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VGAM-package Vector Generalized Linear and Additive Models and Other Associated
Models
Description

VGAM provides functions for fitting vector generalized linear and additive models (VGLMs and
VGAMs), and associated models (Reduced-rank VGLMs or RR-VGLMs, Doubly constrained RR-
VGLMs (DRR-VGLMs), Quadratic RR-VGLMs, Reduced-rank VGAMs). This package fits many
models and distributions by maximum likelihood estimation (MLE) or penalized MLE, under this
statistical framework. Also fits constrained ordination models in ecology such as constrained
quadratic ordination (CQO).

Details

This package centers on the iteratively reweighted least squares (IRLS) algorithm. Other key words
include Fisher scoring, additive models, reduced-rank regression, penalized likelihood, and con-
strained ordination. The central modelling functions are vglm, vgam, rrvglm, rcim, cqo, cao.
Function vglm operates very similarly to glm but is much more general, and many methods func-
tions such as coef and predict are available. The package uses S4 (see methods-package).

Some notable companion packages: (1) VGAMadata mainly contains data sets useful for illustrating
VGAM. Some of the big ones were initially from VGAM. Recently, some older VGAM family
functions have been shifted into this package. (2) VGAMextra written by Victor Miranda has
some additional VGAM family and link functions, with a bent towards time series models. (3)
svyVGAM provides design-based inference, e.g., to survey sampling settings. This is because the
weights argument of vglm can be assigned any positive values including survey weights.

Compared to other similar packages, such as gamlss and mgev, VGAM has more models imple-
mented (150+ of them) and they are not restricted to a location-scale-shape framework or (largely)
the 1-parameter exponential family. The general statistical framework behind it all, once grasped,
makes regression modelling unified. Some features of the package are: (i) many family functions
handle multiple responses; (ii) reduced-rank regression is available by operating on latent variables
(optimal linear combinations of the explanatory variables); (iii) basic automatic smoothing parame-
ter selection is implemented for VGAMs (sm. os and sm. ps with a call to magic), although it has to
be refined; (iv) smart prediction allows correct prediction of nested terms in the formula provided
smart functions are used.

The GLM and GAM classes are special cases of VGLMs and VGAMs. The VGLM/VGAM frame-
work is intended to be very general so that it encompasses as many distributions and models as
possible. VGLMs are limited only by the assumption that the regression coefficients enter through
a set of linear predictors. The VGLM class is very large and encompasses a wide range of multivari-
ate response types and models, e.g., it includes univariate and multivariate distributions, categorical
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data analysis, extreme values, correlated binary data, quantile and expectile regression, time series
problems. Potentially, it can handle generalized estimating equations, survival analysis, bioassay
data and nonlinear least-squares problems.

Crudely, VGAMs are to VGLMs what GAMs are to GLMs. Two types of VGAMs are implemented:
Ist-generation VGAMs with s use vector backfitting, while 2nd-generation VGAMs with sm.os
and sm. ps use O-splines and P-splines so have a direct solution (hence avoids backfitting) and have
automatic smoothing parameter selection. The former is older and is based on Yee and Wild (1996).
The latter is more modern (Yee, Somchit and Wild, 2024) but it requires a reasonably large number
of observations to work well because it is based on optimizing over a predictive criterion rather than
using a Bayesian approach.

An important feature of the framework is that of constraint matrices. They apportion the regression
coefficients according to each explanatory variable. For example, since each parameter has a link
function applied to it to turn it into a linear or additive predictor, does a covariate have an equal
effect on each parameter? Or no effect? Arguments such as zero, parallel and exchangeable,
are merely easy ways to have them constructed internally. Users may input them explicitly using
the constraint argument, and CM. symm@ etc. can make this easier.

Another important feature is implemented by xij. It allows different linear/additive predictors to
have a different values of the same explanatory variable, e.g., multinomial for the conditional logit
model and the like.

VGLMs with dimension reduction form the class of RR-VGLMs. This is achieved by reduced rank
regression. Here, a subset of the constraint matrices are estimated rather than being known and
prespecified. Optimal linear combinations of the explanatory variables are taken (creating latent
variables) which are used for fitting a VGLM. Thus the regression can be thought of as being in two
stages. The class of DRR-VGLM:s provides further structure to RR-VGLMSs by allowing constraint
matrices to be specified for each column of A and row of C. Thus the reduced rank regression can
be fitted with greater control.

This package is the first to check for the Hauck-Donner effect (HDE) in regression models; see
hdeff. This is an aberration of the Wald statistics when the parameter estimates are too close to
the boundary of the parameter space. When present the p-value of a regression coefficient is biased
upwards so that a highly significant variable might be deemed nonsignificant. Thus the HDE can
create havoc for variable selection!

Somewhat related to the previous paragraph, hypothesis testing using the likelihood ratio test, Rao’s
score test (Lagrange multiplier test) and (modified) Wald’s test are all available; see summaryvglm.
For all regression coefficients of a model, taken one at a time, all three methods require further
IRLS iterations to obtain new values of the other regression coefficients after one of the coefficients
has had its value set (usually to 0). Hence the computation load is overall significant.

For a complete list of this package, use library(help = "VGAM"). New VGAM family functions
are continually being written and added to the package.

Warning

This package is undergoing continual development and improvement, therefore users should treat
many things as subject to change. This includes the family function names, argument names, many
of the internals, moving some functions to VGAMdata, the use of link functions, and slot names.
For example, many link functions were renamed in 2019 so that they all end in "1ink”, e.g.,
loglink() instead of loge (). Some future pain can be avoided by using good programming tech-
niques, e.g., using extractor functions such as coef (), weights(), vcov(), predict(). Although
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changes are now less frequent, please expect changes in all aspects of the package. See the NEWS
file for a list of changes from version to version.

Author(s)

Thomas W. Yee, <t.yee@auckland.ac.nz>, with contributions from Victor Miranda and several
graduate students over the years, especially Xiangjie (Albert) Xue and Chanatda Somchit.

Maintainer: Thomas Yee <t.yee@auckland.ac.nz>.
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See Also

vglm, vgam, rrvglm, rcim, cqo, TypicalVGAMfamilyFunction, CommonVGAMffArguments, Links,
hdeff, glm, Im, https://CRAN.R-project.org/package=VGAM.

Examples

# Example 1; proportional odds model

pneumo <- transform(pneumo, let = log(exposure.time))

(fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo))
depvar(fit1) # Better than using fitl1@y; dependent variable (response)

weights(fit1, type = "prior”) # Number of observations
coef(fitl, matrix = TRUE) # p.179, in McCullagh and Nelder (1989)
constraints(fitl) # Constraint matrices

summary(fit1) # HDE could affect these results
summary (fit1, 1lrt@ = TRUE, score@ = TRUE, wald® = TRUE) # No HDE
hdeff(fit1) # Check for any Hauck-Donner effect

# Example 2; zero-inflated Poisson model

zdata <- data.frame(x2 = runif(nn <- 2000))

zdata <- transform(zdata, pstr@ = logitlink(-0.5 + 1%x2, inverse = TRUE),
lambda = loglink( @.5 + 2*x2, inverse = TRUE))

zdata <- transform(zdata, y = rzipois(nn, lambda, pstr@ = pstro))

with(zdata, table(y))

fit2 <- vglm(y ~ x2, zipoisson, data = zdata, trace = TRUE)

coef(fit2, matrix = TRUE) # These should agree with the above values

# Example 3; fit a two species GAM simultaneously

fit3 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),
binomialff(multiple.responses = TRUE), data = hunua)

coef(fit3, matrix = TRUE) # Not really interpretable

## Not run: plot(fit3, se = TRUE, overlay = TRUE, lcol = 3:4, scol = 3:4)

000 <- with(hunua, order(altitude))

with(hunua, matplot(altitude[ooo], fitted(fit3)[ooco, 1, type = "1",
lwd = 2, col = 3:4,
xlab = "Altitude (m)"”, ylab = "Probability of presence”, las = 1,
main = "Two plant species' response curves”, ylim = c(0, 0.8)))

with(hunua, rug(altitude))

## End(Not run)

# Example 4; LMS quantile regression
fit4 <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1),
data = bmi.nz, trace = TRUE)
head(predict(fit4))
head(fitted(fit4))
head(bmi.nz) # Person 1 is near the lower quartile among people his age
head(cdf (fit4))

## Not run: par(mfrow = c(1,1), bty = "1", mar = c(5,4,4,3)+0.1, xpd=TRUE)
gtplot(fit4, percentiles = ¢(5,50,90,99), main = "Quantiles”, las =1,
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xlim = c(15, 90), ylab = "BMI", 1lwd=2, lcol=4) # Quantile plot

ygrid <- seq(15, 43, len = 100) # BMI ranges
par(mfrow = c(1, 1), lwd = 2) # Density plot
aa <- deplot(fit4, x0 = 20, y = ygrid, xlab = "BMI", col = "black”,
main = "Density functions at Age=20 (black), 42 (red) and 55 (blue)")
aa
aa <- deplot(fit4, x@ = 42, y = ygrid, add = TRUE, 1lty
aa <- deplot(fit4, x@ = 55, y = ygrid, add = TRUE, 1lty
Attach = TRUE)
aa@post$deplot # Contains density function values

2, col = "red")
4, col = "blue”,

## End(Not run)

# Example 5; GEV distribution for extremes

(fits <- vglm(maxtemp ~ 1, gevff, data = oxtemp, trace = TRUE))
head(fitted(fit5))

coef (fit5, matrix = TRUE)

Coef(fith)

veov(fith)

veov(fit5, untransform = TRUE)

sqgrt(diag(vcov(fit5))) # Approximate standard errors

## Not run: rlplot(fit5)

ATA2A3 The A1A2A3 Blood Group System

Description

Estimates the three independent parameters of the the A1A2A3 blood group system.

Usage

ATA2A3(link = "logitlink"”, inbreeding = FALSE, ip1 = NULL, ip2 = NULL, iF = NULL)

Arguments
link Link function applied to p1, p2 and f. See Links for more choices.
inbreeding Logical. Is there inbreeding?

ip1, ip2, iF Optional initial value for p1, p2 and f.

Details

The parameters p1 and p2 are probabilities, so that p3=1-p1-p2 is the third probability. The param-
eter f is the third independent parameter if inbreeding = TRUE. If inbreeding = FALSE then f =0
and Hardy-Weinberg Equilibrium (HWE) is assumed.
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Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 6-column matrix of counts, with columns corresponding to ATA1, ATA2, A1A3,
A2A2, A2A3, A3A3 (in order). Alternatively, the input can be a 6-column matrix of proportions (so
each row adds to 1) and the weights argument is used to specify the total number of counts for each
TOW.

Author(s)
T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB. ab, ABO, MNSs.

Examples

ymat <- cbind(108, 196, 429, 143, 513, 559)

fit <- vglm(ymat ~ 1, ATA2A3(link = probitlink), trace = TRUE, crit = "coef")

fit <- vglm(ymat ~ 1, AT1A2A3(link = logitlink, ipl1 = 0.3, ip2 = 0.3, iF = 0.02),
trace = TRUE, crit = "coef")

Coef(fit) # Estimated p1 and p2

rbind(ymat, sum(ymat) * fitted(fit))

sqrt(diag(vcov(fit)))

AA.Aa.aa The AA-Aa-aa Blood Group System

Description

Estimates the parameter of the AA-Aa-aa blood group system, with or without Hardy Weinberg
equilibrium.

Usage

"logitlink"”, linkf = "logitlink"”, inbreeding = FALSE,

AA.Aa.aa(linkp =
= NULL, ifp = NULL, zero = NULL)

ipA
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Arguments

linkp, linkf Link functions applied to pA and f. See Links for more choices.

ipA, ifp Optional initial values for pA and f.

inbreeding Logical. Is there inbreeding?

zero See CommonVGAMffArguments for information.
Details

This one or two parameter model involves a probability called pA. The probability of getting a
count in the first column of the input (an AA) is pA*pA. When inbreeding = TRUE, an additional
parameter f is used. If inbreeding = FALSE then f = 0 and Hardy-Weinberg Equilibrium (HWE)
is assumed. The EIM is used if inbreeding = FALSE.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning
Setting inbreeding = FALSE makes estimation difficult with non-intercept-only models. Currently,
this code seems to work with intercept-only models.

Note

The input can be a 3-column matrix of counts, where the columns are AA, Ab and aa (in order).
Alternatively, the input can be a 3-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)
T. W. Yee

References

Weir, B. S. (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data,
Sunderland, MA: Sinauer Associates, Inc.

See Also

AB.Ab.aB.ab, ABO, ATA2A3, MNSs.

Examples

y <- cbind(53, 95, 38)

fitl <- vglm(y ~ 1, AA.Aa.aa, trace = TRUE)

fit2 <- vglm(y ~ 1, AA.Aa.aa(inbreeding = TRUE), trace = TRUE)
rbind(y, sum(y) * fitted(fit1))

Coef(fit1) # Estimated pA



20 AB.Ab.aB.ab

Coef (fit2) # Estimated pA and f
summary (fit1)

AB.Ab.aB.ab The AB-Ab-aB-ab Blood Group System

Description

Estimates the parameter of the AB-Ab-aB-ab blood group system.

Usage

AB.Ab.aB.ab(link = "logitlink”, init.p = NULL)

Arguments
link Link function applied to p. See Links for more choices.
init.p Optional initial value for p.

Details

This one parameter model involves a probability called p.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Note

The input can be a 4-column matrix of counts, where the columns are AB, Ab, aB and ab (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)
T. W. Yee

References
Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, ABO, ATA2A3, MNSs.
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Examples

ymat <- cbind(AB=1997, Ab=906, aB=904, ab=32) # Data from Fisher (1925)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab(link = "identitylink”), trace = TRUE)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab, trace = TRUE)

rbind(ymat, sum(ymat)*fitted(fit))

Coef (fit) # Estimated p

p <- sqrt(4x(fitted(fit)[, 41))

p*p

summary (fit)

ABO The ABO Blood Group System

Description

Estimates the two independent parameters of the the ABO blood group system.

Usage

ABO(link.pA = "logitlink”, link.pB = "logitlink”, ipA = NULL, ipB = NULL,
ipO = NULL, zero = NULL)

Arguments
link.pA, link.pB
Link functions applied to pA and pB. See Links for more choices.

ipA, ipB, ip0 Optional initial value for pA and pB and pO. A NULL value means values are
computed internally.

zero Details at CommonVGAMffArguments.

Details

The parameters pA and pB are probabilities, so that pO=1-pA-pB is the third probability. The proba-
bilities pA and pB correspond to A and B respectively, so that pO is the probability for O. It is easier
to make use of initial values for pO than for pB. In documentation elsewhere I sometimes use pA=p,
pB=q, pO=r.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Note

The input can be a 4-column matrix of counts, where the columns are A, B, AB, O (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.
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Author(s)
T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB.ab, ATA2A3, MNSs.

Examples

ymat <- cbind(A = 725, B = 258, AB = 72, 0 = 1073) # Order matters, not the name
fit <- vglm(ymat ~ 1, ABO(link.pA = "identitylink”,
link.pB = "identitylink"”), trace = TRUE,

crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Estimated pA and pB
rbind(ymat, sum(ymat) * fitted(fit))
sqrt(diag(vcov(fit)))

acat Ordinal Regression with Adjacent Categories Probabilities

Description

Fits an adjacent categories regression model to an ordered (preferably) factor response.

Usage
acat(link = "loglink", parallel = FALSE, reverse = FALSE,
zero = NULL, ynames = FALSE, Thresh = NULL, Trev = reverse,
Tref = if (Trev) "M" else 1, whitespace = FALSE)
Arguments
link Link function applied to the ratios of the adjacent categories probabilities. See
Links for more choices.
parallel A logical, or formula specifying which terms have equal/unequal coefficients.
reverse Logical. By default, the linear/additive predictors used are n; = log(P[Y =

j+1]/PlY =j])forj=1,..., M. If reverse is TRUE then ; = log(P[Y =
Jl/PlY = j + 1]) will be used.

ynames See multinomial for information.
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zero An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. The values must be from the set {1,2,...,M}. See
CommonVGAMffArguments for more information.

Thresh, Trev, Tref

See cumulative for information. These arguments apply to ordinal categorical
regression models.

whitespace See CommonVGAMffArguments for information.

Details

In this help file the response Y is assumed to be a factor with ordered values 1,2,..., M + 1, so
that M is the number of linear/additive predictors 7;. By default, the log link is used because the
ratio of two probabilities is positive.

Internally, deriv3 is called to perform symbolic differentiation and consequently this family func-
tion will struggle if M becomes too large. If this occurs, try combining levels so that M is effec-
tively reduced. One idea is to aggregate levels with the fewest observations in them first.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or an ordered
factor. In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts.

For a nominal (unordered) factor response, the multinomial logit model (multinomial) is more
appropriate.

Here is an example of the usage of the parallel argument. If there are covariates x1, x2 and
x3, then parallel = TRUE ~ x1 + x2 -1 and parallel = FALSE ~ x3 are equivalent. This would

constrain the regression coefficients for x1 and x2 to be equal; those of the intercepts and x3 would
be different.

Author(s)
Thomas W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1-34. doi:10.18637/jss.v032.110.
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See Also

cumulative, cratio, sratio, multinomial, CM.equid, CommonVGAMffArguments, margeff, pneumo,
budworm, deriv3.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))

(fit <- vglm(cbind(normal, mild, severe) ~ let, acat, pneumo))
coef(fit, matrix = TRUE)

constraints(fit)

model.matrix(fit)

add1.vglm Add or Drop All Possible Single Terms to/from a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the model,
fit those models and compute a table of the changes in fit.

Usage

## S3 method for class 'vglm'

add1(object, scope, test = c("none”, "LRT"), k =2, ...)

## S3 method for class 'vglm'

drop1(object, scope, test = c("none”, "LRT"), k =2, ...)
Arguments

object a fitted vglm model object.

scope, k See drop1.glm.

test Same as drop1.glm but with fewer choices.

further arguments passed to or from other methods.

Details

These functions are a direct adaptation of add1.glm and drop1.glm for vglm-class objects. For
drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy is respected
when considering terms to be added or dropped: all main effects contained in a second-order inter-
action must remain, and so on. In a scope formula . means ‘what is already there’.

Compared to add1.glm and drop1.glm these functions are simpler, e.g., there is no Cp, F and Rao
(score) tests, x and scale arguments. Most models do not have a deviance, however twice the
log-likelihood differences are used to test the significance of terms.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods).
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Value

An object of class "anova"” summarizing the differences in fit between the models.

Warning

In general, the same warnings in add1. glmand drop1.glmapply here. Furthermore, these functions
have not been rigorously tested for all models, so treat the results cautiously and please report any
bugs.

Care is needed to check that the constraint matrices of added terms are correct. Also, if object is of
the form vglm(..., constraints = list(x1 =cm1, x2 = cm2)) then add1.vglm may fail because
the constraints argument needs to have the constaint matrices for all terms.

Note

Most VGAM family functions do not compute a deviance, but instead the likelihood function is
evaluated at the MLE. Hence a column name "Deviance” only appears for a few models; and
almost always there is a column labelled "logLik".

See Also

step4vglm, vglm, extractAIC.vglm, trim.constraints, anova.vglm, backPain2, update.

Examples

data("backPain2", package = "VGAM")

summary (backPain2)

fitl <- vglm(pain ~ x2 + x3 + x4, propodds, data = backPain2)
coef (fit1)

add1(fit1, scope = ~ x2 * x3 * x4, test = "LRT")

drop1(fit1, test = "LRT")
fit2 <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
drop1(fit2)

AICv1m Akaike’s Information Criterion

Description

Calculates the Akaike information criterion for a fitted model object for which a log-likelihood
value has been obtained.

Usage
AICvlm(object, ..., corrected = FALSE, k = 2)
AICvgam(object, ..., k = 2)
AICrrvglm(object, ..., k = 2)
AICgrrvglm(object, ..., k = 2)
AICrrvgam(object, ..., k = 2)
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Arguments
object Some VGAM object, for example, having class vglm-class.
Other possible arguments fed into loglL ik in order to compute the log-likelihood.
corrected Logical, perform the finite sample correction?
k Numeric, the penalty per parameter to be used; the default is the classical AIC.
Details

The following formula is used for VGLMs: —2log-likelihood + knpq,, Where nypq, represents the
number of parameters in the fitted model, and & = 2 for the usual AIC. One could assign k = log(n)
(n the number of observations) for the so-called BIC or SBC (Schwarz’s Bayesian criterion). This
is the function AICv1im().

This code relies on the log-likelihood being defined, and computed, for the object. When comparing
fitted objects, the smaller the AIC, the better the fit. The log-likelihood and hence the AIC is only
defined up to an additive constant.

Any estimated scale parameter (in GLM parlance) is used as one parameter.

For VGAMs and CAO the nonlinear effective degrees of freedom for each smoothed component is
used. This formula is heuristic. These are the functions AICvgam() and AICcao().

The finite sample correction is usually recommended when the sample size is small or when the
number of parameters is large. When the sample size is large their difference tends to be negligible.
The correction is described in Hurvich and Tsai (1989), and is based on a (univariate) linear model
with normally distributed errors.

Value

Returns a numeric value with the corresponding AIC (or BIC, or ..., depending on k).

Warning

This code has not been double-checked. The general applicability of AIC for the VGLM/VGAM
classes has not been developed fully. In particular, AIC should not be run on some VGAM family
functions because of violation of certain regularity conditions, etc.

Note
AIC has not been defined for QRR-VGLMs, yet.

Using AIC to compare posbinomial models with, e.g., posbernoulli. tb models, requires posbinomial (omit.constant
= TRUE). See posbinomial for an example. A warning is given if it suspects a wrong omit. constant
value was used.

Where defined, AICc(...) is the same as AIC(..., corrected = TRUE).

Author(s)
T. W. Yee.
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Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small samples,

Biometrika, 76, 297-307.

See Also

VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs are
described in rrvglm-class; AIC, BICvlm, TICvlm, drop1.vglm, extractAIC.vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))

coef(fitl, matrix = TRUE)
AIC(fit1)
AICc(fit1) # Quick way

AIC(fit1, corrected = TRUE) # Slow way
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,

cumulative(parallel = FALSE, reverse = TRUE), data =

coef(fit2, matrix = TRUE)
AIC(fit2)
AICc(fit2)

AIC(fit2, corrected = TRUE)

pneumo))

alaplace

Asymmetric Laplace Distribution Family Functions

Description

Maximum likelihood estimation of the 1, 2 and 3-parameter asymmetric Laplace distributions
(ALDs). The 2-parameter ALD may, with trepidation and lots of skill, sometimes be used as an
approximation of quantile regression.

Usage

alaplacel(tau =

0.95, parallel.locat = TRUE
3, zero = NULL, imethod = 1)

NULL, llocation = "identitylink”,

sqrt(tau/(1 - tau)), Scale.arg =1,
~ 0, digt = 4,

kappa =

llocation = "identitylink"”, lscale = "loglink",

ilocation = NULL,
ishrinkage =
idf.mu =
alaplace2(tau = NULL,
ilocation = NULL,
ishrinkage = 0.95,

parallel.locat =
parallel.scale =
digt = 4, idf.mu

iscale = NULL, kappa = sqrt(tau/(1 - tau)),
TRUE ~ 0,

FALSE ~ 0,
= 3, imethod = 1, zero = "scale")
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alaplace3(llocation = "identitylink”, lscale = "loglink",
lkappa = "loglink"”, ilocation = NULL, iscale = NULL,
ikappa = 1, imethod = 1, zero = c("scale”, "kappa"))

Arguments

tau, kappa Numeric vectors with 0 < 7 < 1 and £ > 0. Most users will only specify
tau since the estimated location parameter corresponds to the 7th regression
quantile, which is easier to understand. See below for details.

llocation, lscale, lkappa
Character. Parameter link functions for location parameter &, scale parameter
o, asymmetry parameter x. See Links for more choices. For example, the
argument 1location can help handle count data by restricting the quantiles to
be positive (use 1location = "loglink"). However, 1location is best left
alone since the theory only works properly with the identity link.

ilocation, iscale, ikappa
Optional initial values. If given, it must be numeric and values are recycled to
the appropriate length. The default is to choose the value internally.

parallel.locat, parallel.scale
See the parallel argument of CommonVGAMffArguments. These arguments ap-
ply to the location and scale parameters. It generally only makes sense for the
scale parameters to be equal, hence set parallel.scale = TRUE. Note that as-
signing parallel.locat the value TRUE circumvents the seriously embarrass-
ing quantile crossing problem because all constraint matrices except for the in-
tercept correspond to a parallelism assumption.

imethod Initialization method. Either the value 1, 2, 3 or 4.

idf.mu Degrees of freedom for the cubic smoothing spline fit applied to get an initial
estimate of the location parameter. See vsmooth.spline. Used only when
imethod = 3.

ishrinkage How much shrinkage is used when initializing . The value must be between 0

and 1 inclusive, and a value of 0 means the individual response values are used,
and a value of 1 means the median or mean is used. This argument is used only
when imethod = 4. See CommonVGAMffArguments for more information.

Scale.arg The value of the scale parameter o. This argument may be used to compute
quantiles at different 7 values from an existing fitted alaplace2() model (prac-
tical only if it has a single value). If the model has parallel.locat = TRUE then
only the intercept need be estimated; use an offset. See below for an example.

digt Passed into Round as the digits argument for the tau values; used cosmetically
for labelling.
zero See CommonVGAMffArguments for more information. Where possible, the de-

fault is to model all the o and « as an intercept-only term. See CommonVGAMffArguments
for more information.
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Details

These VGAM family functions implement one variant of asymmetric Laplace distributions (ALDs)
suitable for quantile regression. Kotz et al. (2001) call it the ALD. Its density function is

f(y;&a,ff):@ al Qexp< ﬂly—fl)

o 1+x ok
fory < &, and
V2 ok V2k
f(y;§7o,n)=71+52 exp | —— ly —¢&|

for y > £. Here, the ranges are for all real y and &, positive ¢ and positive x. The special case
x = 1 corresponds to the (symmetric) Laplace distribution of Kotz et al. (2001). The mean is
¢+ 0(1/k — k)/\/2 and the variance is 02(1 4 x*)/(2x?). The enumeration of the linear/additive
predictors used for alaplace2() is the first location parameter followed by the first scale parameter,
then the second location parameter followed by the second scale parameter, etc. For alaplace3(),
only a vector response is handled and the last (third) linear/additive predictor is for the asymmetry
parameter.

It is known that the maximum likelihood estimate of the location parameter £ corresponds to the
regression quantile estimate of the classical quantile regression approach of Koenker and Bassett
(1978). An important property of the ALD is that P(Y < &) = 7 where 7 = k2/(1 + x2) so
that k = y/7/(1 — 7). Thus alaplace2() might be used as an alternative to rq in the quantreg
package, although scoring is really an unsuitable algorithm for estimation here.

Both alaplacel() and alaplace2() can handle multiple responses, and the number of linear/additive
predictors is dictated by the length of tau or kappa. The functions alaplacel() and alaplace2()
can also handle multiple responses (i.e., a matrix response) but only with a single-valued tau or
kappa.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

In the extra slot of the fitted object are some list components which are useful, e.g., the sample
proportion of values which are less than the fitted quantile curves.

Warning

These functions are experimental and especially subject to change or withdrawal. The usual MLE
regularity conditions do not hold for this distribution so that misleading inferences may result, e.g.,
in the summary and vcov of the object. The 1-parameter ALD can be approximated by extlogF1
which has continuous derivatives and is recommended over alaplacel.

Care is needed with tau values which are too small, e.g., for count data with 11ocation = "loglink”
and if the sample proportion of zeros is greater than tau.
Note

These VGAM family functions use Fisher scoring. Convergence may be slow and half-stepping is
usual (although one can use trace = TRUE to see which is the best model and then use maxit to
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choose that model) due to the regularity conditions not holding. Often the iterations slowly crawl
towards the solution so monitoring the convergence (set trace = TRUE) is highly recommended.
Instead, extlogF1 is recommended.

For large data sets it is a very good idea to keep the length of tau/kappa low to avoid large memory
requirements. Then for parallel.locat = FALSE one can repeatedly fit a model with alaplacel()
with one 7 at a time; and for parallel.locat = TRUE one can refit a model with alaplace1 () with
one 7 at a time but using offsets and an intercept-only model.

A second method for solving the noncrossing quantile problem is illustrated below in Example 3.
This is called the accumulative quantile method (AQM) and details are in Yee (2015). It does not
make the strong parallelism assumption.

The functions alaplace2() and laplace differ slightly in terms of the parameterizations.

Author(s)
Thomas W. Yee

References

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

See Also

ralap, laplace, extlogF1, CommonVGAMffArguments, Ims.bcn, amlnormal, sc.studentt2, simulate.vlm.

Examples

## Not run:

# Example 1: quantile regression with smoothing splines
set.seed(123); adata <- data.frame(x2 = sort(runif(n <- 500)))
mymu <- function(x) exp(-2 + 6*sin(2*x-0.2) / (x+0.5)"2)

adata <- transform(adata, y = rpois(n, lambda = mymu(x2)))
mytau <- c(0.25, 0.75); mydof <- 4

fit <- vgam(y ~ s(x2, df = mydof), data=adata, trace=TRUE, maxit = 900,
alaplace2(tau = mytau, llocat = "loglink",
parallel.locat = FALSE))
fitp <- vgam(y ~ s(x2, df = mydof), data = adata, trace=TRUE, maxit=900,
alaplace2(tau = mytau, llocat = "loglink"”, parallel.locat = TRUE))

par(las = 1); mylwd <- 1.5
with(adata, plot(x2, jitter(y, factor = 0.5), col = "orange",
main = "Example 1; green: parallel.locat = TRUE",
ylab = "y", pch = "0", cex = 0.75))
with(adata, matlines(x2, fitted(fit ), col = "blue"”,
1ty = "solid”, lwd = mylwd))
with(adata, matlines(x2, fitted(fitp), col = "green”,
1ty = "solid”, lwd = mylwd))
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finexgrid <- seq(@, 1, len = 1001)
for (ii in 1:length(mytau))
lines(finexgrid, qpois(p = mytau[ii], lambda = mymu(finexgrid)),
col = "blue”, 1lwd = mylwd)
fit@extra # Contains useful information

# Example 2: regression quantile at a new tau value from an existing fit
# Nb. regression splines are used here since it is easier.
fitp2 <- vglm(y ~ sm.bs(x2, df = mydof), data = adata, trace = TRUE,
alaplacel(tau = mytau, llocation = "loglink",
parallel.locat = TRUE))

newtau <- 0.5 # Want to refit the model with this tau value
fitp3 <- vglm(y ~ 1 + offset(predict(fitp2)[, 11),
alaplacel(tau = newtau, llocation = "loglink"), adata)
with(adata, plot(x2, jitter(y, factor = 0.5), col = "orange",
pch = "0o", cex = 0.75, ylab = "y",
main = "Example 2; parallel.locat = TRUE"))
with(adata, matlines(x2, fitted(fitp2), col = "blue”,
1ty = 1, lwd = mylwd))
with(adata, matlines(x2, fitted(fitp3), col = "black”,
1ty = 1, lwd = mylwd))

# Example 3: noncrossing regression quantiles using a trick: obtain
# successive solutions which are added to previous solutions; use a log
# link to ensure an increasing quantiles at any value of x.

mytau <- seq(@.2, 0.9, by = 0.1)

answer <- matrix(@, nrow(adata), length(mytau)) # Stores the quantiles

adata <- transform(adata, offsety = y*0Q)

usetau <- mytau

for (ii in 1:length(mytau)) {

# cat("\n\nii =", ii, "\n")
adata <- transform(adata, usey = y-offsety)
iloc <- ifelse(ii == 1, with(adata, median(y)), 1.0) # Well-chosen!
mydf <- ifelse(ii == 1, 5, 3) # Maybe less smoothing will help
fit3 <- vglm(usey ~ sm.ns(x2, df = mydf), data = adata, trace = TRUE,

alaplace2(tau = usetau[ii], lloc = "loglink", iloc = iloc))

answer[, ii] <- (if(ii == 1) 0 else answer[, ii-1]) + fitted(fit3)
adata <- transform(adata, offsety = answer[, ii])

# Plot the results.
with(adata, plot(x2, y, col = "blue”,
main = paste(”Noncrossing and nonparallel; tau ,
paste(mytau, collapse =", "))))
with(adata, matlines(x2, answer, col = "orange"”, lty

D))

# Zoom in near the origin.
with(adata, plot(x2, y, col = "blue”, xlim = c(@, 0.2), ylim = @:1,

n

main = paste(”Noncrossing and nonparallel; tau =",
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paste(mytau, collapse =", "))))
with(adata, matlines(x2, answer, col = "orange”, lty = 1))
## End(Not run)
alaplaceUC The Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the 3-parameter asym-
metric Laplace distribution with location parameter location, scale parameter scale, and asym-
metry parameter kappa.

Usage

dalap(x, location = 0@, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
log = FALSE)

palap(q, location = @, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE)
galap(p, location = @, scale = 1, tau = 0.5, kappa = sqrt(tau/(1-tau)),
lower.tail = TRUE, log.p = FALSE)
ralap(n, location = @, scale = 1, tau = 0.5, kappa = sqgrt(tau/(1-tau)))
Arguments
X, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1 then the length is taken to be the
number required.
location the location parameter &.
scale the scale parameter 0. Must consist of positive values.
tau the quantile parameter 7. Must consist of values in (0, 1). This argument is used
to specify kappa and is ignored if kappa is assigned.
kappa the asymmetry parameter . Must consist of positive values.
log if TRUE, probabilities p are given as log(p).

lower.tail, log.p
Same meaning as in pnorm or gnorm.

Details

There are many variants of asymmetric Laplace distributions (ALDs) and this one is known as the
ALD by Kotz et al. (2001). See alaplace3, the VGAM family function for estimating the three
parameters by maximum likelihood estimation, for formulae and details. The ALD density may be
approximated by dextlogF.
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Value

dalap gives the density, palap gives the distribution function, galap gives the quantile function,
and ralap generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001). The Laplace distribution and generaliza-
tions: a revisit with applications to communications, economics, engineering, and finance, Boston:
Birkhauser.

See Also

alaplace3, dextlogF, extlogF1.

Examples

x <- seq(-5, 5, by = 0.01)
loc <- 0; sigma <- 1.5; kappa <- 2
## Not run: plot(x, dalap(x, loc, sigma, kappa = kappa), type = "1",

main = "Blue is density, orange is the CDF",
ylim = c(@, 1), sub = "Purple are 5, 10, ..., 95 percentiles”,
las = 1, ylab = "", cex.main = 0.5, col = "blue")

abline(h = @, col = "blue”, 1ty = 2)
lines(galap(seq(@.05, @.95, by = 0.05), loc, sigma, kappa = kappa),
dalap(qalap(seq(@.05, 0.95, by = 0.05), loc, sigma, kappa = kappa),
loc, sigma, kappa = kappa), col="purple", 1lty=3, type = "h")
lines(x, palap(x, loc, sigma, kappa = kappa), type = "1", col = "orange")
abline(h = 0, 1ty = 2)
## End(Not run)

pp <- seq(@.05, ©0.95, by = 0.05) # Test two functions
max (abs(palap(qalap(pp, loc, sigma, kappa = kappa),
loc, sigma, kappa = kappa) - pp)) # Should be 0

alogitlink Arcsine—Logit Link Mixtures

Description

Computes some arcsine—logit mixture link transformations, including their inverse and the first few
derivatives.
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Usage

alogitlink(theta, bvalue = NULL, taumix.logit =1,
tol = 1e-13, nmax = 99, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE, c10 = c(4, -pi))
lcalogitlink(theta, bvalue = NULL, pmix.logit = 0.01,
tol = 1e-13, nmax = 99, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE, c10 = c(4, -pi))

Arguments
theta Numeric or character. See below for further details.
bvalue See Links.

taumix.logit  Numeric, of length 1. Mixing parameter assigned to logitlink. Then 1 -
exp(-taumix.log * theta) is used to weight asinlink. Thus a O value will
result in logitlink and a very large numeric such as 1e4 should be roughly
equivalent to asinlink over almost all of the parameter space.

pmix.logit Numeric, of length 1. Mixing probability assigned to logitlink. Then 1 -
pmix.logit isused to weight asinlink. Thus a 0 value will resultin asinlink.
and 1 is equivalent to logitlink.

tol, nmax Arguments fed into a function implementing a vectorized bisection method.

inverse, deriv, short, tag
Details at Links.

clo See asinlink and logitlink.

Details

lcalogitlink is a linear combination (LC) of asinlink and logitlink.

Value

The following holds for the LC variant. For deriv >= 0, (1 - pmix.logit) * asinlink(p, deriv
=deriv) + pmix.logit * logitlink(p, deriv =deriv) when inverse = FALSE, and if inverse
= TRUE then a nonlinear equation is solved for the probability, given eta. For deriv =1, then the
function returns d eta / d theta as a function of theta if inverse = FALSE, else if inverse = TRUE
then it returns the reciprocal.

Warning

The default values for taumix.logit and pmix.logit may change in the future. The name and
order of the arguments may change too.

Author(s)

Thomas W. Yee
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References

Hauck, J. W. W. and A. Donner (1977). Wald’s test as applied to hypotheses in logit analysis.
Journal of the American Statistical Association, 72, 851-853.

See Also

asinlink, logitlink, Links, probitlink, clogloglink, cauchitlink, binomialff, sloglink
hdeff, https://www.cia.gov/index.html

Examples

p <- seq(@.01, 0.99, length= 10)
alogitlink(p)
max(abs(alogitlink(alogitlink(p), inv = TRUE) - p)) # @?

## Not run:

par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)

p <- seq(@.01, 0.99, by = 0.01)

for (d in 0:1) {
matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "blue”, ylab = "transformation”,
las = 1, main = if (d == @) "Some probability link functions”
else "First derivative")
lines(p, logitlink(p, deriv
lines(p, probitlink(p, deriv
lines(p, clogloglink(p, deriv
lines(p, alogitlink(p, deriv
if (d == 0) {
abline(v = 0.5, h = 0, 1ty = "dashed")
legend(@, 4.5, c("logitlink”, "probitlink", "clogloglink”,
"alogitlink"”), lwd = mylwd,
col = c("green”, "blue”, "tan", "red3"))

d), col = "green")
d), col = "blue")
d), col = "tan")

d), col = "red3")

} else
abline(v = 0.5, lwd = 0.5, col = "gray")
3

for (d in @) {
matplot(y, cbind( logitlink(y, deriv = d, inverse = TRUE),
probitlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "blue", xlab = "transformation”, ylab = "p”,
main = if (d == @) "Some inverse probability link functions”
else "First derivative”, las=1)
lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "green")
lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "blue")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "tan")
lines(y, alogitlink(y, deriv = d, inverse = TRUE), col = "red3")
if (d ==0) {
abline(h = 0.5, v = @, 1lwd = 0.5, col = "gray")
legend(-4, 1, c("logitlink”, "probitlink"”, "clogloglink”,
"alogitlink"), 1lwd = mylwd,
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col = c("green", "blue”, "tan", "red3"))
}

3
par(lwd = 1)

## End(Not run)

altered Altered, Inflated, Truncated and Deflated Values in GAITD Regression

Description

Return the altered, inflated, truncated and deflated values in a GAITD regression object, else test
whether the model is altered, inflated, truncated or deflated.

Usage
altered(object, ...)
inflated(object, ...)
truncated(object, ...)
is.altered(object, ...)
is.deflated(object, ...)
is.inflated(object, ...)
is.truncated(object, ...)
Arguments
object an object of class "vglm”. Currently only a GAITD regression object returns
valid results of these functions.
any additional arguments, to future-proof this function.
Details

Yee and Ma (2023) propose GAITD regression where values from four (or seven since there are
parametric and nonparametric forms) disjoint sets are referred to as special. These extractor func-

tions return one set each; they are the alter, inflate, truncate, deflate (and sometimes max. support)

arguments from the family function.

Value
Returns one type of ‘special’ sets associated with GAITD regression. This is a vector, else a list for
truncation. All three sets are returned by specialsvglm.

Warning

Some of these functions are subject to change. Only family functions beginning with "gaitd"” will
work with these functions, hence zipoisson fits will return FALSE or empty values.
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References

Yee, T. W. and Ma, C. (2024). Generally altered, inflated, truncated and deflated regression. Statis-
tical Science, 39 (in press).

See Also

vglm, vglm-class, specialsvglm, gaitdpoisson, gaitdlog, gaitdzeta, Gaitdpois.

Examples

abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, o, 0, 1))
fitl <- vglm(y ~ 1, gaitdpoisson(a.mix = 0),
data = abdata, weight = w, subset = w > 0)
specials(fit1) # All three sets
altered(fit1) # Subject to change
inflated(fit1) # Subject to change
truncated(fit1) # Subject to change
is.altered(fit1)
is.inflated(fit1)
is.truncated(fit1)

amlbinomial Binomial Logistic Regression by Asymmetric Maximum Likelihood
Estimation

Description

Binomial quantile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlbinomial(w.aml = 1, parallel = FALSE, digw = 4, link = "logitlink")

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.

parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

link See binomialff.
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Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there. This model is essentially a logistic regression model (see binomialff)
but the usual deviance is replaced by an asymmetric squared error loss function; it is multiplied by
w.aml for positive residuals. The solution is the set of regression coefficients that minimize the
sum of these deviance-type values over the data set, weighted by the weights argument (so that it
can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml"” and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w. aml is stored in the extra slot.

For amlbinomial objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee

References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98-107.

See Also

amlpoisson, amlexponential, amlnormal, extlogF1, alaplacel, denorm.

Examples

# Example: binomial data with lots of trials per observation
set.seed(1234)

sizevec <- rep(100, length = (nn <- 200))

mydat <- data.frame(x = sort(runif(nn)))

mydat <- transform(mydat,
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prob = logitlink(-@ + 2.5xx + x*2, inverse = TRUE))
mydat <- transform(mydat, y = rbinom(nn, size = sizevec, prob = prob))
(fit <- vgam(cbind(y, sizevec - y) ~ s(x, df = 3),
amlbinomial(w = c(0@.01, 0.2, 1, 5, 60)),
mydat, trace = TRUE))
fit@extra

## Not run:
par(mfrow = c(1,2))
# Quantile plot
with(mydat, plot(x, jitter(y), col = "blue”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves")))
with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue”, lty=1))

# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, jitter(y), col = "blue"”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile curves are red")))
with(mydat, matlines(x, 100 *x fitted(fit), lwd = 2, col = "blue”, 1ty = 1))

for (ii in fit@extra$percentile)
with(mydat, matlines(x, 100 *
gbinom(p = ii/100, size = sizevec, prob = prob) / sizevec,
col = "red"”, lwd = 2, 1ty = 1))

## End(Not run)

amlexponential Exponential Regression by Asymmetric Maximum Likelihood Estima-
tion

Description

Exponential expectile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlexponential(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments

w.aml Numeric, a vector of positive constants controlling the expectiles. The larger the
value the larger the fitted expectile value (the proportion of points below the “w-
regression plane”). The default value of unity results in the ordinary maximum
likelihood (MLE) solution.
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parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.
digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.
link See exponential and the warning below.
Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there.

This model is essentially an exponential regression model (see exponential) but the usual deviance
is replaced by an asymmetric squared error loss function; it is multiplied by w.aml for positive
residuals. The solution is the set of regression coefficients that minimize the sum of these deviance-
type values over the data set, weighted by the weights argument (so that it can contain frequencies).
Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Note that the 1ink argument of exponential and amlexponential are currently different: one is
the rate parameter and the other is the mean (expectile) parameter.

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml" and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w.aml is stored in the extra slot.

For amlexponential objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee
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References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98—107.

See Also

exponential, amlbinomial, amlpoisson, amlnormal, extlogF1, alaplacel, 1ms.bcg, deexp.

Examples

nn <- 2000
mydat <- data.frame(x = seq(@, 1, length = nn))
mydat <- transform(mydat,
mu = loglink(-@ + 1.5%x + @.2%x*2, inverse = TRUE))
mydat <- transform(mydat, mu = loglink(@ - sin(8*x), inverse = TRUE))
mydat <- transform(mydat, y = rexp(nn, rate = 1/mu))
(fit <- vgam(y ~ s(x, df=5), amlexponential(w=c(@.001, 0.1, 0.5, 5, 60)),
mydat, trace = TRUE))
fit@extra

## Not run: # These plots are against the sqrt scale (to increase clarity)
par(mfrow = c(1,2))
# Quantile plot
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile-expectile curves")))
with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue”, 1lty=1))

# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile curves are orange”)))
with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue”, lty=1))

for (ii in fit@extra$percentile)
with(mydat, matlines(x, sqrt(gexp(p = ii/100, rate = 1/mu)),
col = "orange"))
## End(Not run)

amlnormal Asymmetric Least Squares Quantile Regression

Description

Asymmetric least squares, a special case of maximizing an asymmetric likelihood function of a
normal distribution. This allows for expectile/quantile regression using asymmetric least squares
error loss.
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Usage
amlnormal(w.aml = 1, parallel = FALSE, lexpectile = "identitylink”,
iexpectile = NULL, imethod = 1, digw = 4)
Arguments
w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
least squares (OLS) solution.
parallel If w. aml has more than one value then this argument allows the quantile curves

to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

lexpectile, iexpectile
See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

Details

This is an implementation of Efron (1991) and full details can be obtained there. Equation numbers
below refer to that article. The model is essentially a linear model (see 1m), however, the asymmetric
squared error loss function for a residual 7 is r2 if r < 0 and wr? if r > 0. The solution is the set of
regression coefficients that minimize the sum of these over the data set, weighted by the weights
argument (so that it can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Note

On fitting, the extra slot has list components "w.aml"” and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values.

One difficulty is finding the w.aml value giving a specified percentile. One solution is to fit the
model within a root finding function such as uniroot; see the example below.

For amlnormal objects, methods functions for the generic functions qtplot and cdf have not been
written yet.

See the note in amlpoisson on the jargon, including expectiles and regression quantiles.

The deviance slot computes the total asymmetric squared error loss (2.5). If w. aml has more than
one value then the value returned by the slot is the sum taken over all the w.aml values.
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This VGAM family function could well be renamed amlnormal () instead, given the other function
names amlpoisson, amlbinomial, etc.

In this documentation the word guantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee

References

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93-125.

See Also

amlpoisson, amlbinomial, amlexponential, bmi.nz, extlogF1, alaplacel, denorm, 1ms.bcn
and similar variants are alternative methods for quantile regression.

Examples

## Not run:

# Example 1

000 <- with(bmi.nz, order(age))

bmi.nz <- bmi.nz[ooo, 1 # Sort by age

(fit <- vglm(BMI ~ sm.bs(age), amlnormal(w.aml = @.1), bmi.nz))
fit@extra # Gives the w value and the percentile

coef(fit, matrix = TRUE)

# Quantile plot
with(bmi.nz, plot(age, BMI, col = "blue"”, main =
paste(round(fit@extra$percentile, digits = 1),
"expectile-percentile curve")))
with(bmi.nz, lines(age, c(fitted(fit)), col = "black"))

# Example 2
# Find the w values that give the 25, 50 and 75 percentiles
find.w <- function(w, percentile = 50) {
fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = w), data = bmi.nz)
fit2@extra$percentile - percentile
3
# Quantile plot
with(bmi.nz, plot(age, BMI, col = "blue”, las = 1, main =
"25, 50 and 75 expectile-percentile curves"”))
for (myp in c(25, 50, 75)) {
# Note: uniroot() can only find one root at a time
bestw <- uniroot(f = find.w, interval = c(1/10%4, 10"4),
percentile = myp)
fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = bestw$root), bmi.nz)
with(bmi.nz, lines(age, c(fitted(fit2)), col = "orange"))
3
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# Example 3; this is Example 1 but with smoothing splines and
# a vector w and a parallelism assumption.
000 <- with(bmi.nz, order(age))
bmi.nz <- bmi.nz[ooo, ] # Sort by age
fit3 <- vgam(BMI ~ s(age, df = 4), data = bmi.nz, trace = TRUE,
amlnormal(w = c(@.1, 1, 10), parallel = TRUE))
fit3@extra # The w values, percentiles and weighted deviances
# The linear components of the fit; not for human consumption:
coef (fit3, matrix = TRUE)
# Quantile plot
with(bmi.nz, plot(age, BMI, col="blue"”, main =
paste(paste(round(fit3@extra$percentile, digits = 1), collapse = ", "),
"expectile-percentile curves”)))
with(bmi.nz, matlines(age, fitted(fit3), col = 1:fit3@extra$M, lwd = 2))
with(bmi.nz, lines(age, c(fitted(fit )), col = "black")) # For comparison
## End(Not run)
amlpoisson Poisson Regression by Asymmetric Maximum Likelihood Estimation

Description

Poisson quantile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlpoisson(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.

parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-

cally for labelling.

link See poissonff.
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Details

This method was proposed by Efron (1992) and full details can be obtained there.

The model is essentially a Poisson regression model (see poissonff) but the usual deviance is
replaced by an asymmetric squared error loss function; it is multiplied by w.aml for positive resid-
uals. The solution is the set of regression coefficients that minimize the sum of these deviance-type
values over the data set, weighted by the weights argument (so that it can contain frequencies).
Newton-Raphson estimation is used here.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml” and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w. aml is stored in the extra slot.

For amlpoisson objects, methods functions for the generic functions qtplot and cdf have not been
written yet.

About the jargon, Newey and Powell (1987) used the name expectiles for regression surfaces ob-
tained by asymmetric least squares. This was deliberate so as to distinguish them from the original
regression quantiles of Koenker and Bassett (1978). Efron (1991) and Efron (1992) use the general
name regression percentile to apply to all forms of asymmetric fitting. Although the asymmetric
maximum likelihood method very nearly gives regression percentiles in the strictest sense for the
normal and Poisson cases, the phrase quantile regression is used loosely in this VGAM documen-
tation.

In this documentation the word guantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee

References
Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93-125.

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98—107.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econo-
metrica, 55, 819-847.
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See Also

amlnormal, amlbinomial, extlogF1, alaplacel.

Examples

set.seed(1234)

mydat <- data.frame(x = sort(runif(nn <- 200)))

mydat <- transform(mydat, y = rpois(nn, exp(@ - sin(8+*x))))

(fit <- vgam(y ~ s(x), fam = amlpoisson(w.aml = c(0.02, 0.2, 1, 5, 50)),
mydat, trace = TRUE))

fit@extra

## Not run:
# Quantile plot
with(mydat, plot(x, jitter(y), col = "blue”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves”)))
with(mydat, matlines(x, fitted(fit), lwd = 2))
## End(Not run)

anova.vglm Analysis of Deviance for Vector Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more vector generalized linear model fits.

Usage

## S3 method for class 'vglm'
anova(object, ..., type = c("I1I", "I", "IILI", 2, 1, 3),
test = c("LRT", "none"), trydev = TRUE, silent = TRUE)

Arguments

object, ... objects of class vglm, typically the result of a call to vglm, or a list of objects
for the "vglmlist” method. Each model must have an intercept term. If
"vglmlist” is used then type = 1 or type = "I" must be specified.

type character or numeric; any one of the (effectively three) choices given. Note that
anova.glmhas 1 or "I" as its default; and that Anova.glm() in car (that is, the
car package) has 2 or "II" as its default (and allows for type = "II1"), so one
can think of this function as a combination of anova.glm and Anova.glm() in
car, but with the default of the latter. See Details below for more information.

test a character string, (partially) matching one of "LRT"” and "none”. In the future
it is hoped that "Rao” be also supported, to conduct score tests. The first value
is the default.



anova.vglm 47

trydev logical; if TRUE then the deviance is used if possible. Note that only a few
VGAM family functions have a deviance that is defined and implemented. Set-
ting it FALSE means the log-likelihood will be used.

silent logical; if TRUE then any warnings will be suppressed. These may arise by IRLS
iterations not converging during the fitting of submodels. Setting it FALSE means
that any warnings are given.

Details

anova.vglmis intended to be similar to anova. glm so specifying a single object and type = 1 gives
a sequential analysis of deviance table for that fit. By analysis of deviance, it is meant loosely that
if the deviance of the model is not defined or implemented, then twice the difference between the
log-likelihoods of two nested models remains asymptotically chi-squared distributed with degrees
of freedom equal to the difference in the number of parameters of the two models. Of course, the
usual regularity conditions are assumed to hold. For Type I, the analysis of deviance table has the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves. Type I or sequential tests (as in anova.glm).
are computationally the easiest of the three methods. For this, the order of the terms is important,
and the each term is added sequentially from first to last.

The Anova() function in car allows for testing Type Il and Type III (SAS jargon) hypothesis tests,
although the definitions used are not precisely that of SAS. As car notes, Type I rarely test interest-
ing hypotheses in unbalanced designs. Type III enter each term last, keeping all the other terms in
the model.

Type II tests, according to SAS, add the term after all other terms have been added to the model
except terms that contain the effect being tested; an effect is contained in another effect if it can be
derived by deleting variables from the latter effect. Type II tests are currently the default.

As in anova.glm, but not as Anova.glm() in car, if more than one object is specified, then the
table has a row for the residual degrees of freedom and deviance for each model. For all but the first
model, the change in degrees of freedom and deviance is also given. (This only makes statistical
sense if the models are nested.) It is conventional to list the models from smallest to largest, but this
is up to the user. It is necessary to have type = 1 with more than one objects are specified.

See anova. glm for more details and warnings. The VGAM package now implements full likelihood
models only, therefore no dispersion parameters are estimated.

Value

An object of class "anova" inheriting from class "data.frame”.

Warning

See anova.glm. Several VGAM family functions implement distributions which do not satisfying
the usual regularity conditions needed for the LRT to work. No checking or warning is given for
these.

As car says, be careful of Type III tests because they violate marginality. Type II tests (the default)
do not have this problem.
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Note

It is possible for this function to stop when type =2 or 3, e.g., anova(vglm(cans ~ myfactor,
poissonff, data =boxcar)) where myfactor is a factor.

The code was adapted directly from anova.glm and Anova.glm() in car by T. W. Yee. Hence the
Type II and Type III tests do not correspond precisely with the SAS definition.

See Also

anova.glm, stat.anova, stats:::print.anova, Anova.glm() in car if car is installed, vglm,
lrtest, add1.vglm,dropl.vglm, 1Irt.stat.vlm, score.stat.vlm,wald.stat.vlm, backPain2,
update.

Examples

# Example 1: a proportional odds model fitted to pneumo.

set.seed(1)

pneumo <- transform(pneumo, let = log(exposure.time), x3 = runif(8))
fitl <- vglm(cbind(normal, mild, severe) ~ let , propodds, pneumo)
fit2 <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo)
fit3 <- vglm(cbind(normal, mild, severe) ~ let + x3, cumulative, pneumo)
anova(fit1, fit2, fit3, type = 1) # Remember to specify 'type'!!
anova(fit2)

anova(fit2, type = "I")

anova(fit2, type = "III")

# Example 2: a proportional odds model fitted to backPain2.
data("backPain2"”, package = "VGAM")

summary (backPain2)

fitlogit <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
coef(fitlogit)

anova(fitlogit)

anova(fitlogit, type = "I")

anova(fitlogit, type = "III")

AR1 Autoregressive Process with Order-1 Family Function

Description

Maximum likelihood estimation of the three-parameter AR-1 model

Usage

AR1(ldrift = "identitylink”, 1sd = "loglink", lvar = "loglink"”, lrho = "rhobitlink”,
idrift = NULL, isd = NULL, ivar = NULL, irho = NULL, imethod = 1,
ishrinkage = 0.95, type.likelihood = c("exact”, "conditional"),
type.EIM = c("exact"”, "approximate"”), var.arg = FALSE, nodrift = FALSE,
print.EIM = FALSE, zero = c(if (var.arg) "var" else "sd”, "rho"))
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Arguments

ldrift, 1sd, lvar, lrho
Link functions applied to the scaled mean, standard deviation or variance, and
correlation parameters. The parameter drift is known as the drift, and it is a
scaled mean. See Links for more choices.

idrift, isd, ivar, irho
Optional initial values for the parameters. If failure to converge occurs then
try different values and monitor convergence by using trace = TRUE. For a .S-
column response, these arguments can be of length S, and they are recycled
by the columns first. A value NULL means an initial value for each response is
computed internally.

ishrinkage, imethod, zero
See CommonVGAMffArguments for more information. The default for zero as-
sumes there is a drift parameter to be estimated (the default for that argument),
so if a drift parameter is suppressed and there are covariates, then zero will need
to be assigned the value 1 or 2 or NULL.

var.arg Same meaning as uninormal.

nodrift Logical, for determining whether to estimate the drift parameter. The default is
to estimate it. If TRUE, the drift parameter is set to 0 and not estimated.

type.EIM What type of expected information matrix (EIM) is used in Fisher scoring. By
default, this family function calls ARTEIM, which recursively computes the exact
EIM for the AR process with Gaussian white noise. See Porat and Friedlander
(1986) for further details on the exact EIM.
If type.EIM = "approximate” then approximate expression for the EIM of Au-
toregressive processes is used; this approach holds when the number of observa-
tions is large enough. Succinct details about the approximate EIM are delineated
at Porat and Friedlander (1987).

print.EIM Logical. If TRUE, then the first few EIMs are printed. Here, the result shown is

the sum of each EIM.
type.likelihood

What type of likelihood function is maximized. The first choice (default) is
the sum of the marginal likelihood and the conditional likelihood. Choosing
the conditional likelihood means that the first observation is effectively ignored
(this is handled internally by setting the value of the first prior weight to be some
small positive number, e.g., 1.0e-6). See the note below.

Details

The AR-1 model implemented here has
Vi~ N(p,0?/(1 = p%),
and
Yi=p"+pYio1 + e,
where the e; are i.i.d. Normal(0, sd = o) random variates.

Here are a few notes: (1). A test for weak stationarity might be to verify whether 1/p lies outside the
unit circle. (2). The mean of all the Y; is p* /(1 — p) and these are returned as the fitted values. (3).
The correlation of all the Y; with Y;_1 is p. (4). The default link function ensures that —1 < p < 1.
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Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Monitoring convergence is urged, i.e., set trace = TRUE.

Moreover, if the exact EIMs are used, set print.EIM = TRUE to compare the computed exact to the
approximate EIM.

Under the VGLM/VGAM approach, parameters can be modelled in terms of covariates. Particu-
larly, if the standard deviation of the white noise is modelled in this way, then type.EIM = "exact”
may certainly lead to unstable results. The reason is that white noise is a stationary process, and
consequently, its variance must remain as a constant. Consequently, the use of variates to model
this parameter contradicts the assumption of stationary random components to compute the exact
EIMs proposed by Porat and Friedlander (1987).

To prevent convergence issues in such cases, this family function internally verifies whether the
variance of the white noise remains as a constant at each Fisher scoring iteration. If this as-
sumption is violated and type.EIM = "exact"” is set, then AR1 automatically shifts to type.EIM
= "approximate”. Also, a warning is accordingly displayed.

Note

Multiple responses are handled. The mean is returned as the fitted values.

Author(s)

Victor Miranda (exact method) and Thomas W. Yee (approximate method).

References

Porat, B. and Friedlander, B. (1987). The Exact Cramer-Rao Bond for Gaussian Autoregressive
Processes. IEEE Transactions on Aerospace and Electronic Systems, AES-23(4), 537-542.

See Also

ARTEIM, vglm.control, dAR1, arima.sim.

Examples

### Example 1: using arima.sim() to generate a ©@-mean stationary time series.
nn <- 500
tsdata <- data.frame(x2 = runif(nn))
ar.coef.1 <- rhobitlink(-1.55, inverse = TRUE) # Approx -0.65
ar.coef.2 <- rhobitlink( 1.0, inverse = TRUE) # Approx .50
set.seed(1)
tsdata <- transform(tsdata,

index = 1:nn,

TS1 = arima.sim(nn, model = list(ar = ar.coef.1),

sd = exp(1.5)),
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TS2 = arima.sim(nn, model = list(ar = ar.coef.2),
sd = exp(1.0 + 1.5 * x2)))

### An autoregressive intercept--only model. #itt
### Using the exact EIM, and "nodrift = TRUE" #i##
fitla <- vglm(TS1 ~ 1, data = tsdata, trace = TRUE,
AR1(var.arg = FALSE, nodrift = TRUE,
type.EIM = "exact”,
print.EIM = FALSE),
crit = "coefficients")
Coef(fitla)
summary(fitla)

## Not run:
### Two responses. Here, the white noise standard deviation of TS2  #i#
### is modelled in terms of 'x2'. Also, 'type.EIM = exact'. ###
fitlb <- vglm(cbind(TS1, TS2) ~ x2,
AR1(zero = NULL, nodrift = TRUE,
var.arg = FALSE,
type.EIM = "exact"),
constraints = list("(Intercept)” = diag(4),
"x2" = rbind(@, 0, 1, 9)),
data = tsdata, trace = TRUE, crit = "coefficients")
coef (fitlb, matrix = TRUE)
summary (fitib)

### Example 2: another stationary time series

nn <- 500

my.rho <- rhobitlink(1.0, inverse = TRUE)

my.mu <- 1.0

my.sd <- exp(1)

tsdata <- data.frame(index = 1:nn, TS3 = runif(nn))

set.seed(2)
for (ii in 2:nn)
tsdata$TS3[ii] <- my.mu/(1 - my.rho) +
my.rho * tsdata$TS3[ii-1] + rnorm(1, sd = my.sd)
tsdata <- tsdatal-(1:ceiling(nn/5)), 1 # Remove the burn-in data:

### Fitting an AR(1). The exact EIMs are used.
fit2a <- vglm(TS3 ~ 1, AR1(type.likelihood = "exact”, # "conditional”,
type.EIM = "exact"),
data = tsdata, trace = TRUE, crit = "coefficients")

Coef(fit2a)
summary (fit2a) # SEs are useful to know

Coef (fit2a)["rho"] # Estimate of rho, for intercept-only models
my.rho # The '"truth' (rho)

Coef(fit2a)["drift”] # Estimate of drift, for intercept-only models
my.mu /(1 - my.rho) # The 'truth' (drift)

## End(Not run)
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ARTEIM Computation of the Exact EIM of an Order-1 Autoregressive Process

Description
Computation of the exact Expected Information Matrix of the Autoregressive process of order-1
(AR(1)) with Gaussian white noise and stationary random components.

Usage

ARTEIM(x = NULL, var.arg = NULL, p.drift = NULL,
WNsd = NULL, ARcoeff1 = NULL, eps.porat = le-2)

Arguments

X A vector of quantiles. The gaussian time series for which the EIMs are com-
puted.
If multiple time series are being analyzed, then x must be a matrix where each
column allocates a response. That is, the number of columns (denoted as NO.S)
must match the number of responses.

var.arg Logical. Same as with AR1.

p.drift A numeric vector with the scaled mean(s) (commonly referred as drif) of the

AR process(es) in turn. Its length matches the number of responses.

WNsd, ARcoeff1 Matrices. The standard deviation of the white noise, and the correlation (coeffi-
cient) of the AR(1) model, for each observation.
That is, the dimension for each matrix is N x NOJS, where N is the number of
observations and NOS is the number of responses. Else, these arguments are
recycled.

eps.porat A very small positive number to test whether the standar deviation (WNsd) is
close enough to its value estimated in this function.
See below for further details.

Details

This function implements the algorithm of Porat and Friedlander (1986) to recursively compute the
exact expected information matrix (EIM) of Gaussian time series with stationary random compo-
nents.

By default, when the VGLM/VGAM family function AR1 is used to fit an AR(1) model via vglm,
Fisher scoring is executed using the approximate EIM for the AR process. However, this model
can also be fitted using the exact EIMs computed by ARTEIM.

Given N consecutive data points, yo,y1,-..,yn—1 With probability density f(y), the Porat and
Friedlander algorithm calculates the EIMs [J,,—1(0)], for all 1 < n < N. This is done based on
the Levinson-Durbin algorithm for computing the orthogonal polynomials of a Toeplitz matrix. In
particular, for the AR(1) model, the vector of parameters to be estimated under the VGAM/VGLM
approach is
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n = (u*,log(0®), rhobit(p)),

where o2 is the variance of the white noise and mu* is the drift parameter (See AR1 for further
details on this).

Consequently, for each observation n = 1,..., N, the EIM, J,,(0), has dimension 3 x 3, where the
diagonal elements are:

Iy = E[-0%log f(y)/0(1*)?],

Jin2,2) = E[-07log f(y)/0(0%)?],

and

Jin,s.3 = E[—0%log f(y)/9(p)?].
As for the off-diagonal elements, one has the usual entries, i.e.,

Jn12) = 21 = E[—0%1og f(y)/da%dp],

etc.

If var.arg = FALSE, then o instead of o2 is estimated. Therefore, Jn,2,2]> Jin,1,2)» €tC., are corre-
spondingly replaced.

Once these expected values are internally computed, they are returned in an array of dimension
N x 1 x 6, of the form

JLL] = [T, J2.2s 13,80 Iz J2.80 s

AR1EIM handles multiple time series, say NO.S. If this happens, then it accordingly returns an array
of dimension N x NOS x 6. Here, J[, k,], for k = 1,..., NOS, is a matrix of dimension N X 6,
which stores the EIMs for the kt"th response, as above, i.e.,

J[7 k7] = [J[,l,l]a J[72,2]7 J[,3,3]7 . ']a

the bandwith form, as per required by ART.

Value

An array of dimension N x NOS x 6, as above.

This array stores the EIMs calculated from the joint density as a function of
60 = (u*,0%,p).

Nevertheless, note that, under the VGAM/VGLM approach, the EIMs must be correspondingly
calculated in terms of the linear predictors, 7.
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Asymptotic behaviour of the algorithm

For large enough n, the EIMs, J,,(0), become approximately linear in n. That is, for some ny,

Jo(0) = Ty (0) + (n—1ng)J(0),  (x%)
where J () is a constant matrix.

This relationsihip is internally considered if a proper value of ng is determined. Different ways can
be adopted to find ng. In ARTEIM, this is done by checking the difference between the internally
estimated variances and the entered ones at WNsd. If this difference is less than eps.porat at some
iteration, say at iteration ng, then AR1EIM takes .J(0) as the last computed increment of .J,,(6), and
extraplotates Ji(8), for all & > ng using (). Else, the algorithm will complete the iterations for
1<n<N.

Finally, note that the rate of convergence reasonably decreases if the asymptotic relationship () is
used to compute Ji(0), k > ngy. Normally, the number of operations involved on this algorithm is
proportional to N2.

See Porat and Friedlander (1986) for full details on the asymptotic behaviour of the algorithm.

Warning
Arguments WNsd, and ARcoeff1 are matrices of dimension N x NOS. Else, these arguments are
accordingly recycled.

Note

For simplicity, one can assume that the time series analyzed has a 0-mean. Consequently, where the
family function AR1 calls ARTEIM to compute the EIMs, the argument p.drift is internally set to
zero-vector, whereas X is centered by subtracting its mean value.

Author(s)
V. Miranda and T. W. Yee.

References

Porat, B. and Friedlander, B. (1986). Computation of the Exact Information Matrix of Gaussian
Time Series with Stationary Random Components. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 54(1), 118-130.

See Also
AR1.

Examples

set.seed(1)

nn <- 500

ARcoeff1 <- ¢(0.3, 0.25) # Will be recycled.

WNsd <- c(exp(1), exp(1.5)) # Will be recycled.

p.drift <- c(0, 0) # Zero-mean gaussian time series.
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### Generate two (zero-mean) AR(1) processes ###

ts1 <- p.drift[11/(1 - ARcoeff1[1]) +
arima.sim(model = list(ar = ARcoeff1[1]), n
sd = WNsd[1])

ts2 <- p.drift[2]/(1 - ARcoeff1[2]) +
arima.sim(model = list(ar = ARcoeff1[2]), n = nn,
sd = WNsd[2])

nn,

ARdata <- matrix(cbind(ts1, ts2), ncol = 2)

### Compute the exact EIMs: TWO responses. #i
ExactEIM <- AR1EIM(x = ARdata, var.arg = FALSE, p.drift = p.drift,
WNsd = WNsd, ARcoeff1l = ARcoeff1)

### For response 1:
head(ExactEIM[, 1 ,1) # NOTICE THAT THIS IS A (nn x 6) MATRIX!

### For response 2:

head (ExactEIML, 2 ,1) # NOTICE THAT THIS IS A (nn x 6) MATRIX!
asinlink Arcsine Link Function
Description

Computes the arcsine link, including its inverse and the first few derivatives.

Usage

asinlink(theta, bvalue = NULL, inverse = FALSE,
deriv = @, short = TRUE, tag = FALSE, c10 = c(4, -pi))

Arguments
theta Numeric or character. See below for further details.
bvalue See Links.

inverse, deriv, short, tag
Details at Links.

clo Similar to sqrtlink. The defaultis intended to match 1calogitlink for binomialff
at binomial probabilities (theta) equal to 0.5.

Details

Function alogitlink gives some motivation for this link. However, the problem with this link
is that it is bounded by default between (-pi, pi) so that it can be unsuitable for regression.
This link is a scaled and centred CDF of the arcsine distribution. The centring is chosen so that
asinlink(@.5) is 0, and the scaling is chosen so that asinlink (0.5, deriv = 1) and logitlink(@.5,
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deriv = 1) are equal (the value 4 actually), hence this link will operate similar to the logitlink
when close to 0.5.

Value

Similar to logitlink but using different formulas.

Warning

It is possible that the scaling might change in the future.

Author(s)
Thomas W. Yee

See Also

logitlink, alogitlink, Links, probitlink, clogloglink, cauchitlink,binomialff, sloglink,
hdeff.

Examples

p <- seq(0.01, 0.99, length= 10)
asinlink(p)
max(abs(asinlink(asinlink(p), inv = TRUE) - p)) # 02

## Not run:

par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)

p <- seq(@.01, 0.99, by = 0.01)

for (d in 0:1) {
matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "blue”, ylab = "transformation”,
log = ifelse(d == 1, "y", ""),
las = 1, main = if (d == @) "Some probability link functions”
else "First derivative")
lines(p, logitlink(p, deriv = d), col = "green")
lines(p, probitlink(p, deriv = d), col = "blue")
lines(p, clogloglink(p, deriv = d), col = "tan")
lines(p, asinlink(p, deriv = d), col = "red3")
if (d ==0) {
abline(v = 0.5, h = 0, 1ty = "dashed")
legend(@, 4.5, c("logitlink”, "probitlink”, "clogloglink",
"asinlink”), lwd = mylwd,
col = c("green”, "blue”, "tan", "red3"))
} else
abline(v = 0.5, lwd = 0.5, col = "gray")
3

for (d in 0) {
matplot(y, cbind( logitlink(y, deriv = d, inverse = TRUE),
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probitlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "blue", xlab = "transformation”, ylab = "p”,
main = if (d == @) "Some inverse probability link functions”
else "First derivative”, las=1)

lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "green")

lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "blue")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "tan")
lines(y, asinlink(y, deriv = d, inverse = TRUE), col = "red3")
if (d==20) {

abline(h = 0.5, v = @, 1lwd = 0.5, col = "gray")
legend(-4, 1, c("logitlink”, "probitlink"”, "clogloglink”,
"asinlink”), lwd = mylwd,
col = c("green", "blue”, "tan", "red3"))
}

3
par(lwd = 1)

## End(Not run)

auuc Auckland University Undergraduate Counts Data

Description

Undergraduate student enrolments at the University of Auckland in 1990.

Usage

data(auuc)

Format
A data frame with 4 observations on the following 5 variables.

Commerce a numeric vector of counts.
Arts a numeric vector of counts.
SciEng a numeric vector of counts.
Law a numeric vector of counts.

Medicine a numeric vector of counts.

Details

Each student is cross-classified by their colleges (Science and Engineering have been combined)
and the socio-economic status (SES) of their fathers (1 = highest, down to 4 = lowest).

Source

Dr Tony Morrison.
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References

Wild, C. J. and Seber, G. A. F. (2000). Chance Encounters: A First Course in Data Analysis and
Inference, New York: Wiley.

Examples

auuc

## Not run:
round(fitted(grc(auuc)))
round(fitted(grc(auuc, Rank = 2)))

## End(Not run)

aux.posbernoulli.t Auxiliary Function for the Positive Bernoulli Family Function with
Time Effects

Description

Returns behavioural effects indicator variables from a capture history matrix.

Usage

aux.posbernoulli.t(y, check.y = FALSE, rename = TRUE, name = "bei")

Arguments
y Capture history matrix. Rows are animals, columns are sampling occasions, and
values should be Os and 1s only.
check.y Logical, if TRUE then some basic checking is performed.
rename, name If rename = TRUE then the behavioural effects indicator are named using the
value of name as the prefix. If FALSE then use the same column names as y.
Details

This function can help fit certain capture—recapture models (commonly known as My, or My, (no
prefix h means it is an intercept-only model) in the literature). See posbernoulli. t for details.

Value

A list with the following components.

cap.histl A matrix the same dimension as y. In any particular row there are Os up to the first
capture. Then there are 1s thereafter.

capl A vector specifying which time occasion the animal was first captured.
y0i Number of noncaptures before the first capture.
yr0i Number of noncaptures after the first capture.

yrli Number of recaptures after the first capture.
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See Also

posbernoulli.t, deermice.

Examples

# Fit a M_tbh model to the deermice data:
(pdata <- aux.posbernoulli.t(with(deermice,
cbind(y1, y2, y3, y4, y5, y6))))

deermice <- data.frame(deermice,

bei = @, # Add this

pdata$cap.hist1) # Incorporate these
head(deermice) # Augmented with behavioural effect indicator variables
tail(deermice)

backPain Data on Back Pain Prognosis, from Anderson (1984)

Description

Data from a study of patients suffering from back pain. Prognostic variables were recorded at
presentation and progress was categorised three weeks after treatment.

Usage

data(backPain)

Format

A data frame with 101 observations on the following 4 variables.

x2 length of previous attack.
x3 pain change.
x4 lordosis.

pain an ordered factor describing the progress of each patient with levels worse < same <slight. improvement
<moderate.improvement < marked.improvement < complete.relief.

Source

http://ideas.repec.org/c/boc/bocode/s419001.html

The data set and this help file was copied from gnm so that a vignette in VGAM could be run; the
analysis is described in Yee (2010).

The data frame backPain2 is a modification of backPain where the variables have been renamed
(x1 becomes x2, x2 becomes x3, x3 becomes x4) and converted into factors.
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References

Anderson, J. A. (1984). Regression and Ordered Categorical Variables. J. R. Statist. Soc. B, 46(1),
1-30.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1-34. doi:10.18637/jss.v032.110.

Examples

summary (backPain)
summary (backPain2)

beggs Bacon and Eggs Data

Description

Purchasing of bacon and eggs.

Usage
data(beggs)

Format

Data frame of a two way table.

b0, b1, b2, b3, b4 The b refers to bacon. The number of times bacon was purchased was 0, 1, 2, 3,
or4.

el, el, e2, e3, e4 The e refers to eggs. The number of times eggs was purchased was 0, 1, 2, 3, or
4.

Details

The data is from Information Resources, Inc., a consumer panel based in a large US city [see
Bell and Lattin (1998) for further details]. Starting in June 1991, the purchases in the bacon and
fresh eggs product categories for a sample of 548 households over four consecutive store trips was
tracked. Only those grocery shopping trips with a total basket value of at least five dollars was
considered. For each household, the total number of bacon purchases in their four eligible shopping
trips and the total number of egg purchases (usually a package of eggs) for the same trips, were
counted.

Source

Bell, D. R. and Lattin, J. M. (1998) Shopping Behavior and Consumer Preference for Store Price
Format: Why ‘Large Basket” Shoppers Prefer EDLP. Marketing Science, 17, 66—88.


https://doi.org/10.18637/jss.v032.i10

bell 61

References

Danabher, P. J. and Hardie, B. G. S. (2005). Bacon with Your Eggs? Applications of a New Bivariate
Beta-Binomial Distribution. American Statistician, 59(4), 282-286.

See Also

rrvglm, rcim, grc.

Examples

beggs
colSums(beggs)
rowSums (beggs)

bell The Bell Series of Integers

Description

Returns the values of the Bell series.

Usage
bell(n)
Arguments
n Vector of non-negative integers. Values greater than 218 return an Inf. Non-
integers or negative values return a NaN.
Details

The Bell numbers emerge from a series expansion of exp(e* — 1) for real . The first few values
are By = 1, By = 1, Bs = 2, B3 = 5, By = 15. The series increases quickly so that overflow
occurs when its argument is more than 218.

Value

This function returns B,,.

Author(s)
T. W. Yee

References

Bell, E. T. (1934). Exponential polynomials. Ann. Math., 35, 258-2717.
Bell, E. T. (1934). Exponential numbers. Amer. Math. Monthly, 41, 411-419.
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See Also
bellff, rbell.

Examples

## Not run:
plot(@:10, bell(0:10), log = "y", type = "h", col = "blue")

## End(Not run)

Benford Benford’s Distribution

Description

Density, distribution function, quantile function, and random generation for Benford’s distribution.

Usage
dbenf(x, ndigits = 1, log = FALSE)
pbenf(q, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
gbenf(p, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
rbenf(n, ndigits = 1)
Arguments
X, q Vector of quantiles. See ndigits.
p vector of probabilities.
n number of observations. A single positive integer. Else if length(n) > 1 then
the length is taken to be the number required.
ndigits Number of leading digits, either 1 or 2. If 1 then the support of the distribution
is {1,...,9}, else {10,...,99}.
log, log.p Logical. If 1og.p = TRUE then all probabilities p are given as log(p).
lower.tail Same meaning as in pnorm or gnorm.
Details

Benford’s Law (aka the significant-digit law) is the empirical observation that in many naturally
occuring tables of numerical data, the leading significant (nonzero) digit is not uniformly distributed
in {1,2,...,9}. Instead, the leading significant digit (= D, say) obeys the law

ford = 1,...,9. This means the probability the first significant digit is 1 is approximately 0.301,
etc.
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Benford’s Law was apparently first discovered in 1881 by astronomer/mathematician S. Newcombe.
It started by the observation that the pages of a book of logarithms were dirtiest at the beginning
and progressively cleaner throughout. In 1938, a General Electric physicist called F. Benford re-
discovered the law on this same observation. Over several years he collected data from different
sources as different as atomic weights, baseball statistics, numerical data from Reader’s Digest, and
drainage areas of rivers.

Applications of Benford’s Law has been as diverse as to the area of fraud detection in accounting
and the design computers.

Benford’s distribution has been called “a” logarithmic distribution; see logff.

Value

dbenf gives the density, pbenf gives the distribution function, and gbenf gives the quantile func-
tion, and rbenf generates random deviates.

Author(s)

T. W. Yee and Kai Huang

References

Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American Philosophical
Society, 78, 551-572.

Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers.
American Journal of Mathematics, 4, 39—40.

Examples

dbenf(x <- c(0:10, NA, NaN, -Inf, Inf))

pbenf (x)

## Not run:

XX <= 1:9

barplot(dbenf(xx), col = "lightblue”, xlab = "Leading digit"”,
ylab = "Probability”, names.arg = as.character(xx),
main = "Benford's distribution”, las = 1)

hist(rbenf(1000), border = "blue"”, prob = TRUE,
main = "1000 random variates from Benford's distribution”,
xlab = "Leading digit”, sub="Red is the true probability”,
breaks = 0:9 + 0.5, ylim = ¢c(0, 0.35), xlim = c(0, 10.0))

lines(xx, dbenf(xx), col = "red"”, type = "h")

points(xx, dbenf(xx), col = "red")

## End(Not run)
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Benini The Benini Distribution

Description
Density, distribution function, quantile function and random generation for the Benini distribution
with parameter shape.

Usage

dbenini(x, y@, shape, log = FALSE)

pbenini(q, y@, shape, lower.tail = TRUE, log.p = FALSE)
gbenini(p, y@, shape, lower.tail = TRUE, log.p = FALSE)
rbenini(n, y@, shape)
Arguments
X, q vector of quantiles.
p vector of probabilities.
n number of observations. Same as runif.
yo the scale parameter y.
shape the positive shape parameter b.
log Logical. If 1og = TRUE then the logarithm of the density is returned.

lower.tail, log.p
Same meaning as in pnorm or gnorm.
Details
See benini1, the VGAM family function for estimating the parameter s by maximum likelihood
estimation, for the formula of the probability density function and other details.
Value
dbenini gives the density, pbenini gives the distribution function, gbenini gives the quantile
function, and rbenini generates random deviates.
Author(s)
T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.
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See Also

beninil.

Examples

## Not run:

y0 <- 1; shape <- exp(1)

xx <- seq(@0.0, 4, len = 101)

plot(xx, dbenini(xx, y@ = y@, shape = shape), col = "blue”,
main = "Blue is density, orange is the CDF", type = "1",

sub = "Purple lines are the 10,20,...,90 percentiles”,
ylim = @:1, las = 1, ylab = "", xlab = "x")

abline(h = @, col = "blue”, 1ty = 2)

lines(xx, pbenini(xx, y@ = y@, shape = shape), col = "orange")

probs <- seq(@.1, 0.9, by = 0.1)
Q <- gbenini(probs, y@ = y@, shape = shape)
lines(Q, dbenini(Q, y@ = y@, shape = shape),
col = "purple”, 1ty = 3, type = "h")
pbenini(Q, y@ = y@, shape = shape) - probs # Should be all zero

## End(Not run)

beninii Benini Distribution Family Function

Description

Estimating the 1-parameter Benini distribution by maximum likelihood estimation.

Usage

beninil(y@ = stop("argument 'y@' must be specified”),
lshape = "loglink"”, ishape = NULL, imethod = 1,
zero = NULL, parallel = FALSE,
type.fitted = c("percentiles”, "Qlink"),
percentiles = 50)

Arguments
yo Positive scale parameter.
1shape Parameter link function and extra argument of the parameter b, which is the
shape parameter. See Links for more choices. A log link is the default because
b is positive.
ishape Optional initial value for the shape parameter. The default is to compute the

value internally.
imethod, zero, parallel
Details at CommonVGAMffArguments.
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type.fitted, percentiles
See CommonVGAMffArguments for information. Using "Qlink" is for quantile-

links in VGAMextra.
Details

The Benini distribution has a probability density function that can be written

f(y) = 2s exp(—s[(log(y/y0))?]) log(y/y0)/y

for 0 < yg < y, and shape s > 0. The cumulative distribution function for Y is

F(y) =1 —exp(—s[(log(y/y0))?])-

Here, Newton-Raphson and Fisher scoring coincide. The median of Y is now returned as the fitted
values, by default. This VGAM family function can handle a multiple responses, which is inputted
as a matrix.

On fitting, the extra slot has a component called y@ which contains the value of the y@ argument.

Value
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note
Yet to do: the 2-parameter Benini distribution estimates another shape parameter a too. Hence, the
code may change in the future.

Author(s)
T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Benini.

Examples

yo <- 1; nn <- 3000

bdata <- data.frame(y = rbenini(nn, y@ = y@, shape = exp(2)))

fit <- vglm(y ~ 1, beninil(y@ = y@), data = bdata, trace = TRUE)
coef (fit, matrix = TRUE)

Coef(fit)

fit@extras$yo

c(head(fitted(fit), 1), with(bdata, median(y))) # Should be equal
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Betabinom The Beta-Binomial Distribution

Description

Density, distribution function, and random generation for the beta-binomial distribution and the
inflated beta-binomial distribution.

Usage

dbetabinom(x, size, prob, rho = @, log = FALSE)

pbetabinom(q, size, prob, rho = @, log.p = FALSE)

rbetabinom(n, size, prob, rho = 0)

dbetabinom.ab(x, size, shapel, shape2, log = FALSE,
Inf.shape = exp(20), limit.prob = 0.5)

pbetabinom.ab(q, size, shapel, shape2, limit.prob = 0.5,
log.p = FALSE)

rbetabinom.ab(n, size, shapel, shape2, limit.prob
.dontuse.prob = NULL)

dzoibetabinom(x, size, prob, rho = @, pstr@ = 0, pstrsize
log = FALSE)

pzoibetabinom(q, size, prob, rho, pstr@ = @, pstrsize = 0,
lower.tail = TRUE, log.p = FALSE)

rzoibetabinom(n, size, prob, rho = 0, pstr@ = @, pstrsize = 0)

dzoibetabinom.ab(x, size, shapel, shape2, pstr@ = 0, pstrsize = 0,

log = FALSE)

pzoibetabinom.ab(q, size, shapel, shape2, pstr@ = 0, pstrsize
lower.tail = TRUE, log.p = FALSE)

rzoibetabinom.ab(n, size, shapel, shape2, pstr@ = @, pstrsize = 0)

0.5,

1]
[

1
[

Arguments
X, q vector of quantiles.
size number of trials.
n number of observations. Same as runif.
prob the probability of success 1. Must be in the unit closed interval [0, 1].
rho the correlation parameter p, which should be in the interval [0, 1). The default

value of 0 corresponds to the usual binomial distribution with probability prob.
Setting rho = 1 would set both shape parameters equal to 0, and the ratio 0/9,
which is actually NaN, is interpreted by Beta as 0.5. See the warning below.

shapel, shape2 the two (positive) shape parameters of the standard beta distribution. They are
called a and b in beta respectively. Note that shapel = probx(1-rho)/rho
and shape2 = (1-prob)*(1-rho)/rho is an important relationship between the
parameters, so that the shape parameters are infinite by default because rho = 0;
hence 1imit.prob = prob is used to obtain the behaviour of the usual binomial
distribution.
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log, log.p, lower.tail
Same meaning as runif.

Inf.shape Numeric. A large value such that, if shape1 or shape2 exceeds this, then special
measures are taken, e.g., calling dbinom. Also, if shapel or shape? is less than
its reciprocal, then special measures are also taken. This feature/approximation
is needed to avoid numerical problem with catastrophic cancellation of multiple
lbeta calls.

limit.prob Numerical vector; recycled if necessary. If either shape parameters are Inf then
the binomial limit is taken, with shapel / (shapel + shape2) as the probability
of success. In the case where both are Inf this probability will be a NaN =
Inf/Inf, however, the value 1imit.prob is used instead. Hence the default for
dbetabinom.ab() is to assume that both shape parameters are equal as the limit
is taken (indeed, Beta uses 0.5). Note that for [dpr]betabinom(), because rho
= @ by default, then 1limit.prob = prob so that the beta-binomial distribution
behaves like the ordinary binomial distribution with respect to arguments size
and prob.

.dontuse.prob  An argument that should be ignored and not used.

pstro Probability of a structual zero (i.e., ignoring the beta-binomial distribution). The
default value of pstr@ corresponds to the response having a beta-binomial dis-
tribuion inflated only at size.

pstrsize Probability of a structual maximum value size. The default value of pstrsize
corresponds to the response having a beta-binomial distribution inflated only at
0.
Details

The beta-binomial distribution is a binomial distribution whose probability of success is not a con-
stant but it is generated from a beta distribution with parameters shapel and shape2. Note that the
mean of this beta distribution is mu = shapel1/(shapel+shape2), which therefore is the mean or
the probability of success.

See betabinomial and betabinomialff, the VGAM family functions for estimating the parame-
ters, for the formula of the probability density function and other details.

For the inflated beta-binomial distribution, the probability mass function is

P(Y =y) = (1 — pstr0 — pstrsize) x BB(y) + pstr0 x I[y = 0] + pstrsize x I[y = size]

where BB(y) is the probability mass function of the beta-binomial distribution with the same shape
parameters (pbetabinom.ab), pstro is the inflated probability at O and pstrsize is the inflated
probability at 1. The default values of pstr@ and pstrsize mean that these functions behave like
the ordinary Betabinom when only the essential arguments are inputted.

Value

dbetabinom and dbetabinom.ab give the density, pbetabinom and pbetabinom.ab give the dis-
tribution function, and rbetabinom and rbetabinom. ab generate random deviates.

dzoibetabinomand dzoibetabinom. ab give the inflated density, pzoibetabinomand pzoibetabinom. ab
give the inflated distribution function, and rzoibetabinom and rzoibetabinom.ab generate ran-
dom inflated deviates.
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Warning
Setting rho = 1 is not recommended, however the code may be modified in the future to handle this
special case.

Note

pzoibetabinom, pzoibetabinom. ab, pbetabinom and pbetabinom.ab can be particularly slow.
The functions here ending in .ab are called from those functions which don’t. The simple trans-
formations 11 = a/(a + ) and p = 1/(1 + o + ) are used, where « and 3 are the two shape
parameters.

Author(s)
T. W. Yee and Xiangjie Xue

See Also

Extbetabinom, betabinomial, betabinomialff, Zoabeta, Beta.

Examples

set.seed(1); rbetabinom(10, 100, prob = 0.5)
set.seed(1); rbinom(10, 100, prob = ©0.5) # The same as rho = @

## Not run: N <- 9; xx <- @:N; s1 <- 2; s2 <-3

dy <- dbetabinom.ab(xx, size = N, shapel = s1, shape2 = s2)

barplot(rbind(dy, dbinom(xx, size = N, prob = s1 / (s1+s2))),
beside = TRUE, col = c("blue”,"green"), las =1,

main = paste(”"Beta-binomial (size=",N,"”, shapel=", s1,
", shape2=", s2, ") (blue) vs\n",
" Binomial(size=", N, ", prob=", s1/(s1+s2), ") (green)",
sep = II")’

names.arg = as.character(xx), cex.main = 0.8)
sum(dy * xx) # Check expected values are equal
sum(dbinom(xx, size = N, prob = s1 / (s1+s2)) * xx)

# Should be all o:
cumsum(dy) - pbetabinom.ab(xx, N, shapel = s1, shape2 = s2)

y <- rbetabinom.ab(n = 1e4, size = N, shapel = s1, shape2 = s2)
ty <- table(y)
barplot(rbind(dy, ty / sum(ty)),

beside = TRUE, col = c("blue”, "orange"), las =1,

main = paste("Beta-binomial (size=", N, ", shapel=", s1,
", shape2=", s2, ") (blue) vs\n",

" Random generated beta-binomial(size=", N, ", prob=",

s1/(s1+s2), ") (orange)"”, sep = ""), cex.main = 0.8,

names.arg = as.character(xx))

N <- 1eb; size <- 20; pstr@ <- 0.2; pstrsize <- 0.2
kk <- rzoibetabinom.ab(N, size, s1, s2, pstr0, pstrsize)
hist(kk, probability = TRUE, border = "blue”, ylim = c(0@, 0.25),
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main = "Blue/green = inflated; orange = ordinary beta-binomial”,
breaks = -0.5 : (size + 0.5))
sum(kk == @) / N # Proportion of @

sum(kk == size) / N # Proportion of size
lines(@ : size,

dbetabinom.ab(® : size, size, s1, s2), col = "orange”)
lines(@ : size, col = "green”, type = "b",

dzoibetabinom.ab(@ : size, size, s1, s2, pstr@, pstrsize))

## End(Not run)

betabinomial Beta-binomial Distribution Family Function

Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the mean and correlation coefficient.

Usage

betabinomial (Imu = "logitlink”, lrho = "logitlink”,
irho = NULL, imethod = 1,
ishrinkage = .95, nsimEIM = NULL, zero = "rho")

Arguments

1mu, Irho Link functions applied to the two parameters. See Links for more choices. The
defaults ensure the parameters remain in (0, 1), however, see the warning below.
For 1rho, log1plink (with an offset log(size - 1) for 72) and cloglink may
be very good choices.

irho Optional initial value for the correlation parameter. If given, it must be in (0, 1),
and is recyled to the necessary length. Assign this argument a value if a con-
vergence failure occurs. Having irho = NULL means an initial value is obtained
internally, though this can give unsatisfactory results.

imethod An integer with value 1 or 2 or ..., which specifies the initialization method for
w. If failure to converge occurs try the another value and/or else specify a value
for irho.

zero Specifyies which linear/additive predictor is to be modelled as an intercept only.
If assigned, the single value can be either 1 or 2. The default is to have a single
correlation parameter. To model both parameters as functions of the covariates
assign zero = NULL. See CommonVGAMffArguments for more information.

ishrinkage, nsimEIM
See CommonVGAMf fArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of N and/or large data sets.
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Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the mean and correlation parameter, i.e., the probability of success. The model can be
written T|P = p ~ Binomial(N, p) where P has a beta distribution with shape parameters « and
(. Here, N is the number of trials (e.g., litter size), 7' = NY is the number of successes, and p is
the probability of a success (e.g., a malformation). That is, Y is the proportion of successes. Like
binomialff, the fitted values are the estimated probability of success (i.e., E[Y] and not E[T"]) and
the prior weights IV are attached separately on the object in a slot.

The probability function is

P(T = 1) = (N) Be(a+t,5+ N —1)

t Be(a, 8)

where t = 0,1,..., N, and Be is the beta function with shape parameters « and 5. Recall Y =
T'/N is the real response being modelled.

The default model is 771 = logit(p) and 72 = logit(p) because both parameters lie between 0 and 1.
The mean (of Y) is p = p = a/(a+ ) and the variance (of Y) is p1(1—p) (14 (N —1)p)/N. Here,
the correlation p is given by 1/(1+ a+ 3) and is the correlation between the NV individuals within a
litter. A litter effect is typically reflected by a positive value of p. It is known as the over-dispersion
pamme[er.

This family function uses Fisher scoring. Elements of the second-order expected derivatives with
respect to « and 8 are computed numerically, which may fail for large o, 5, N or else take a long
time.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then depvar(fit) are the sample proportions y,
fitted(fit) returns estimates of F(Y'), and weights(fit, type = "prior") returns the number
of trials V.

Warning

If the estimated rho parameter is close to O then a good solution is to use extbetabinomial. Or
you could try 1rho = "rhobitlink".

This family function is prone to numerical difficulties due to the expected information matrices
not being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting irho to some numerical value, nsimEIM = 100, say, or else use etastart argument
of vglm, etc.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N =1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

The extended beta-binomial distribution of Prentice (1986) implemented by extbetabinomial is
the preferred VGAM family function for BBD regression.
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Author(s)
T. W. Yee

References

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383—-401.

See Also

extbetabinomial, betabinomialff, Betabinom, binomialff, betaff,dirmultinomial, loglplink,
cloglink, lirat, simulate.vlm.

Examples

# Example 1
bdata <- data.frame(N = 10, mu = 0.5, rho = 0.8)
bdata <- transform(bdata,

y = rbetabinom(100, size = N, prob = mu, rho = rho))
fit <- vglm(cbind(y, N-y) ~ 1, betabinomial, bdata, trace = TRUE)
coef(fit, matrix = TRUE)

Coef(fit)
head(cbind(depvar(fit), weights(fit, type = "prior")))

# Example 2

fit <- vglm(cbind(R, N-R) ~ 1, betabinomial, lirat,
trace = TRUE, subset = N > 1)

coef (fit, matrix = TRUE)

Coef(fit)

t(fitted(fit))

t(depvar(fit))

t(weights(fit, type = "prior"))

# Example 3, which is more complicated

lirat <- transform(lirat, fgrp = factor(grp))

summary(lirat) # Only 5 litters in group 3

fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomial(zero = 2),

data = lirat, trace = TRUE, subset = N > 1)

coef(fit2, matrix = TRUE)

## Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,
xlab = "Hemoglobin”, ylab = "Estimated rho”,
pch = as.character(grp[N > 11), col = grp[N > 11))

## End(Not run)

## Not run: # cf. Figure 3 of Moore and Tsiatis (1991)

with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,
xlab = "Hemoglobin level”, ylab = "Proportion Dead”,
main = "Fitted values (lines)”, las = 1))

smalldf <- with(lirat, lirat[N > 1, 1)

for (gp in 1:4) {

xx <= with(smalldf, hb[grp == gpl)
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yy <- with(smalldf, fitted(fit2)[grp == gpl)
000 <- order(xx)
lines(xx[ooo], yy[ooo], col = gp, lwd = 2)
}
## End(Not run)

betabinomialff Beta-binomial Distribution Family Function

Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the shape parameters of the underlying beta distribution.

Usage

betabinomialff(lshapel = "loglink”, lshape2 = "loglink",
ishapel = 1, ishape2 = NULL, imethod = 1, ishrinkage = 0.95,
nsimEIM = NULL, zero = NULL)

Arguments

1shapel, lshape2
Link functions for the two (positive) shape parameters of the beta distribution.
See Links for more choices.

ishapel, ishape2
Initial value for the shape parameters. The first must be positive, and is recyled
to the necessary length. The second is optional. If a failure to converge occurs,
try assigning a different value to ishapel and/or using ishape2.

zero Can be an integer specifying which linear/additive predictor is to be modelled
as an intercept only. If assigned, the single value should be either 1 or 2. The
default is to model both shape parameters as functions of the covariates. If
a failure to converge occurs, try zero = 2. See CommonVGAMffArguments for
more information.

ishrinkage, nsimEIM, imethod
See CommonVGAMf fArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of NV and/or large data sets.

Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the two shape parameters of the associated beta distribution rather than the probability of
success (however, see Note below). The model can be written T'| P = p ~ Binomial(N, p) where
P has a beta distribution with shape parameters o and 3. Here, N is the number of trials (e.g.,
litter size), T = NY is the number of successes, and p is the probability of a success (e.g., a
malformation). That is, Y is the proportion of successes. Like binomialff, the fitted values are
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the estimated probability of success (i.e., E[Y] and not E[T]) and the prior weights IV are attached
separately on the object in a slot.

The probability function is

P(T=1) = (N>B(a+t,ﬂ+N—t)

t B(a, B)

wheret = 0,1,..., N, and B is the beta function with shape parameters o and 5. Recall Y = T'/N
is the real response being modelled.

The default model is 7; = log(«) and 12 = log(3) because both parameters are positive. The mean
(of Y)is p = u = a/(a + ) and the variance (of V) is p(1 — )(1 4+ (N — 1)p)/N. Here, the
correlation p is given by 1/(1 + a + ) and is the correlation between the N individuals within a
litter. A litter effect is typically reflected by a positive value of p. It is known as the over-dispersion
parameter.

This family function uses Fisher scoring. The two diagonal elements of the second-order expected
derivatives with respect to « and [ are computed numerically, which may fail for large «, 3, N or
else take a long time.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then fit@y (better: depvar (fit)) contains the sam-
ple proportions y, fitted(fit) returns estimates of E(Y'), and weights(fit, type = "prior”)
returns the number of trials V.

Warning

This family function is prone to numerical difficulties due to the expected information matrices not
being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting ishapel to be some other positive value, using ishape2 and/or setting zero = 2.

This family function may be renamed in the future. See the warnings in betabinomial.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N =1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

Although the two linear/additive predictors given above are in terms of « and 3, basic algebra shows
that the default amounts to fitting a logit link to the probability of success; subtracting the second
linear/additive predictor from the first gives that logistic regression linear/additive predictor. That
is, logit(p) = m1 — n2. This is illustated in one of the examples below.

The extended beta-binomial distribution of Prentice (1986) implemented by extbetabinomial is
the preferred VGAM family function for BBD regression.

Author(s)

T. W. Yee
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References

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383—401.

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discus-
sion of correlation induced by covariate measurement errors. Journal of the American Statistical
Association, 81, 321-327.

See Also

extbetabinomial, betabinomial, Betabinom, binomialff, betaff, dirmultinomial, lirat,
simulate.vlm.

Examples

# Example 1

N <= 10; s1 <- exp(1); s2 <- exp(2)

y <- rbetabinom.ab(n = 100, size = N, shapel = s1, shape2 = s2)
fit <- vglm(cbind(y, N-y) ~ 1, betabinomialff, trace = TRUE)
coef (fit, matrix = TRUE)

Coef(fit)

head(fit@misc$rho) # The correlation parameter
head(cbind(depvar(fit), weights(fit, type = "prior")))

# Example 2
fit <- vglm(cbind(R, N-R) ~ 1, betabinomialff, data = lirat,
trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef(fit)
fitemisc$rho # The correlation parameter
t(fitted(fit))
t(depvar(fit))
t(weights(fit, type = "prior"))
# A "loglink” link for the 2 shape params is a logistic regression:
all.equal(c(fitted(fit)),
as.vector(logitlink(predict(fit)[, 11 -
predict(fit)[, 2], inverse = TRUE)))

# Example 3, which is more complicated
lirat <- transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomialff(zero = 2),
data = lirat, trace = TRUE, subset = N > 1)
coef(fit2, matrix = TRUE)
coef (fit2, matrix = TRUE)[, 1] -
coef(fit2, matrix = TRUE)[, 2] # logitlink(p)
## Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,
xlab = "Hemoglobin”, ylab = "Estimated rho",
pch = as.character(grp[N > 11), col = grp[N > 1]))
## End(Not run)
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## Not run: # cf. Figure 3 of Moore and Tsiatis (1991)

with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,
xlab = "Hemoglobin level”, ylab = "Proportion Dead”, las = 1,
main = "Fitted values (lines)"))

smalldf <- with(lirat, lirat[N > 1, 1)
for (gp in 1:4) {
xx <- with(smalldf, hb[grp == gpl)
yy <- with(smalldf, fitted(fit2)[grp == gpl)
000 <- order(xx)
lines(xx[ooo], yyl[oool, col = gp, lwd = 2)
3
## End(Not run)

betaff The Two-parameter Beta Distribution Family Function

Description

Estimation of the mean and precision parameters of the beta distribution.

Usage

betaff(A =@, B =1, 1lmu = "logitlink”, 1phi = "loglink",
imu = NULL, iphi = NULL,
gprobs.y = ppoints(8), gphi = exp(-3:5)/4, zero = NULL)

Arguments

A, B Lower and upper limits of the distribution. The defaults correspond to the stan-
dard beta distribution where the response lies between 0 and 1.

Imu, 1phi Link function for the mean and precision parameters. The values A and B are
extracted from the min and max arguments of extlogitlink. Consequently,
only extlogitlink is allowed.

imu, iphi Optional initial value for the mean and precision parameters respectively. A

NULL value means a value is obtained in the initialize slot.
gprobs.y, gphi, zero
See CommonVGAMffArguments for more information.

Details
The two-parameter beta distribut