The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

VectrixDB

License: Apache 2.0 R-CMD-check Docs CRAN status Total Downloads Last Commit Issues

Overview

Zero config. Text in, results out. Pure R - no Python required.

VectrixDB is a lightweight, pure R vector database with built-in text embeddings. No external dependencies, no API keys, no Python - just install and use.

Installation

# Install from GitHub
devtools::install_github("knowusuboaky/vectrixdb-r")

# Required dependencies
install.packages(c("R6", "text2vec", "digest", "Matrix"))

# Optional for better performance
install.packages(c("RcppAnnoy", "word2vec", "stopwords"))

Quick Start

library(VectrixDB)

# Create and add - ONE LINE
db <- Vectrix$new("my_docs")$add(c("Python is great", "Machine learning is fun", "R is awesome"))

# Search - ONE LINE
results <- db$search("programming")

# Get top result
print(results$top()$text)
#> "R is awesome"

Features

Pure R - No Python Required

Unlike other vector databases, VectrixDB is 100% R: - TF-IDF embeddings - Built-in, works out of the box - BM25 search - Using text2vec - Optional word vectors - Load GloVe or word2vec files - ANN indexing - Fast search with RcppAnnoy

Search Modes

# Dense (semantic) search using TF-IDF/word vectors
results <- db$search("query", mode = "dense")

# Sparse (keyword/BM25) search
results <- db$search("query", mode = "sparse")

# Hybrid (dense + sparse with RRF fusion)
results <- db$search("query", mode = "hybrid")

# Ultimate (hybrid + reranking)
results <- db$search("query", mode = "ultimate")

Embedding Options

# Default: TF-IDF (no external files needed)
db <- Vectrix$new("docs")

# With GloVe word vectors (download from Stanford NLP)
db <- Vectrix$new("docs", model = "glove", model_path = "glove.6B.100d.txt")

# With word2vec (download or train your own)
db <- Vectrix$new("docs", model = "word2vec", model_path = "GoogleNews-vectors.bin")

# Custom embedding function
my_embed <- function(texts) {
  # Your custom logic
  matrix(rnorm(length(texts) * 100), nrow = length(texts))
}
db <- Vectrix$new("docs", embed_fn = my_embed, dimension = 100)

Metadata Filtering

# Add with metadata
db$add(
  texts = c("Python guide", "ML tutorial", "R handbook"),
  metadata = list(
    list(category = "programming", year = 2024),
    list(category = "ai", year = 2024),
    list(category = "programming", year = 2023)
  )
)

# Search with filter
results <- db$search("guide", filter = list(category = "programming"))

Reranking

# MMR for diversity
results <- db$search("AI", rerank = "mmr", diversity = 0.7)

# Cross-encoder style reranking
results <- db$search("AI", rerank = "cross-encoder")

Results API

results <- db$search("query")

# Access results
results$top()          # Get top result
results$texts()        # All result texts as vector
results$ids()          # All result IDs
results$scores()       # All scores
results$length()       # Number of results
results$get(2)         # Get second result

# Iterate
results$foreach(function(r) {
  cat(sprintf("%s: %.3f\n", r$id, r$score))
})

Advanced Usage

VectrixDB Class

# Create database
vdb <- VectrixDB$new("./my_data")

# Create collection with custom dimension
collection <- vdb$create_collection("docs", dimension = 100)

# Add vectors directly
collection$add(
  ids = c("doc1", "doc2"),
  vectors = matrix(rnorm(200), nrow = 2),
  metadata = list(list(a = 1), list(a = 2)),
  texts = c("First doc", "Second doc")
)

# Search
results <- collection$search(query_vector, limit = 10)

# Hybrid search
results <- collection$hybrid_search(
  query = query_vector,
  query_text = "search terms",
  limit = 10
)

REST API Server

# Start server (requires plumber package)
vectrix_serve(path = "./my_data", port = 7377)

Performance Tips

  1. Use RcppAnnoy for large collections - Automatically enabled for 100+ docs
  2. Pre-train embeddings - Fit the embedder once on your corpus
  3. Use word vectors - GloVe/word2vec provides better semantic search than TF-IDF
# Pre-train for better embeddings
db <- Vectrix$new("docs")
# Add your corpus - TF-IDF will fit automatically
db$add(large_corpus)
# Now searches will use the fitted vocabulary

Comparison with Python Version

Feature R Version Python Version
Dependencies Pure R Python + ONNX
Default embeddings TF-IDF MiniLM (neural)
Word vectors GloVe, word2vec Same + more
ANN indexing RcppAnnoy usearch
API server plumber FastAPI

The R version prioritizes simplicity and R-native tools. For neural embeddings, use the Python version or provide custom embed_fn.

Dependencies

Required: - R6 - OOP classes - text2vec - TF-IDF, BM25, vocabulary - digest - ID generation - Matrix - Sparse matrices

Optional: - RcppAnnoy - Fast ANN search - word2vec - Load word2vec models - stopwords - Remove stopwords - RSQLite, DBI - Persistent storage - plumber - REST API

License

Apache License 2.0

Author

Kwadwo Daddy Nyame Owusu Boakye

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.