The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
XGBModel.pool to calibration()
indicating whether to compute a single calibration curve on predictions
pooled over all resampling iterations or to compute them for each
iteration individually and return the mean calibration curve.
pool = FALSE. The pooling
that had been the only implementation in previous package versions
(<= 3.8.0) can reproduced with pool = FALSE but is
deprecated and will be removed along with the argument in a future
version.breaks = NULL.varimp() arguments.
sort.scale to vectors of logical.CForestModel.drop1() to compute model term-specific p-values for
CoxModel, POLRModel, and
SurvRegModel as is done for GLMModel and
LMModel.VariableImportance class.
method and metric to store the
computational method ("permute" or "model")
and the performance metric used for computations.update() method to add the new slots to objects
created with previous versions of the package.type = "default" option in
predict() and replace it with
type = "raw".SelectedInput.recipe().BootControl, OOBControl, and
SplitControl.SplitControl.MLModel objects
without a na.rm slot.role_binom(), role_case(), and
role_surv() to remove the requirement that their variables
be present in newdata supplied to
predict().na.rm to MLModel() for
construction of a model that automatically removes all cases with
missing values from model fitting and prediction, none, or only those
whose missing values are in the response variable. Set the
na.rm values in supplied MLModels to
automatically remove cases with missing values if not supported by their
model fitting and prediction functions.prob.model to
SVMModel().verbose to fit() and
predict().Error in as.data.frame(x) : object 'x' not found
issue when fitting a BARTMachineModel that started
occurring with bartMachine package version 1.2.7.ModeledInput and
rpp().na.rm to MLModel.method to r2() for
calculation of Pearson or Spearman correlation.predict() S4 method for
MLModelFit.MLModelFunction().as.MLInput() methods for MLModelFit
and ModelSpecification.as.MLModel() method for
ModelSpecification.SelectedInput
terms.StackedModel and
SuperModel..MachineShop list attribute to
MLModelFit.mlmodel in MLModelFit to
model in .MachineShop.input in MLModel to
.MachineShop..MachineShop to the predict and
varimp slot functions of MLModel.TypeError in dependence() with numeric
dummy variables from recipes.ModelRecipe with retain = TRUE for
recipe steps that are skipped, for example, when test datasets are
created.auc(),
pr_auc(), and roc_auc() for multiclass factor
responses.select to rfe().perf_stats not found in
optim().conf to
set_optim_bayes().StackedModel
and SuperModel in ModelSpecification().SelectedModelSpecification.ModeledInput,
ModeledFrame, and ModeledRecipe.TunedModeledRecipe.fixed from
TunedModel().Grid().rpp() to ppr().ModeledInput() with
ModelSpecification().NNetModel model-specific
variable importance.SurvRegModelFit summary() errorCVControl when
stratification or grouping size leads to construction of fewer than
requested folds for cross-validation resampling.type with options "glance"
and "tidy" to summary.MLModelFit().print.Resample().ModelSpecification.set_monitor(): monitoring of resampling and
optimizationset_optim_bayes(): Bayesian optimization with a
Gaussian process modelset_optim_bfgs(): low-memory quasi-Newton BFGS
optimizationset_optim_grid(): exhaustive and random grid
searchesset_optim_method(): user-defined optimization
functionsset_optim_pso(): particle swarm optimizationset_optim_sann(): simulated annealingperformance() method for MLModel to
replicate the previous behavior of summary.MLModel().performance(), plot(), and
summary() methods for TrainingStep.Resample
performances.type of predict().
"default" for model-specific default
predictions."numeric" for numeric predictions."prob" to be for probabilities between 0
and 1.confusion() default behavior to convert factor
probabilities to levels.control to object in set
functions.f to fun in
roc_index().ListOf training step summaries from
summary.MLModel().TrainingStep object from
rfe().expand_params().EnsembleModel.MLOptimization, GridSearch,
NullOptimization, RandomGridSearch, and
SequentialOptimization.NullControl.control to PerformanceCurve.method to TrainingStep.optim to TrainingParams.params to MLInput.SelectedModel from
EnsembleModel.StackedModel from
EnsembleModel.SuperModel from
StackedModel.case_comps to vars in
Resample.grid to log in
TrainingStep.GLMModelprint.TrainingStep()TunedModel()terms.formula().distr and method to
dependence().ParsnipModel() for model specifications
(model_spec) from the parsnip
package.rfe() for recursive feature
elimination.as.MLModel() for model_spec and
ModeledInput.as.MLModel() method.metric of
auc().method default from
"model" to "permute" in
varimp().ModelFrame to an S4 class; generally
requires explicit conversion to a data frame with
as.data.frame() in MLModel fit
and predict functions.stat.Trained to
stat.TrainingParams.stats.VarImp.ParsnipModel.SurvTimes.TrainingParams.Grid.Params.name, selected, and
metrics to slot grid of
TrainingStep class.grid to TunedInput.id to MLInput and
MLModel classes.id and name to
TrainingStep class.models to SelectedModel.name from MLControl
classes.selected, values, and
metric from TrainingStep class.shift from VariableImportance
class.Grid to TuningGrid.Resamples to Resample.TrainStep to
TrainingStep.VarImp to
VariableImportance.MLControl.
MLBootControl → BootControlMLBootOptimismControl →
BootOptimismControlMLCVControl → CVControlMLCVOptimismControl →
CVOptimismControlMLOOBControl → OOBControlMLSplitControl → SplitControlMLTrainControl → TrainControlInput and Model to
params in slot grid of
TrainingStep class.Resample to Iteration in
Resample classx to input in
MLModel class.XGBModel
nrounds from 1 to 100.nrounds and max_depth in automated
grids for XGBDARTModel and XGBTreeModel.nrounds, lambda, and
alpha in automated grid for
XGBLinearModel.survival:aft
prediction.survival:cox to
survival:aft.TrainingStep objects and output.varimp().model → object in
TunedModel()x → object in
expand_model()x →
formula/input/model in
expand_modelgrid(), fit(),
ModelFrame(), resample(), rfe()
methodsx →
formula/object/model in
ModeledInput() methodsx → object in ParameterGrid()
methodsx → control in set_monitor(),
set_predict(), set_strata()x → object in
TunedInput()Grid() to
TuningGrid().ModelFrame().MLModel params slots.na.rm to dependence().stats.VarImp for summary statistics
to compute on permutation-based variable importance.varimp().t.test.PerformanceDiff().metric to type in
varimp() functions for BartMachineModel,
C50Model, EarthModel, RFSRCModel,
and XGBModel.type default to "nsubsets" in
EarthModel varimp().cross_entropy() numeric
method.f in roc_index()
Surv method.weights to MLModel classes.LMModel for all response
types.breaks in
calibration().max = Inf arguments to
print.default().ModelFrame() arguments strata and
weights in data environment.Weight of case weights to
Resamples data frame.values column to get_values in
MLModel gridinfo slot.resample_progress and
resample_verbose to set_monitor() arguments
progress and verbose.MLControl() arguments strata_breaks,
strata_nunique, strata_prop, and
strata_size to set_strata() arguments
breaks, nunique, prop, and
size.MLControl() arguments times,
distr, and method to
set_predict().%>% operator.Resamples objects.regular to default in
MLModel gridinfo slot.size and random arguments of
ParameterGrid() to match those of Grid().coeflearn values in their defined order instead
of at random in AdaBoostModel.kernels values in their defined order instead of
at random in KNNModel.splitrule methods in
RangerModel.splitrule values in their defined order instead
of at random in RangerModel.max.print to print_max.progress.resample to
resample_progress.stat.train to stat.Trained.dist.Surv to distr.SurvMeans.dist.SurvProbs to
distr.SurvProbs.strata_breaks, strata_nunique,
strata_prop and strata_size arguments to
MLControl() constructor.strata_breaks if numeric quantile bins are below
strata_prop and strata_size.strata_prop and
strata_size iteratively.strata_prop
and strata_size iteratively.length arguments from
Grid() and ParameterGrid().gridinfo functions
in MLModel().brier() metric."fleming-harrington" as a choice for the
method argument of predict() and for the
method.EmpiricalSurv global setting, because it is a
special case of the existing (default) "efron" choice and
thus not needed."rayleigh" choice for the distr.Surv
and distr.SurvProbs global settings.dist argument to distr in
calibration(), MLControl(),
predict(), and r2().distr argument to SurvEvents() and
SurvProbs().SurvMeans class.SurvMeans
object.calibration() and r2()."terms" predictor_encoding to
"model.frame" in MLModel class.performance() response
type-specific methods to metrics supplied as a single
MLMetric function.get_grid() with
expand_modelgrid().GLMNetModel.MLModel.traininfo slot to train_steps in
MLModel classes.retain argument in
prep().fixed argument default NULL to
list() in TunedModel().length argument to size in
Grid() and ParameterGrid().ParameterGrid().grid slot with gridinfo in
MLModel classes.Grid().get_grid() function to extract model-defined tuning
grids.trainbits slot to traininfo in
MLModel classes.RPartModel cp grid points from
cptable according to smallest cross-validation error (mean
plus one standard deviation).Performance diff() method.RFSRCModel.unMLModelFit() function to revert an
MLModelFit object to its original class.options argument to step_lincomp() and
step_sbf().step_sbf() function for variable selection
by filtering.step_kmedoids objects from
step_sbf, and refactor methods.
tidy() column medoids to
selected.tidy() column names to
name.tidy() non-selected variable names to
NA.step_lincomp() function for linear
components variable reduction.step_kmeans objects from
step_lincomp, and refactor methods.
tidy() column names to
name.step_spca objects from
step_lincomp, and refactor methods.
tidy() column value to
weight.tidy() column component to
name.GBMModel distribution to bernoulli, instead of
multinomial, for binary responses.RHS.formula for listing of operators
and functions allowed on right-hand side of traditional formulas.step_kmedoids().XGBModel, XGBDARTModel,
XGBLinearModel, and XGBTreeModel.NNetModel linout argument
automatically according to the response variable type (numeric:
TRUE, other: FALSE). Previously,
linout had a default value of FALSE as defined
in the nnet package.NNetModel
fit() method.resample() methods.BARTMachineModel to predict highest binary response
level.BARTMachineModel nu parameter
for numeric responses only.ModeledInput() to
SelectedModelFrame, SelectedModelRecipe, and
TunedModelRecipe.TunedInput().StackedModel and SuperModel training
information.TreeModel.ModeledInput() and SelectedInput() objects
constructed with formulas and matrices.fit() methods to ensure that
unprepped recipes are passed to models, like TunedModed,
StackedModel, SelectedModel and
SuperModel, needing to replicate preprocessing steps in
their resampling routines.GLMModel to factor and matrix responses.fun instead of deprecated fun.y in
ggplot2 functions.metricinfo() results for factor
responses.SplitControl() to train on the split sample
instead of the full dataset.fit()
formula and matrix methods are called with meta-models.print() argument n to data frame
and matrix columns for more concise display of large data
structures.step_kmeans(),
step_kmedoids(), and step_spca().MLModel slot y.ModelFrame and ModelRecipe columns
(casenames) to (names).ModelFrame inheritance from
data.frame.Terms S4 classes for ModelFrame
slot terms.ModeledInput, SelectedInput and
TunedInput classes and methods.SelectedFormula(),
SelectedMatrix(), SelectedModelFrame(),
SelectedRecipe(), and TunedRecipe().tune().stat.Curves to
stat.Curve.stat.Train to
stat.train.SelectedModel,
StackedModel, SuperModel, and
TunedModel.SelectedRecipe and TunedRecipe.MLModel
trainbits slot.stat.Tune to
stat.Train.SelectedFormula(), SelectedMatrix(), and
SelectedModelFrame().BinomialMatrix →
BinomialVariate, DiscreteVector →
DiscreteVariate, NegBinomialVector →
NegBinomialVariate, and PoissonVector →
PoissonVariate.require for user-specified packages
to load during parallel execution of resampling algorithms.case_strata to
case_stratum.object argument to data in
ConfusionMatrix(), SurvEvents(), and
SurvProbs().c methods for BinomialVariate,
DiscreteVariate, ListOf, and
SurvMatrix.role_binom(), role_case(),
role_surv(), and role_term() to set recipe
roles.base argument to varimp() for
log-transformed p-values.ParamSet to ParameterGrid.reset global settings individually.as.data.frame methods for Performance,
Performance summary, PerformanceDiff,
PerformanceDiffTest, and Resamples.DiscreteVector class and subclasses
BinomialVector, NegBinomialVector, and
PoissonVector for discrete response variables.DiscreteVector classes as
follows.
DiscreteVector: all models applicable to numeric
responses.BinomialVector/NegBinomialVector/PoissonVector:
BlackBoostModel, GAMBoostModel,
GLMBoostModel, GLMModel, and
GLMStepAICModel.BinomialVector/PoissonVector:
GLMNetModel.PoissonVector: GBMModel and
XGBModelMLModel.Calibration(), Confusion(),
Curves(), Lift(), and Resamples()
with c methods.Confusion S3 class as
ConfusionList S4 class.metricinfo() and
modelinfo().expand.model().tune().metricinfo() and
modelinfo().ParamSet().as.MLModel() for coercing MLModelFit
to MLModel.tune(); call fit() with a
SelectedModel or TunedModel instead.CVOptimismControl).BootOptimismControl error with 2D responses.max.print for the number of models
and data frame rows to show with print methods.SelectedRecipe().tune() methods.MLModelFit element fitbits
(MLFitBits object) with mlmodel
(MLModel object).VarImp slot center to
shift.expand_model(),
expand_params(), and expand_steps().TunedRecipe().expand_model() for model expansion over tuning
parameters.expand_params() for model parameters
expansion.expand_steps() for recipe step parameters
expansion.MLModelFunction and MLModelList
classes.MLModel,
MLModelFunction, and MLModelList.NNetModel fit error with binary and factor
responses.modelinfo() function not found error.tune() resampling
failures.types and design
arguments from MLModel().metricinfo() and
modelinfo().SelectedModel.maximize argument from tune() and
TunedModel.StackedModel() and
SuperModel.expand.model().KNNModel tuning grid.TunedModel.na.action argument from
ModelFrame methods.MLModel() argument types to
response_types.MLModel() argument design to
predictor_encoding.expand.model() to
expand_model().BootOptimismControl).ModelFrame and
ModelRecipe and save to Resamples.BinaryConfusionMatrix and
OrderedConfusionMatrix classes.ConfusionMatrix constructor.metricinfo() to confusion matrices.Resamples.ModelFrame
formulas.ModelFrame response in first column.response formula method.ICHomes dataset.center and scale slot to
VarImp.ModelFrame formulas.response function argument from
data to newdata.fit, resample, and tune
methods for design matrices.ModelFrame() argument na.action to
na.rm."exponential",
"rayleigh", "weibull") estimation of baseline
survival functions."weibull" as the default distribution for survival
mean estimation.Resamples.na.rm argument to calibration(),
confusion(), performance(), and
performance_curve().span argument to
calibration().SurvMatrix from S4 to S3 class.method option to predict() for
Breslow, Efron (default), or Fleming-Harrington estimation of survival
curves for Cox proportional hazards-based models.dist option to predict() for
exponential or Weibull approximation to estimated survival curves.dist option to calibration() for
distributional estimation of observed mean survival.dist option to r2() for distributional
estimation of the total sum of squares mean.metricinfo() and
modelinfo().auc, fnr,
fpr, rpp, tnr,
tpr.SurvMatrix classes for predicted survival
events and probabilities to eliminate need for separate
times arguments in calibration, confusion, metrics, and
performance functions.MLControl argument surv_times to
times.case_weight and
case_strata variables.BARTModel.accuracy,
f_score, kappa2, npv,
ppv, pr_auc, precision,
recall, roc_index, sensitivity,
specificitycindex,
gini, mae, mse,
msle, r2, rmse,
rmsle.performance and metric methods for
ConfusionMatrix.MLModel slot and constructor argument
nvars with design.BARTMachineModel,
LARSModel.gini, multi-class
pr_auc and roc_auc, multivariate
rmse, msle, rmsle.MLMetric class for performance metrics.as.data.frame method for
ModelFrame.expand.model function.label slot to MLModel.metricinfo/modelinfo support for mixed argument
types.calibration argument n to
breaks.modelmetrics function to
performance.ModelMetrics/Diff classes to
Performance/Diff.MLModelTune slot resamples to
performance.AdaBagModel,
AdaBoostModel, BlackBoostModel,
EarthModel, FDAModel,
GAMBoostModel, GLMBoostModel,
MDAModel, NaiveBayesModel,
PDAModel, RangerModel,
RPartModel, TreeModelmodelmetrics function.accuracy, brier,
cindex, cross_entropy, f_score,
kappa2, mae, mse,
npv, ppv, pr_auc,
precision, r2, recall,
roc_auc, roc_index, sensitivity,
specificity, weighted_kappa2.cutoff argument to confusion
function.modelinfo and metricinfo
functions.modelmetrics method for
Resamples.ModelMetrics class with print and
summary methods.response method for recipe.Calibration constructor.Confusion constructor.Lift constructor.calibration arguments to observed and predicted
responses.confusion arguments to observed and predicted
responses.lift arguments to observed and predicted
responses.metrics and stats function
arguments to accept function names.Resamples to arguments with multiple
models.CoxModel, GLMModel, and
SurvRegModel constructor definitions so that model control
parameters are specified directly instead of with a separate
control argument/structure.predict(..., times = numeric()) function calls
to survival model fits to return predicted values in the same direction
as survival times.predict(..., times = numeric()) function calls
to CForestModel fits to return predicted means instead of
medians.tune function argument metrics to
be defined in terms of a user-specified metric or metrics.cutoff,
cutoff_index, na.rm, and
summary.LMModel), linear discriminant
analysis (LDAModel), and quadratic discriminant analysis
(QDAModel).strata argument of ModelFrame or the role
of "case_strata" for recipe variables."case_weight" for recipe variables.prepper due to its relocation
from rsample to recipes.KNNModel), stacked
regression models (StackedModel), super learner models
(SuperModel), and extreme gradient boosting
(XGBModel).TrainControl) and split training and test sets
(SplitControl).ModelFrame class for general model formula
and dataset specification.modelmetrics().predict() to automatically preprocess recipes
and to use training data as the newdata default.tune() to lists of models.summary() argument stats to
functions.GBMModel and
GLMNetModel.MLControl argument na.rm default
from FALSE to TRUE.na.rm argument from
modelmetrics().These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.