The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

VIM: Visualization and Imputation of Missing Values

Provides methods for imputation and visualization of missing values. It includes graphical tools to explore the amount, structure and patterns of missing and/or imputed values, supporting exploratory data analysis and helping to investigate potential missingness mechanisms (details in Alfons, Templ and Filzmoser, <doi:10.1007/s11634-011-0102-y>. The quality of imputations can be assessed visually using a wide range of univariate, bivariate and multivariate plots. The package further provides several imputation methods, including efficient implementations of k-nearest neighbour and hot-deck imputation (Kowarik and Templ 2013, <doi:10.18637/jss.v074.i07>, iterative robust model-based multiple imputation (Templ 2011, <doi:10.1016/j.csda.2011.04.012>; Templ 2023, <doi:10.3390/math11122729>), and machine learning–based approaches such as robust GAM-based multiple imputation (Templ 2024, <doi:10.1007/s11222-024-10429-1>) as well as gradient boosting (XGBoost) and transformer-based methods (Niederhametner et al., <doi:10.1177/18747655251339401>). General background and practical guidance on imputation are provided in the Springer book by Templ (2023) <doi:10.1007/978-3-031-30073-8>.

Version: 7.0.0
Depends: R (≥ 4.1.0), colorspace, grid
Imports: car, grDevices, robustbase, stats, sp, vcd, nnet, e1071, methods, Rcpp, utils, graphics, laeken, ranger, MASS, xgboost, data.table (≥ 1.9.4), mlr3, mlr3pipelines, R6, paradox, mlr3tuning, mlr3learners, future
LinkingTo: Rcpp
Suggests: dplyr, tinytest, knitr, mgcv, rmarkdown, reactable, covr, withr, pdist, enetLTS, robmixglm, stringr, glmnet
Published: 2026-01-10
DOI: 10.32614/CRAN.package.VIM
Author: Matthias Templ [aut, cre], Alexander Kowarik ORCID iD [aut], Andreas Alfons [aut], Johannes Gussenbauer [aut], Nina Niederhametner [aut], Eileen Vattheuer [aut], Gregor de Cillia [aut], Bernd Prantner [ctb], Wolfgang Rannetbauer [aut]
Maintainer: Matthias Templ <matthias.templ at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/statistikat/VIM
NeedsCompilation: yes
Citation: VIM citation info
Materials: NEWS
In views: MissingData, OfficialStatistics
CRAN checks: VIM results

Documentation:

Reference manual: VIM.html , VIM.pdf
Vignettes: VIM (source, R code)
Supportive Graphic Methods (source, R code)
Donor based Imputation Methods (source, R code)
Imputation Method based on Iterative EM PCA (source, R code)
Imputation Method IRMI (source, R code)
Model based Imputation Methods (source, R code)
Imputation Method vimpute (source, R code)
Imputation Method based on xgboost (source, R code)

Downloads:

Package source: VIM_7.0.0.tar.gz
Windows binaries: r-devel: VIM_6.2.6.zip, r-release: VIM_6.2.6.zip, r-oldrel: VIM_6.2.6.zip
macOS binaries: r-release (arm64): VIM_7.0.0.tgz, r-oldrel (arm64): VIM_7.0.0.tgz, r-release (x86_64): VIM_7.0.0.tgz, r-oldrel (x86_64): VIM_7.0.0.tgz
Old sources: VIM archive

Reverse dependencies:

Reverse imports: destiny, FuzzyImputationTest, lfproQC, MAICtools, MIGEE, missCompare, MSPrep, onlineBcp, promor, qmtools, robCompositions, sdcMicro, simPop, simputation
Reverse suggests: clusterMI, DataFusionGDM, fastml, micemd, pandemonium

Linking:

Please use the canonical form https://CRAN.R-project.org/package=VIM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.