like non-standard evaluation. This is
helpful in a few specific cases.
with(df, table(gender, raceth)) # base::with()
### > raceth
### > gender 1 2 3 4 5 6 7
### > 0 83 66 62 65 64 68 61
### > 1 70 74 79 56 83 69 64
### > 2 3 7 3 6 8 3 6
with_val_labs(df, table(gender, raceth)) # labelr::with_val_labs()
### > raceth
### > gender AIAN Asian Black Hispanic Multi Other White
### > Female 83 56 74 79 69 64 70
### > Male 64 65 66 62 68 61 83
### > Other 8 6 7 3 3 6 3
wvl(df, table(gender, raceth)) # labelr::wvl is a more compact alias
### > raceth
### > gender AIAN Asian Black Hispanic Multi Other White
### > Female 83 56 74 79 69 64 70
### > Male 64 65 66 62 68 61 83
### > Other 8 6 7 3 3 6 3
with(use_val_labs(df), table(gender, raceth)) # this does same thing
### > raceth
### > gender AIAN Asian Black Hispanic Multi Other White
### > Female 83 56 74 79 69 64 70
### > Male 64 65 66 62 68 61 83
### > Other 8 6 7 3 3 6 3
In a little bit, we’ll see that we have some parallel options for overlaying (“turning on”) NAME labels.
add_lab_cols()
If all this wrapping and interactive toggling back and forth is making you dizzy, we could do something more permanent.
For example, we can assign the result of a
use_val_labs()
call to an object. The result will be a
data.frame with the same names and dimensions as the one supplied, with
value labels replacing values for all value-labeled variables (or for a
subset of those variables, if you specify them). Those variables will
coerced to character (if they were not already). Since there is no
“undo” shortcut for this action, it is safest to assign the result to a
new object.
df_labd <- use_val_labs(df)
head(df_labd) # note, this is utils::head(), not labelr::headl()
### > id age gender raceth edu x1 x2
### > T-1 1 59 Female Asian Some College+ q100 0.5928
### > N-2 2 56 Female White HSG, No College q020 0.9116
### > D-3 3 54 Female Multi Some College+ q020 0.6993
### > Q-4 4 46 Female AIAN Some College+ q060 0.2243
### > E-5 5 18 Female Multi Some College+ q040 0.0099
### > K-6 6 45 Male Black Some College+ q020 0.9250
Better still, we do not strictly need to choose between values and
labels. We can use add_lab_cols()
to preserve all existing
variables (columns), including the value-labeled ones, while adding to
our data.frame an additional labels-as-values column for each
value-labeled column.
Easier done than said, perhaps. Take a look:
df_plus_labs <- add_lab_cols(df)
head(df_plus_labs[c("gender", "gender_lab", "raceth", "raceth_lab")])
### > gender gender_lab raceth raceth_lab
### > T-1 1 Female 4 Asian
### > N-2 1 Female 1 White
### > D-3 1 Female 6 Multi
### > Q-4 1 Female 5 AIAN
### > E-5 1 Female 6 Multi
### > K-6 0 Male 2 Black
flab()
We can filter a value-labeled data.frame on the basis for value labels, returning the subsetted data.frame expressed in terms of the original values (i.e., with the labels still in the background). For example, here we use the more semantically meaningful value labels to filter our data.frame.
head(df)
### > id age gender raceth edu x1 x2
### > T-1 1 59 1 4 5 120.25 0.5928
### > N-2 2 56 1 1 2 67.12 0.9116
### > D-3 3 54 1 6 3 79.28 0.6993
### > Q-4 4 46 1 5 4 99.59 0.2243
### > E-5 5 18 1 6 4 90.49 0.0099
### > K-6 6 45 0 2 4 78.55 0.9250
df1 <- flab(df, raceth == "Asian" & gender == "Female")
head(df1, 5) # returned df1 is in terms of values, just like df
### > id age gender raceth edu x1 x2
### > T-1 1 59 1 4 5 120.25 0.5928
### > D-40 40 60 1 4 4 78.12 0.9885
### > E-67 67 39 1 4 5 98.21 0.6244
### > I-73 73 36 1 4 2 98.42 0.2102
### > V-80 80 27 1 4 4 122.62 0.3137
headl(df1, 5) # note use of labelr::headl; labels are there
### > id age gender raceth edu x1 x2
### > T-1 1 59 Female Asian Some College+ q100 0.5928
### > D-40 40 60 Female Asian Some College+ q020 0.9885
### > E-67 67 39 Female Asian Some College+ q060 0.6244
### > I-73 73 36 Female Asian HSG, No College q060 0.2102
### > V-80 80 27 Female Asian Some College+ q100 0.3137
slab()
As with base::subset()
, we can also limit which columns
we return.
head(slab(df, raceth == "Black" & gender == "Male", gender, raceth), 10)
### > gender raceth
### > K-6 0 2
### > F-22 0 2
### > E-30 0 2
### > O-46 0 2
### > Q-48 0 2
### > F-72 0 2
### > T-117 0 2
### > K-149 0 2
### > M-161 0 2
### > A-167 0 2
In the case of slab()
, we simply list the desired
columns – unquoted and comma-separated – after the filter
tabl()
labelr’s tabl()
function supports count tabulations with
labels turned “on” or “off” and offers some other functionalities. For
example, tables can be generated…
…in terms of values
head(tabl(df), 20) # labs.on = FALSE is default
### > Warning in tabl(df):
### > Excluding variable --id-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df):
### > Excluding variable --age-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df):
### > Excluding variable --x1-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df):
### > Excluding variable --x2-- (includes decimals or exceeds max.unique.vals).
### > gender raceth edu n
### > 1 1 2 2 29
### > 2 0 1 3 28
### > 3 1 1 2 28
### > 4 1 5 2 27
### > 5 1 5 3 26
### > 6 1 6 2 26
### > 7 1 7 2 25
### > 8 1 3 3 24
### > 9 0 2 3 23
### > 10 0 4 2 23
### > 11 0 5 2 23
### > 12 0 1 2 22
### > 13 0 3 3 22
### > 14 0 6 3 22
### > 15 1 3 4 22
### > 16 0 1 4 21
### > 17 0 2 2 21
### > 18 1 2 3 21
### > 19 1 3 2 21
### > 20 0 6 2 20
…or in terms of labels
head(tabl(df, labs.on = TRUE), 20) # labs.on = TRUE is not the default
### > Warning in tabl(df, labs.on = TRUE):
### > Excluding variable --id-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE):
### > Excluding variable --age-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE):
### > Excluding variable --x2-- (includes decimals or exceeds max.unique.vals).
### > gender raceth edu x1 n
### > 1 Male Other Some College+ q020 18
### > 2 Male White Some College+ q020 14
### > 3 Male White Some College+ q060 14
### > 4 Female AIAN Some College+ q020 13
### > 5 Female AIAN Some College+ q060 13
### > 6 Female Hispanic Some College+ q040 13
### > 7 Female Hispanic Some College+ q100 13
### > 8 Male AIAN Some College+ q040 13
### > 9 Female AIAN Some College+ q080 12
### > 10 Female Asian Some College+ q080 12
### > 11 Female Black Some College+ q060 12
### > 12 Male Multi Some College+ q020 12
### > 13 Male Multi Some College+ q100 12
### > 14 Male White Some College+ q080 12
### > 15 Female Hispanic Some College+ q020 11
### > 16 Female White Some College+ q080 11
### > 17 Male Asian Some College+ q040 11
### > 18 Male Black Some College+ q040 11
### > 19 Male Hispanic Some College+ q100 11
### > 20 Female AIAN Some College+ q040 10
…in proportions
head(tabl(df, labs.on = TRUE, prop.digits = 3), 20)
### > Warning in tabl(df, labs.on = TRUE, prop.digits = 3):
### > Excluding variable --id-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE, prop.digits = 3):
### > Excluding variable --age-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE, prop.digits = 3):
### > Excluding variable --x2-- (includes decimals or exceeds max.unique.vals).
### > gender raceth edu x1 n
### > 1 Male Other Some College+ q020 0.018
### > 2 Male White Some College+ q020 0.014
### > 3 Male White Some College+ q060 0.014
### > 4 Female AIAN Some College+ q020 0.013
### > 5 Female AIAN Some College+ q060 0.013
### > 6 Female Hispanic Some College+ q040 0.013
### > 7 Female Hispanic Some College+ q100 0.013
### > 8 Male AIAN Some College+ q040 0.013
### > 9 Female AIAN Some College+ q080 0.012
### > 10 Female Asian Some College+ q080 0.012
### > 11 Female Black Some College+ q060 0.012
### > 12 Male Multi Some College+ q020 0.012
### > 13 Male Multi Some College+ q100 0.012
### > 14 Male White Some College+ q080 0.012
### > 15 Female Hispanic Some College+ q020 0.011
### > 16 Female White Some College+ q080 0.011
### > 17 Male Asian Some College+ q040 0.011
### > 18 Male Black Some College+ q040 0.011
### > 19 Male Hispanic Some College+ q100 0.011
### > 20 Female AIAN Some College+ q040 0.010
…cross-tab style
head(tabl(df, labs.on = TRUE, wide.col = "gender"), 20)
### > Warning in tabl(df, labs.on = TRUE, wide.col = "gender"):
### > Excluding variable --id-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE, wide.col = "gender"):
### > Excluding variable --age-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(df, labs.on = TRUE, wide.col = "gender"):
### > Excluding variable --x2-- (includes decimals or exceeds max.unique.vals).
### > raceth edu x1 Male Female Other
### > 1 Other Some College+ q020 18 5 1
### > 2 White Some College+ q020 14 5 0
### > 3 White Some College+ q060 14 5 2
### > 4 AIAN Some College+ q020 6 13 1
### > 5 AIAN Some College+ q060 8 13 0
### > 6 Hispanic Some College+ q040 8 13 0
### > 7 Hispanic Some College+ q100 11 13 0
### > 8 AIAN Some College+ q040 13 10 1
### > 9 AIAN Some College+ q080 4 12 3
### > 10 Asian Some College+ q080 5 12 0
### > 11 Black Some College+ q060 9 12 1
### > 12 Multi Some College+ q020 12 10 1
### > 13 Multi Some College+ q100 12 10 0
### > 14 White Some College+ q080 12 11 0
### > 15 Hispanic Some College+ q020 8 11 2
### > 16 Asian Some College+ q040 11 6 0
### > 17 Black Some College+ q040 11 6 1
### > 18 Black Some College+ q020 9 10 2
### > 19 Hispanic Some College+ q060 10 10 1
### > 20 Hispanic Some College+ q080 5 10 0
…with non-value-labeled data.frames
tabl(iris, "Species") # explicit vars arg with one-var ("Species")
### > Species n
### > 1 setosa 50
### > 2 versicolor 50
### > 3 virginica 50
tabl(mtcars, zero.rm = TRUE) # vars arg null
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --mpg-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --disp-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --hp-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --drat-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --wt-- (includes decimals or exceeds max.unique.vals).
### > Warning in tabl(mtcars, zero.rm = TRUE):
### > Excluding variable --qsec-- (includes decimals or exceeds max.unique.vals).
### > cyl vs am gear carb n
### > 1 8 0 0 3 4 5
### > 2 4 1 1 4 1 4
### > 3 8 0 0 3 2 4
### > 4 8 0 0 3 3 3
### > 5 4 1 0 4 2 2
### > 6 4 1 1 4 2 2
### > 7 6 0 1 4 4 2
### > 8 6 1 0 3 1 2
### > 9 6 1 0 4 4 2
### > 10 4 0 1 5 2 1
### > 11 4 1 0 3 1 1
### > 12 4 1 1 5 2 1
### > 13 6 0 1 5 6 1
### > 14 8 0 1 5 4 1
### > 15 8 0 1 5 8 1
Just as we used use_val_labs()
to swap out values for
value labels, we can use use_name_labs()
to swap out
variable names for variable NAME labels. Let’s illustrate this with the
mtcars data.frame.
First we’ll construct a vector of named labels.
names_labs_vec <- c(
"mpg" = "Miles/(US) gallon",
"cyl" = "Number of cylinders",
"disp" = "Displacement (cu.in.)",
"hp" = "Gross horsepower",
"drat" = "Rear axle ratio",
"wt" = "Weight (1000 lbs)",
"qsec" = "1/4 mile time",
"vs" = "Engine (0 = V-shaped, 1 = straight)",
"am" = "Transmission (0 = automatic, 1 = manual)",
"gear" = "Number of forward gears",
"carb" = "Number of carburetors"
)
Now, we will apply them to mtcars and assign the resulting data.frame to a new data.frame called mt2.
Here is an alternative syntax (same end state)
mt2 <- add_name_labs(mtcars,
name.labs = c(
"mpg" = "Miles/(US) gallon",
"cyl" = "Number of cylinders",
"disp" = "Displacement (cu.in.)",
"hp" = "Gross horsepower",
"drat" = "Rear axle ratio",
"wt" = "Weight (1000 lbs)",
"qsec" = "1/4 mile time",
"vs" = "Engine (0 = V-shaped, 1 = straight)",
"am" = "Transmission (0 = automatic, 1 = manual)",
"gear" = "Number of forward gears",
"carb" = "Number of carburetors"
)
)
Now, let’s swap out names for NAME labels.
mt2 <- use_name_labs(mt2)
head(mt2[c(1, 2)])
### > Miles/(US) gallon Number of cylinders
### > Mazda RX4 21.0 6
### > Mazda RX4 Wag 21.0 6
### > Datsun 710 22.8 4
### > Hornet 4 Drive 21.4 6
### > Hornet Sportabout 18.7 8
### > Valiant 18.1 6
Yikes, the longer column names stretch things out quite a bit.
One thing we can do is use get_name_labs
to get a
look-up table, then use copy-and-paste to work with these. For
example:
lm(`Miles/(US) gallon` ~ `Number of cylinders`, data = mt2) # pasting in var names
### >
### > Call:
### > lm(formula = `Miles/(US) gallon` ~ `Number of cylinders`, data = mt2)
### >
### > Coefficients:
### > (Intercept) `Number of cylinders`
### > 37.885 -2.876
lm(mpg ~ cyl, data = use_var_names(mt2)) # same result if name labels are "off"
### >
### > Call:
### > lm(formula = mpg ~ cyl, data = use_var_names(mt2))
### >
### > Coefficients:
### > (Intercept) cyl
### > 37.885 -2.876
But freehand typing or copy-paste is clunky and tedious. There are other less painful ways we can use these NAME labels, once we’ve turned them on.
sapply(mt2, median) # get the median for every name-labeled variable
### > Miles/(US) gallon
### > 19.200
### > Number of cylinders
### > 6.000
### > Displacement (cu.in.)
### > 196.300
### > Gross horsepower
### > 123.000
### > Rear axle ratio
### > 3.695
### > Weight (1000 lbs)
### > 3.325
### > 1/4 mile time
### > 17.710
### > Engine (0 = V-shaped, 1 = straight)
### > 0.000
### > Transmission (0 = automatic, 1 = manual)
### > 0.000
### > Number of forward gears
### > 4.000
### > Number of carburetors
### > 2.000
collapse::qsu(mt2) # use an external package for more informative descriptives
### > N Mean SD Min Max
### > Miles/(US) gallon 32 20.0906 6.0269 10.4 33.9
### > Number of cylinders 32 6.1875 1.7859 4 8
### > Displacement (cu.in.) 32 230.7219 123.9387 71.1 472
### > Gross horsepower 32 146.6875 68.5629 52 335
### > Rear axle ratio 32 3.5966 0.5347 2.76 4.93
### > Weight (1000 lbs) 32 3.2173 0.9785 1.513 5.424
### > 1/4 mile time 32 17.8487 1.7869 14.5 22.9
### > Engine (0 = V-shaped, 1 = straight) 32 0.4375 0.504 0 1
### > Transmission (0 = automatic, 1 = manual) 32 0.4063 0.499 0 1
### > Number of forward gears 32 3.6875 0.7378 3 5
### > Number of carburetors 32 2.8125 1.6152 1 8
Okay, let’s revert back to our original variable names.
mt2 <- use_var_names(mt2)
head(mt2[c(1, 2)])
### > mpg cyl
### > Mazda RX4 21.0 6
### > Mazda RX4 Wag 21.0 6
### > Datsun 710 22.8 4
### > Hornet 4 Drive 21.4 6
### > Hornet Sportabout 18.7 8
### > Valiant 18.1 6
We can use with_name_labs()
(or the more compact alias
wnl()
) to display name labels in place of column names in
fairly flexible ways.
First, let’s show that mt2’s name labels are “off,” then we’ll verify that the labels are still there in the background.
# first, show mt2 with name labels off but verify that we still have name labels
head(mt2)
### > mpg cyl disp hp drat wt qsec vs am gear carb
### > Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
### > Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
### > Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
### > Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
### > Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
### > Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
get_name_labs(mt2)
### > var lab
### > 1 mpg Miles/(US) gallon
### > 2 cyl Number of cylinders
### > 3 disp Displacement (cu.in.)
### > 4 hp Gross horsepower
### > 5 drat Rear axle ratio
### > 6 wt Weight (1000 lbs)
### > 7 qsec 1/4 mile time
### > 8 vs Engine (0 = V-shaped, 1 = straight)
### > 9 am Transmission (0 = automatic, 1 = manual)
### > 10 gear Number of forward gears
### > 11 carb Number of carburetors
Now, pay attention to the variable names in the console output of the following calls:
# demo wnl() (note that with_name_labs() will achieve same result)
wnl(mt2, t.test(mpg ~ am))
### >
### > Welch Two Sample t-test
### >
### > data: Miles/(US) gallon by Transmission (0 = automatic, 1 = manual)
### > t = -3.7671, df = 18.332, p-value = 0.001374
### > alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
### > 95 percent confidence interval:
### > -11.280194 -3.209684
### > sample estimates:
### > mean in group 0 mean in group 1
### > 17.14737 24.39231
wnl(mt2, lm(mpg ~ am))
### >
### > Call:
### > lm(formula = `Miles/(US) gallon` ~ `Transmission (0 = automatic, 1 = manual)`)
### >
### > Coefficients:
### > (Intercept)
### > 17.147
### > `Transmission (0 = automatic, 1 = manual)`
### > 7.245
wnl(mt2, summary(mt2))
### > Miles/(US) gallon Number of cylinders Displacement (cu.in.) Gross horsepower
### > Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
### > 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
### > Median :19.20 Median :6.000 Median :196.3 Median :123.0
### > Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
### > 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
### > Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
### > Rear axle ratio Weight (1000 lbs) 1/4 mile time
### > Min. :2.760 Min. :1.513 Min. :14.50
### > 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89
### > Median :3.695 Median :3.325 Median :17.71
### > Mean :3.597 Mean :3.217 Mean :17.85
### > 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
### > Max. :4.930 Max. :5.424 Max. :22.90
### > Engine (0 = V-shaped, 1 = straight) Transmission (0 = automatic, 1 = manual)
### > Min. :0.0000 Min. :0.0000
### > 1st Qu.:0.0000 1st Qu.:0.0000
### > Median :0.0000 Median :0.0000
### > Mean :0.4375 Mean :0.4062
### > 3rd Qu.:1.0000 3rd Qu.:1.0000
### > Max. :1.0000 Max. :1.0000
### > Number of forward gears Number of carburetors
### > Min. :3.000 Min. :1.000
### > 1st Qu.:3.000 1st Qu.:2.000
### > Median :4.000 Median :2.000
### > Mean :3.688 Mean :2.812
### > 3rd Qu.:4.000 3rd Qu.:4.000
### > Max. :5.000 Max. :8.000
wnl(mt2, xtabs(~gear))
### > Number of forward gears
### > 3 4 5
### > 15 12 5
with(mt2, xtabs(~gear)) # compare to directly above
### > gear
### > 3 4 5
### > 15 12 5
Keep in mind that wnl()
is intended for self-contained
calls involving exploratory analysis activities, like simple plots,
descriptives, and models. It’s based on fairly brittle regular
expressions and will throw an error if you are using
particularly exotic operators, trying out multi-step workflows, or
attempting to use it for data management or cleaning. Still, as shown
above, it works reasonably well for a range of “workhorse” commands.
labelr is no fan of NA values or other “irregular” values, which are defined as infinite values, not-a-number values, and character values that look like them (e.g., “NAN”, “INF”, “inf”, “Na”).
When value-labeling a column / variable, such values are
automatically given the catch-all label “NA” (which will be converted to
an actual NA in any columns created by add_lab_cols()
or
use_val_labs()
). You do not need (and should not try) to
specify this yourself, and you should not try to over-ride labelr on
this. If you want to use labelr AND you present with these sorts of
values, your options are to accept the default “NA” label or convert
these values to something else before labeling. The reasoning is that
value labels are rarely appropriate for the types of variables and
scenarios where you absolutely need to preserve the nuances of exotic
values like -Inf and NaN.
With that said, let’s see how labelr handles this, with an assist from our old friend mtcars (packaged with R’s base distribution).
First, let’s assign mtcars to a new data.frame object that we will besmirch.
Let’s get on with the besmirching.
mtbad[1, 1:11] <- NA
rownames(mtbad)[1] <- "Missing Car"
mtbad[2, "am"] <- Inf
mtbad[3, "gear"] <- -Inf
mtbad[5, "carb"] <- NaN
mtbad[2, "mpg"] <- Inf
mtbad[3, "mpg"] <- NaN
# add a character variable, for demonstration purposes
# if it makes you feel better, you can pretend these are Consumer Reports or
# ...JD Power ratings or something
set.seed(9202) # for reproducibility
mtbad$grade <- sample(c("A", "B", "C"), nrow(mtbad), replace = TRUE)
mtbad[4, "grade"] <- NA
mtbad[5, "grade"] <- "NA"
mtbad[6, "grade"] <- "Inf"
# see where this leaves us
head(mtbad)
### > mpg cyl disp hp drat wt qsec vs am gear carb grade
### > Missing Car NA NA NA NA NA NA NA NA NA NA NA B
### > Mazda RX4 Wag Inf 6 160 110 3.90 2.875 17.02 0 Inf 4 4 C
### > Datsun 710 NaN 4 108 93 3.85 2.320 18.61 1 1 -Inf 1 C
### > Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 <NA>
### > Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 NaN NA
### > Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 Inf
sapply(mtbad, class)
### > mpg cyl disp hp drat wt
### > "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
### > qsec vs am gear carb grade
### > "numeric" "numeric" "numeric" "numeric" "numeric" "character"
Now, let’s add value labels to this unruly data.frame.
mtlabs <- mtbad |>
add_val1(grade,
vals = c("A", "B", "C"),
labs = c("Gold", "Silver", "Bronze")
) |>
add_val1(am,
vals = c(0, 1),
labs = c("auto", "stick")
) |>
add_val1(carb,
vals = c(1, 2, 3, 4, 6, 8), # not the most inspired use of labels
labs = c(
"1c", "2c", "3c",
"4c", "6c", "8c"
)
) |>
add_val1(gear,
vals = 3:5, # again, not the most compelling use case
labs = c(
"3-speed",
"4-speed",
"5-speed"
)
) |>
add_quant1(mpg, qtiles = 4) # add quartile-based value labels
get_val_labs(mtlabs, "am") # NA values were detected and dealt with
### > var vals labs
### > 6 am 0 auto
### > 7 am 1 stick
### > 8 am NA NA
Let’s streamline the data.frame with sselect()
to make
it more manageable.
mtless <- sselect(mtlabs, mpg, cyl, am, gear, carb, grade) # safely select
head(mtless, 5) # note that the irregular values are still here
### > mpg cyl am gear carb grade
### > Missing Car NA NA NA NA NA B
### > Mazda RX4 Wag Inf 6 Inf 4 4 C
### > Datsun 710 NaN 4 1 -Inf 1 C
### > Hornet 4 Drive 21.4 6 0 3 1 <NA>
### > Hornet Sportabout 18.7 8 0 3 NaN NA
Notice how all irregular values are coerced to NA when we substitute
labels for values with use_val_labs()
.
head(use_val_labs(mtless), 5) # but they all go to NA if we `use_val_labs`
### > mpg cyl am gear carb grade
### > Missing Car <NA> NA <NA> <NA> <NA> Silver
### > Mazda RX4 Wag <NA> 6 <NA> 4-speed 4c Bronze
### > Datsun 710 <NA> 4 stick <NA> 1c Bronze
### > Hornet 4 Drive q075 6 auto 3-speed 1c NA
### > Hornet Sportabout q050 8 auto 3-speed <NA> NA
Now, let’s try an add_lab_cols()
view.
mtlabs_plus <- add_lab_cols(mtlabs, c("mpg", "am")) # this creates and adds "am_lab" col
mtlabs_plus <- sselect(mtlabs_plus, mpg, mpg_lab, am, am_lab) # let's select down to these two
head(mtlabs_plus) # here's where we landed
### > mpg mpg_lab am am_lab
### > Missing Car NA <NA> NA <NA>
### > Mazda RX4 Wag Inf <NA> Inf <NA>
### > Datsun 710 NaN <NA> 1 stick
### > Hornet 4 Drive 21.4 q075 0 auto
### > Hornet Sportabout 18.7 q050 0 auto
### > Valiant 18.1 q050 0 auto
What if we had tried to explicitly label the NA values and/or irregular values themselves? We would have failed.
# Trying to Label an Irregular Value (-Inf)
mtbad <- add_val1(
data = mtcars,
var = gear,
vals = -Inf,
labs = c("neg.inf")
)
### > Error in add_val1(data = mtcars, var = gear, vals = -Inf, labs = c("neg.inf")):
### > Cannot supply NA, NaN, Inf, or character variants as a val or lab arg.
### > These are handled automatically.
# Trying to Label an Irregular Value (NA)
mtbad <- add_val_labs(
data = mtbad,
vars = "grade",
vals = NA,
labs = c("miss")
)
### > Error in add_val_labs(data = mtbad, vars = "grade", vals = NA, labs = c("miss")):
### > Cannot supply NA, NaN, Inf, or character variants as a val or lab arg.
### > These are handled automatically.
# Trying to Label an Irregular Value (NaN)
mtbad <- add_val_labs(
data = mtbad,
vars = "carb",
vals = NaN,
labs = c("nan-v")
)
### > Error in add_val_labs(data = mtbad, vars = "carb", vals = NaN, labs = c("nan-v")):
### > Cannot supply NA, NaN, Inf, or character variants as a val or lab arg.
### > These are handled automatically.
# labelr also treats "character variants" of irregular values as irregular values.
mtbad <- add_val1(
data = mtbad,
var = carb,
vals = "NAN",
labs = c("nan-v")
)
### > Error in add_val1(data = mtbad, var = carb, vals = "NAN", labs = c("nan-v")):
### > Cannot supply NA, NaN, Inf, or character variants as a val or lab arg.
### > These are handled automatically.
Again, labelr handles NA and irregular values and resists our efforts to take such matters into our own hands.
R’s concept of a factor variable shares some affinities with the concept of a value-labeled variable and can be viewed as one approach to value labeling. However, factors can manifest idiosyncratic and surprising behaviors depending on the function to which you’re trying to apply them. They are character-like, but they are not character values. They are built on top of integers, but they won’t submit to all of the operations that integers do. They do some very handy things in certain model-fitting applications, but their behavior “under the hood” can be counter-intuitive or opaque. Simply put, they are their own thing.
So, while factors have their purposes, it would be nice to associate value labels with the distinct values of data.frame variables in a manner that preserves the integrity and transparency of the underlying values (factors tend to be a bit opaque about this) and that allows you to view or use the labels in flexible ways.
And if you wanted to work with a factor, it would be nice if you could add value labels to it without it ceasing to be and behave like a factor.
With that said, let’s see if we can have our label-factor cake and eat it, too, using the iris data.frame that comes pre-packaged with R.
unique(iris$Species)
### > [1] setosa versicolor virginica
### > Levels: setosa versicolor virginica
sapply(iris, class) # nothing up our sleeve -- "Species" is a factor
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > "numeric" "numeric" "numeric" "numeric" "factor"
Let’s add value labels to “Species” and assign the result to a new data.frame that we’ll call irlab. For our value labels, we’ll use “se”,“ve”, and “vi”, which are not adding much new information, but they will help to illustrate what we can do with labelr and a factor variable.
irlab <- add_val_labs(iris,
vars = "Species",
vals = c("setosa", "versicolor", "virginica"),
labs = c("se", "ve", "vi")
)
# this also would've worked
# irlab_dos <- add_val1(iris, Species,
# vals = c("setosa", "versicolor", "virginica"),
# labs = c("se", "ve", "vi")
# )
Note that we could have just as (or even more) easily used
add_val1()
, which works for a single variable at a time and
allows us to avoid quoting our column name, if that matters to us. In
contrast, add_val_labs()
requires us to put our variable
name(s) in quotes, but it also gives us the option to apply a common
value-label scheme to several variables at once (e.g., Likert-style
survey responses). We’ll see an example of this type of use case in
action in a little bit.
For now, though, let’s prove that the iris and irlab data.frames are functionally identical.
First, note that irlab looks and acts just like iris in the usual ways that matter
summary(iris)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width
### > Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
### > 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
### > Median :5.800 Median :3.000 Median :4.350 Median :1.300
### > Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
### > 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
### > Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
### > Species
### > setosa :50
### > versicolor:50
### > virginica :50
### >
### >
### >
summary(irlab)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width
### > Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
### > 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
### > Median :5.800 Median :3.000 Median :4.350 Median :1.300
### > Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
### > 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
### > Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
### > Species
### > setosa :50
### > versicolor:50
### > virginica :50
### >
### >
### >
head(iris, 4)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 1 5.1 3.5 1.4 0.2 setosa
### > 2 4.9 3.0 1.4 0.2 setosa
### > 3 4.7 3.2 1.3 0.2 setosa
### > 4 4.6 3.1 1.5 0.2 setosa
head(irlab, 4)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 1 5.1 3.5 1.4 0.2 setosa
### > 2 4.9 3.0 1.4 0.2 setosa
### > 3 4.7 3.2 1.3 0.2 setosa
### > 4 4.6 3.1 1.5 0.2 setosa
lm(Sepal.Length ~ Sepal.Width + Species, data = iris)
### >
### > Call:
### > lm(formula = Sepal.Length ~ Sepal.Width + Species, data = iris)
### >
### > Coefficients:
### > (Intercept) Sepal.Width Speciesversicolor Speciesvirginica
### > 2.2514 0.8036 1.4587 1.9468
lm(Sepal.Length ~ Sepal.Width + Species, data = irlab) # values are same
### >
### > Call:
### > lm(formula = Sepal.Length ~ Sepal.Width + Species, data = irlab)
### >
### > Coefficients:
### > (Intercept) Sepal.Width Speciesversicolor Speciesvirginica
### > 2.2514 0.8036 1.4587 1.9468
Note also that irlab’s “Species” is still a factor, just like its iris counterpart/parent.
sapply(irlab, class)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > "numeric" "numeric" "numeric" "numeric" "factor"
levels(irlab$Species)
### > [1] "setosa" "versicolor" "virginica"
But irlab’s “Species” has value labels!
get_val_labs(irlab, "Species")
### > var vals labs
### > 1 Species setosa se
### > 2 Species versicolor ve
### > 3 Species virginica vi
### > 4 Species NA NA
And they work.
head(use_val_labs(irlab))
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 1 5.1 3.5 1.4 0.2 se
### > 2 4.9 3.0 1.4 0.2 se
### > 3 4.7 3.2 1.3 0.2 se
### > 4 4.6 3.1 1.5 0.2 se
### > 5 5.0 3.6 1.4 0.2 se
### > 6 5.4 3.9 1.7 0.4 se
ir_v <- flab(irlab, Species == "vi")
head(ir_v, 5)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 101 6.3 3.3 6.0 2.5 virginica
### > 102 5.8 2.7 5.1 1.9 virginica
### > 103 7.1 3.0 5.9 2.1 virginica
### > 104 6.3 2.9 5.6 1.8 virginica
### > 105 6.5 3.0 5.8 2.2 virginica
Our take-aways so far? Factors can be value-labeled while staying factors, and we can use the labels to do labelr-y things with those factors. We can have both.
We may want to go further and add the labeled variable alongside the factor version.
This gives us a new variable called “Species_lab”. Let’s get select rows of the resulting data.frame, since we want to see all the different species.
set.seed(231)
sample_rows <- sample(seq_len(nrow(irlab)), 10, replace = FALSE)
irlab_aug[sample_rows, ]
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species Species_lab
### > 7 4.6 3.4 1.4 0.3 setosa se
### > 91 5.5 2.6 4.4 1.2 versicolor ve
### > 41 5.0 3.5 1.3 0.3 setosa se
### > 133 6.4 2.8 5.6 2.2 virginica vi
### > 130 7.2 3.0 5.8 1.6 virginica vi
### > 19 5.7 3.8 1.7 0.3 setosa se
### > 104 6.3 2.9 5.6 1.8 virginica vi
### > 43 4.4 3.2 1.3 0.2 setosa se
### > 8 5.0 3.4 1.5 0.2 setosa se
### > 68 5.8 2.7 4.1 1.0 versicolor ve
sapply(irlab_aug, class)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species Species_lab
### > "numeric" "numeric" "numeric" "numeric" "factor" "character"
with(irlab_aug, table(Species, Species_lab))
### > Species_lab
### > Species se ve vi
### > setosa 50 0 0
### > versicolor 0 50 0
### > virginica 0 0 50
Caution: Replacing the entire data.frame using
use_val_labs()
WILL coerce factors to character, since the
value labels are character values, not recognized factor levels
ir_char <- use_val_labs(irlab) # we assign this to a new data.frame
sapply(ir_char, class)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > "numeric" "numeric" "numeric" "numeric" "character"
head(ir_char, 3)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 1 5.1 3.5 1.4 0.2 se
### > 2 4.9 3.0 1.4 0.2 se
### > 3 4.7 3.2 1.3 0.2 se
class(ir_char$Species) # it's character
### > [1] "character"
Of course, even then, we could explicitly coerce the labels to be factors if we wanted
ir_fact <- use_val_labs(irlab)
ir_fact$Species <- factor(ir_char$Species,
levels = c("se", "ve", "vi"),
labels = c("se", "ve", "vi")
)
head(ir_fact, 3)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species
### > 1 5.1 3.5 1.4 0.2 se
### > 2 4.9 3.0 1.4 0.2 se
### > 3 4.7 3.2 1.3 0.2 se
class(ir_fact$Species) # it's a factor
### > [1] "factor"
levels(ir_fact$Species) # it's a factor
### > [1] "se" "ve" "vi"
We’ve recovered.
Value labels work with ordered factors, too. Let’s make a fictional ordered factor that we add to ir_ord. We can pretend that this is some sort of judge’s overall quality rating, if that helps.
ir_ord <- iris
set.seed(293)
qrating <- c("AAA", "AA", "A", "BBB", "AA", "BBB", "A")
ir_ord$qrat <- sample(qrating, 150, replace = TRUE)
ir_ord$qrat <- factor(ir_ord$qrat,
ordered = TRUE,
levels = c("AAA", "AA", "A", "BBB")
)
Where do we stand with this factor?
Now, let’s add value labels to it.
ir_ord <- add_val_labs(ir_ord,
vars = "qrat",
vals = c("AAA", "AA", "A", "BBB"),
labs = c(
"unimpeachable",
"excellent",
"very good",
"meh"
)
)
Let’s add a separate column with those labels as a distinct (character) variable unto itself, existing in addition to (not replacing) “qrat”.
ir_ord <- add_lab_cols(ir_ord, vars = "qrat")
head(ir_ord, 10)
### > Sepal.Length Sepal.Width Petal.Length Petal.Width Species qrat qrat_lab
### > 1 5.1 3.5 1.4 0.2 setosa AA excellent
### > 2 4.9 3.0 1.4 0.2 setosa AA excellent
### > 3 4.7 3.2 1.3 0.2 setosa AA excellent
### > 4 4.6 3.1 1.5 0.2 setosa AAA unimpeachable
### > 5 5.0 3.6 1.4 0.2 setosa AA excellent
### > 6 5.4 3.9 1.7 0.4 setosa BBB meh
### > 7 4.6 3.4 1.4 0.3 setosa AAA unimpeachable
### > 8 5.0 3.4 1.5 0.2 setosa AA excellent
### > 9 4.4 2.9 1.4 0.2 setosa A very good
### > 10 4.9 3.1 1.5 0.1 setosa A very good
with(ir_ord, table(qrat_lab, qrat))
### > qrat
### > qrat_lab AAA AA A BBB
### > excellent 0 49 0 0
### > meh 0 0 0 43
### > unimpeachable 11 0 0 0
### > very good 0 0 47 0
class(ir_ord$qrat)
### > [1] "ordered" "factor"
levels(ir_ord$qrat)
### > [1] "AAA" "AA" "A" "BBB"
class(ir_ord$qrat_lab)
### > [1] "character"
get_val_labs(ir_ord, "qrat") # labs are still there for qrat
### > var vals labs
### > 1 qrat A very good
### > 2 qrat AA excellent
### > 3 qrat AAA unimpeachable
### > 4 qrat BBB meh
### > 5 qrat NA NA
get_val_labs(ir_ord, "qrat_lab") # no labs here; this is just a character var
### > Warning in get_val_labs(ir_ord, "qrat_lab"):
### >
### > No val.labs found.
### > [1] var vals labs
### > <0 rows> (or 0-length row.names)
It appears that you really can have it all, where “it all” is defined as “factors and labels.”
labelr is not intended for “large” data.frames, which is a fuzzy concept. To give a sense of what labelr can handle, let’s see it in action with the NYC Flights 2013 data set: a moderate-not-big data.frame of ~340K rows.
Let’s load labelr and the nycflights13 package.
opening_ding <- Sys.time() # to time labelr
library(nycflights13)
### > Warning: package 'nycflights13' was built under R version 4.3.2
We’ll assign the data.frame to one we call df.
We’ll add a “frame label,” which describes the data.frame overall.
df <- add_frame_lab(df, frame.lab = "On-time data for all flights that
departed NYC (i.e. JFK, LGA or EWR) in 2013.")
### > Warning in as_base_data_frame(data):
### > data argument object coerced from augmented to conventional (Base R) data.frame.
Let’s see what this did.
attr(df, "frame.lab") # check for attribute
### > [1] "On-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013."
get_frame_lab(df) # return frame.lab alongside data.frame name as a data.frame
### > data.frame
### > 1 df
### > frame.lab
### > 1 On-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013.
get_frame_lab(df)$frame.lab
### > [1] "On-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013."
Now, let’s assign variable NAME labels.
names_labs_vec <- c(
"year" = "Year of departure",
"month" = "Month of departure",
"year" = "Day of departure",
"dep_time" = "Actual departure time (format HHMM or HMM), local tz",
"arr_time" = "Actual arrival time (format HHMM or HMM), local tz",
"sched_dep_time" = "Scheduled departure times (format HHMM or HMM)",
"sched_arr_time" = "Scheduled arrival time (format HHMM or HMM)",
"dep_delay" = "Departure delays, in minutes",
"arr_delay" = "Arrival delays, in minutes",
"carrier" = "Two letter airline carrier abbreviation",
"flight" = "Flight number",
"tailnum" = "Plane tail number",
"origin" = "Flight origin airport code",
"dest" = "Flight destination airport code",
"air_time" = "Minutes spent in the air",
"distance" = "Miles between airports",
"hour" = "Hour of scheduled departure time",
"minute" = "Minutes component of scheduled departure time",
"time_hour" = "Scheduled date and hour of the flight as a POSIXct date"
)
df <- add_name_labs(df, name.labs = names_labs_vec)
get_name_labs(df) # show that they've been added
### > var lab
### > 1 year Day of departure
### > 2 month Month of departure
### > 3 day day
### > 4 dep_time Actual departure time (format HHMM or HMM), local tz
### > 5 sched_dep_time Scheduled departure times (format HHMM or HMM)
### > 6 dep_delay Departure delays, in minutes
### > 7 arr_time Actual arrival time (format HHMM or HMM), local tz
### > 8 sched_arr_time Scheduled arrival time (format HHMM or HMM)
### > 9 arr_delay Arrival delays, in minutes
### > 10 carrier Two letter airline carrier abbreviation
### > 11 flight Flight number
### > 12 tailnum Plane tail number
### > 13 origin Flight origin airport code
### > 14 dest Flight destination airport code
### > 15 air_time Minutes spent in the air
### > 16 distance Miles between airports
### > 17 hour Hour of scheduled departure time
### > 18 minute Minutes component of scheduled departure time
### > 19 time_hour Scheduled date and hour of the flight as a POSIXct date
Let’s add variable VALUE labels for variable “carrier.” Helpfully, this ships with the nycflights13 package itself.
airlines <- nycflights13::airlines
head(airlines)
### > # A tibble: 6 × 2
### > carrier name
### > <chr> <chr>
### > 1 9E Endeavor Air Inc.
### > 2 AA American Airlines Inc.
### > 3 AS Alaska Airlines Inc.
### > 4 B6 JetBlue Airways
### > 5 DL Delta Air Lines Inc.
### > 6 EV ExpressJet Airlines Inc.
The carrier field of airlines matches the carrier column of df (formerly, flights)
The name field of airlines gives us the full airline names.
df (flights) also has an integer month variable. We will “hand-jam” month value labels
ny_month_vals <- c(1:12) # values
ny_month_labs <- c(
"JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"
) # labels
Let’s add these value labels. First, we’ll demo
add_val1()
, then add_val_labs()
, then
add_quant_labs()
.
df <- add_val1(df,
var = carrier, vals = ny_val,
labs = ny_lab,
max.unique.vals = 20
)
### > Warning in add_val1(df, var = carrier, vals = ny_val, labs = ny_lab, max.unique.vals = 20):
### >
### > Note: labelr is not optimized for data.frames this large.
df <- add_val_labs(df,
vars = "month",
vals = ny_month_vals,
labs = ny_month_labs,
max.unique.vals = 20
)
### > Warning in add_val_labs(df, vars = "month", vals = ny_month_vals, labs = ny_month_labs, :
### >
### > Note: labelr is not optimized for data.frames this large.
df <- add_quant_labs(df, "dep_time", qtiles = 5)
### > Warning in add_quant_labs(df, "dep_time", qtiles = 5):
### >
### > Note: labelr is not optimized for data.frames this large.
Let’s see where this leaves us.
get_val_labs(df)
### > var vals labs
### > 1 month 1 JAN
### > 2 month 2 FEB
### > 3 month 3 MAR
### > 4 month 4 APR
### > 5 month 5 MAY
### > 6 month 6 JUN
### > 7 month 7 JUL
### > 8 month 8 AUG
### > 9 month 9 SEP
### > 10 month 10 OCT
### > 11 month 11 NOV
### > 12 month 12 DEC
### > 13 month NA NA
### > 14 dep_time 827 q020
### > 15 dep_time 1200 q040
### > 16 dep_time 1536 q060
### > 17 dep_time 1830 q080
### > 18 dep_time 2400 q100
### > 19 dep_time NA NA
### > 20 carrier 9E Endeavor Air Inc.
### > 21 carrier AA American Airlines Inc.
### > 22 carrier AS Alaska Airlines Inc.
### > 23 carrier B6 JetBlue Airways
### > 24 carrier DL Delta Air Lines Inc.
### > 25 carrier EV ExpressJet Airlines Inc.
### > 26 carrier F9 Frontier Airlines Inc.
### > 27 carrier FL AirTran Airways Corporation
### > 28 carrier HA Hawaiian Airlines Inc.
### > 29 carrier MQ Envoy Air
### > 30 carrier OO SkyWest Airlines Inc.
### > 31 carrier UA United Air Lines Inc.
### > 32 carrier US US Airways Inc.
### > 33 carrier VX Virgin America
### > 34 carrier WN Southwest Airlines Co.
### > 35 carrier YV Mesa Airlines Inc.
### > 36 carrier NA NA
We can use head()
to get a baseline look at select rows
and variables
head(df[c("origin", "dep_time", "dest", "year", "month", "carrier")])
### > origin dep_time dest year month carrier
### > 1 EWR 517 IAH 2013 1 UA
### > 2 LGA 533 IAH 2013 1 UA
### > 3 JFK 542 MIA 2013 1 AA
### > 4 JFK 544 BQN 2013 1 B6
### > 5 LGA 554 ATL 2013 1 DL
### > 6 EWR 554 ORD 2013 1 UA
Now, let’s do the same for a version we modified with
use_val_labs()
. Note that this cannot be “undone” (except
for the usual clunky way of re-running our script up to this point and
not doing this!).
df_swapd <- use_val_labs(df)
### > Warning in use_val_labs(df):
### > Note: labelr is not optimized for data.frames this large.
head(df_swapd[c("origin", "dep_time", "dest", "year", "month", "carrier")])
### > origin dep_time dest year month carrier
### > 1 EWR q020 IAH 2013 JAN United Air Lines Inc.
### > 2 LGA q020 IAH 2013 JAN United Air Lines Inc.
### > 3 JFK q020 MIA 2013 JAN American Airlines Inc.
### > 4 JFK q020 BQN 2013 JAN JetBlue Airways
### > 5 LGA q020 ATL 2013 JAN Delta Air Lines Inc.
### > 6 EWR q020 ORD 2013 JAN United Air Lines Inc.
Instead of replacing values (which we can’t undo), it might be safer
to simply add “value-labels-on” character variables to the data.frame.
This adds nearly 675K new cells, but let’s throw caution to the wind
with add_lab_cols()
.
df_plus <- add_lab_cols(df, vars = c("carrier", "month", "dep_time"))
### > Warning in add_lab_cols(df, vars = c("carrier", "month", "dep_time")):
### >
### > Note: labelr is not optimized for data.frames this large.
head(df_plus[c(
"origin", "dest", "year",
"month", "month_lab",
"dep_time", "dep_time_lab",
"carrier", "carrier_lab"
)])
### > origin dest year month month_lab dep_time dep_time_lab carrier
### > 1 EWR IAH 2013 1 JAN 517 q020 UA
### > 2 LGA IAH 2013 1 JAN 533 q020 UA
### > 3 JFK MIA 2013 1 JAN 542 q020 AA
### > 4 JFK BQN 2013 1 JAN 544 q020 B6
### > 5 LGA ATL 2013 1 JAN 554 q020 DL
### > 6 EWR ORD 2013 1 JAN 554 q020 UA
### > carrier_lab
### > 1 United Air Lines Inc.
### > 2 United Air Lines Inc.
### > 3 American Airlines Inc.
### > 4 JetBlue Airways
### > 5 Delta Air Lines Inc.
### > 6 United Air Lines Inc.
We can use flab()
to filter df based on month and
carrier, even when value labels are “invisible” (i.e., existing only as
attributes() meta-data.
# labels are not visible (they exist only as attributes() meta-data)
head(df[c("carrier", "arr_delay")])
### > carrier arr_delay
### > 1 UA 11
### > 2 UA 20
### > 3 AA 33
### > 4 B6 -18
### > 5 DL -25
### > 6 UA 12
# we still can use them to filter (note: we're filtering on "JetBlue Airways",
# ...NOT its obscure code "B6")
df_fl <- flab(df, carrier == "JetBlue Airways" & arr_delay > 20)
### > Warning in use_val_labs(data):
### > Note: labelr is not optimized for data.frames this large.
# here's what's returned when we filtered on "JetBlue Airways" using flab()
head(df_fl[c("carrier", "arr_delay")])
### > carrier arr_delay
### > 70 B6 44
### > 129 B6 24
### > 174 B6 40
### > 203 B6 42
### > 292 B6 29
### > 314 B6 38
# double-check that this is JetBlue
head(use_val_labs(df_fl)[c("carrier", "arr_delay")])
### > carrier arr_delay
### > 70 JetBlue Airways 44
### > 129 JetBlue Airways 24
### > 174 JetBlue Airways 40
### > 203 JetBlue Airways 42
### > 292 JetBlue Airways 29
### > 314 JetBlue Airways 38
How long did this entire NYC Flights session take (results will vary)?
As shown earlier, functions for adding value labels (e.g.,
add_val_labs
, add_quant_labs
and
add_m1_lab
) will do partial matching if the partial
argument is set to TRUE. Let’s use labelr’s
make_likert_data()
function to generate some fake Likert
scale-style survey data to demonstrate this more fully.
set.seed(272) # for reproducibility
dflik <- make_likert_data(scale = 1:7) # another labelr function
head(dflik)
### > id x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
### > U-1 1 5 7 2 2 2 7 1 1 4 2
### > O-2 2 6 2 7 6 2 3 5 4 1 4
### > H-3 3 7 7 5 5 6 6 4 1 5 7
### > Z-4 4 4 5 5 4 5 6 3 7 3 4
### > C-5 5 3 3 3 1 6 2 7 6 3 5
### > P-6 6 7 3 5 3 7 5 7 1 6 2
We’ll put the values we wish to label and the labels we wish to use
in stand-alone vectors, which we will supply to
add_val_labs
in a moment.
Now, let’s associate/apply the value labels to ALL vars with “x” in their name and also to var “y3.” Note: partial = TRUE.
dflik <- add_val_labs(
data = dflik, vars = c("x", "y3"), ### note the vars args
vals = vals2label,
labs = labs2use,
partial = TRUE # applying to all cols with "x" or "y3" substring in names
)
Let’s compare dflik with value labels present but “off” to labels “on.”
First, present but “off.”
head(dflik)
### > id x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
### > U-1 1 5 7 2 2 2 7 1 1 4 2
### > O-2 2 6 2 7 6 2 3 5 4 1 4
### > H-3 3 7 7 5 5 6 6 4 1 5 7
### > Z-4 4 4 5 5 4 5 6 3 7 3 4
### > C-5 5 3 3 3 1 6 2 7 6 3 5
### > P-6 6 7 3 5 3 7 5 7 1 6 2
Now, let’s “turn on” (use) these value labels.
lik1 <- uvl(dflik) # assign to new object, since we can't "undo"
head(lik1) # we could have skipped previous call by using labelr::headl(dflik)
### > id x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
### > U-1 1 A VSA SD SD SD 7 1 VSD 4 2
### > O-2 2 SA SD VSA SA SD 3 5 N 1 4
### > H-3 3 VSA VSA A A SA 6 4 VSD 5 7
### > Z-4 4 N A A N A 6 3 VSA 3 4
### > C-5 5 D D D VSD SA 2 7 SA 3 5
### > P-6 6 VSA D A D VSA 5 7 VSD 6 2
Yea, verily: All variables with “x” in their name (and “y3”) got the labels!
Suppose we want to drop these value labels for a select few, but not
all, of these variables. drop_val_labs
can get the job
done.
Most of our previously labeled columns remain so; but not “x2” and “y3.”
get_val_labs(dfdrop, "x2")
### > Warning in get_val_labs(dfdrop, "x2"):
### >
### > No val.labs found.
### > [1] var vals labs
### > <0 rows> (or 0-length row.names)
Compare to values for variable “x1” (we did not drop value labels from this one)
get_val_labs(dfdrop, "x1")
### > var vals labs
### > 1 x1 1 VSD
### > 2 x1 2 SD
### > 3 x1 3 D
### > 4 x1 4 N
### > 5 x1 5 A
### > 6 x1 6 SA
### > 7 x1 7 VSA
### > 8 x1 NA NA
Just like we did with add_val_labs()
, we also can use a
single command to drop value labels from all variables with “x” in their
variable names.
“y3” still has value labels, but now all “x” var value labels are gone.
This concludes our whirlwind tour of labelr functionalities. You’ve graduated.
Well, almost. Before you go, here is a list of aliases for common functions. Aside from having a different name, each alias function is identical to (i.e., performs the same operations, returning the same result as) the parent function that it aliases. More concise and more cryptic, these alias functions will save you some typing at the console (and some characters in your scripts).
The available aliases are as follows:
add_val_labs
alias is avl
get_val_labs
alias is gvl
drop_val_labs
alias is dvl
add_val1
alias is avl1
drop_val1
alias is dvl1
add_quant_labs
alias is aql
add_quant1
alias is aq1
add_m1_lab
alias is am1l
use_val_labs
alias is uvl
with_val_labs
alias is wvl
add_name_labs
is anl
get_name_labs
alias is gnl
drop_name_labs
alias is dnl
use_name_labs
alias is unl
use_var_names
alias is uvn
with_name_labs
alias is wnl
with_both_labs
alias is wbl
add_frame_lab
alias is afl
get_frame_lab
alias is gfl
drop_frame_lab
alias is dfl