
Package ‘adrftools’
February 17, 2026

Type Package

Title Estimating, Visualizing, and Testing Average Dose-Response
Functions

Version 0.1.0

Description Facilitates estimating, visualizing, and testing average dose-response func-
tions (ADRFs) for characterizing the causal effect of a continuous (i.e., non-discrete) treat-
ment or exposure. Includes support for frequentist and Bayesian regression models, analyti-
cal and bootstrap inference, and characterization of subgroup effects.

Depends R (>= 4.1.0)

Imports cli (>= 3.6.5), collapse (>= 2.1.3), insight (>= 1.4.3),
ggplot2 (>= 4.0.0), marginaleffects (>= 0.19.0), mvtnorm (>=
1.3-3), rlang (>= 1.1.0), sandwich (>= 3.1-1), stats, utils

Suggests CompQuadForm (>= 1.4.4), fwb (>= 0.5.0), survey, splines,
WeightIt, MatchThem, mice, generics, dbarts, knitr, rmarkdown

License GPL (>= 2)

Encoding UTF-8

URL https://github.com/ngreifer/adrftools,

https://ngreifer.github.io/adrftools/

BugReports https://github.com/ngreifer/adrftools/issues

VignetteBuilder knitr

LazyData true

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Noah Greifer [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3067-7154>)

Maintainer Noah Greifer <noah.greifer@gmail.com>

Repository CRAN

Date/Publication 2026-02-17 22:20:02 UTC

1

https://github.com/ngreifer/adrftools
https://ngreifer.github.io/adrftools/
https://github.com/ngreifer/adrftools/issues
https://orcid.org/0000-0003-3067-7154

2 adrf

Contents

adrf . 2
amef . 6
curve_contrast . 7
curve_projection . 8
effect_curve . 12
nhanes3lead . 14
plot.effect_curve . 14
point_contrast . 18
reference_curve . 20
summary.curve_est . 21
summary.effect_curve . 24

Index 29

adrf Estimate an average dose-response function (ADRF)

Description

Estimates the average dose-response function (ADRF) for a fitted model object.

Usage

adrf(x, ...)

Default S3 method:
adrf(

x,
treat,
vcov = "unconditional",
cluster = NULL,
type = "response",
data = NULL,
subset = NULL,
by = NULL,
wts = NULL,
range = 0.95,
n = 51,
fwb.args = list(),
...

)

adrf 3

Arguments

x a fitted model object (e.g., from lm() or glm()).

... further arguments passed to marginaleffects::get_predict().

treat a string specifying the name of the treatment variable.

vcov how the covariance matrix of the estimates should be computed. If "unconditional"
(the default for frequentist models), use the sandwich estimator including sam-
pling uncertainty. If "boot" or "fwb", use the traditional or fractional weighted
bootstrap, respectively (both of which require the fwb package to be installed).
Otherwise, may be a covariance matrix or other allowed input to the vcov argu-
ment of marginaleffects::get_vcov(). Can also be "none" to avoid com-
puting the uncertainty. For Bayesian models, only "posterior", which uses the
posterior of the estimates, and "none" are allowed. For models fit to multiply
imputed data, "boot" and "fwb" are not allowed.

cluster an optional data frame or one-sided formula with the clustering terms for cluster-
robust inference.

type character string indicating the type of prediction. Passed to marginaleffects::get_predict().
Default is "response" for predictions on the scale of the outcome variable.
Other options might include "link" for the linear predictor. This argument is
ignored for lm objects.

data an optional data frame containing the observations originally used to fit the out-
come model supplied to x. This should only be used if the supplied model is not
supported by insight. In most cases, this should not need to be supplied.

subset an optional logical expression indicating the subset of data to use for estimation.
Will be evaluated in the environment of the original dataset supplied to the model
fitting function.

by optional variable(s) over which to group the estimation. Can be a character
vector or one-sided formula.

wts optional numeric vector of weights to generalize the effect curve to a weighted
population.

range numeric; a numeric vector corresponding either to the lower and upper bounds
of the treatment values for which to compute the affect curve or a single number
corresponding to the middle quantile of the treatment. Default is .95 to use the
.025 and .975 quantiles of the treatment. See Details.

n integer specifying the number of equally spaced grid points on which to com-
pute the effect curve anchor points. Default is 51; higher numbers increase
computation time and size of the resulting object but improve accuracy.

fwb.args an optional list of arguments to be passed to fwb::fwb() when vcov is "boot"
or "fwb".

Details

adrf() estimates the ADRF by computing average predicted outcomes in the sample for counter-
factual treatment values, optionally stratified by grouping variables and accounting for estimation
uncertainty via unconditional or conditional variance estimation or bootstrapping. Unconditional
variance estimation and bootstrapping treat the sample as random. When vcov = "unconditional",

https://CRAN.R-project.org/package=fwb

4 adrf

the variance is computed using the formulas in Hansen et al. (2024), which involves augmenting
the influence function with a term to account for sampling from the superpopulation. Unconditional
variance estimation requires sandwich::estfun() and sandwich::bread() methods for the sup-
plied object to be available.

When a mira object from mice or a mimira object from MatchThem is supplied, analyses are
applied to each imputed dataset and pooled using Rubin’s rules. Bootstrapping is not allowed with
such objects.

When a svyglm object from survey is supplied, adrf() automatically incorporates the survey
weights extracted from the object. The same is true for glm_weightit objects, etc., from WeightIt
when s.weights are supplied in the original call to weightit(). See vignette("adrftools")
for more details on using the wts argument.

range:
The range argument controls for which range of the treatment the effect curve is to be evaluated.
It can be supplied either as two numbers corresponding to the lower and upper bounds for the
treatment (e.g., range = c(0, 10)) or as a single number corresponding to the middle quantile
of the treatment (e.g., range = .9, which uses the .05 and .95 quantiles of the treatment as the
bounds). The default is .95 to use the .025 and .975 quantiles of the treatment. When supplied as
a quantile, the quantiles are evaluated incorporating the weights supplied to wts.
A reason not to use the full treatment range (e.g., by setting range = 1) is that there is likely very
little certainty about the effect curve at the treatment extremes. This uncertainty can muddy tests
of the effect curve. However, limiting the treatment range means inferences about the effect curve
are less generalizable to more extreme values of the treatment. Note that this does not change
the data used to fit the effect curve, just the points along the effect curve for which inference and
estimation are to take place.

Value

An object of class effect_curve. This object is a function with attributes. See effect_curve for
details on this function and its outputs.

See Also

• plot.effect_curve() for plotting the ADRF

• summary.effect_curve() for testing hypotheses about the ADRF

• effect_curve for computing point estimates along the ADRF

• curve_projection() for projecting a simpler model onto the ADRF

• reference_curve() for computing the difference between each point on the ADRF and a
specific reference point

• curve_contrast() for contrasting ADRFs computed within subgroups

• amef() for computing the average marginal effect function (AMEF), the derivative of the
ADRF

• marginaleffects::avg_predictions() for computing average adjusted predictions for fit-
ted models (similar to the ADRF)

adrf 5

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
Male * (Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

ADRF of logBLL on Math, unconditional
inference
adrf1 <- adrf(fit, treat = "logBLL")

adrf1

Plot the ADRF
plot(adrf1)

ADRF estimates at given points
adrf1(logBLL = c(0, 1, 2)) |>

summary()

ADRF of logBLL on Math, unconditional
inference; manual range
adrf2 <- adrf(fit, treat = "logBLL",

range = c(0, 2))

adrf2

plot(adrf2)

ADRF of logBLL on Math, bootstrap
inference
adrf_b <- adrf(fit, treat = "logBLL",

vcov = "fwb")

adrf_b

plot(adrf_b)

ADRF in subset
adrf_m <- adrf(fit, treat = "logBLL",

subset = Male == 1)

adrf_m

ADRFs in subgroups
adrf_by <- adrf(fit, treat = "logBLL",

by = ~Male)

adrf_by

6 amef

amef Estimate the average marginal effect function (AMEF)

Description

amef() computes the average marginal effect function (AMEF), the derivative of the average dose-
response function (ADRF). This computed from an adrf_curve object or from a fitting outcome
model directly.

Usage

amef(x, eps = 1e-05)

Arguments

x an adrf_curve object; the output of a call to adrf().

eps numeric; the step size to use when calculating numerical derivatives. Default is
1e-5 (.00001). See Details.

Details

The AMEF is calculated numerically using the central finite derivative formula:

df(x)

dx
≈ f(x+ e)− f(x− e)

2e

The values of the ADRF at the evaluation points are computed using a local polynomial regression
as described at effect_curve. At the boundaries of the ADRF, one-sided derivatives are used.

Value

An object of class amef_curve, which inherits from effect_curve.

See Also

• adrf() for computing the ADRF

• plot.effect_curve() for plotting the AMEF

• summary.effect_curve() for testing hypotheses about the AMEF

• effect_curve for computing point estimates along the AMEF

• curve_projection() for projecting a simpler model onto the AMEF

• reference_curve() for computing the difference between each point on the AMEF and a
specific reference point

• curve_contrast() for contrasting AMEFs computed within subgroups

• marginaleffects::avg_slopes() for computing average adjusted slopes for fitted models
(similar to the AMEF)

curve_contrast 7

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
Male * (Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

ADRF of logBLL on Math
adrf1 <- adrf(fit, treat = "logBLL")

AMEF of logBLL on Math
amef1 <- amef(adrf1)

amef1

Plot the AMEF
plot(amef1)

AMEF estimates at given points
amef1(logBLL = c(0, 1, 2)) |>

summary()

curve_contrast Contrast multiple subgroup effect curves

Description

curve_contrast() computes the difference between effect curves across levels of a subgrouping
variable supplied to by in the original call to adrf().

Usage

curve_contrast(x)

Arguments

x an effect_curve object; the output of a call to adrf() with by supplied.

Details

curve_contrast() creates a new effect curve corresponding to the difference between effect curves
in two groups. When multiple subgroups are specified by by in the original call to adrf(), all pair-
wise comparisons are included. Use the subset argument in the original function call to restrict
comparisons to fewer groups.

Value

An object of class contrast_curve, which inherits from effect_curve, with additional informa-
tion about the groups being contrasted.

8 curve_projection

See Also

• adrf() for computing the ADRF

• reference_curve() for comparing effect curves to a point along the curve

• plot.effect_curve() for plotting the effect curve contrasts

• summary.curve_est() for performing tests of effect curve contrasts at specific points

• summary.effect_curve() for performing omnibus tests of effect curve contrasts (e.g., whether
the contrast curve differs from 0)

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
Male * Smoke_in_Home *
(Age + Race + PIR),

data = nhanes3lead)

ADRFs in Race subgroups, excluding Other
adrf_by <- adrf(fit, treat = "logBLL",

by = ~Race,
subset = Race != "Other")

adrf_by

Contrast subgroup ADRFs
adrf_contrast <- curve_contrast(adrf_by)

adrf_contrast

Plot contrast ADRFs
plot(adrf_contrast, simultaneous = FALSE)

Compute and test difference between subgroup
ADRFs at specific points
adrf_contrast(logBLL = c(0, 2)) |>

summary()

Test if ADRF differences are present
summary(adrf_contrast)

curve_projection Project an effect curve onto a simpler model

Description

curve_projection() produces a projection of an estimated effect curve onto a specified linear
model that is a function only of the treatment to act as a more interpretable summary of the original
effect curve.

curve_projection 9

Usage

curve_projection(x, model, transform = TRUE)

S3 method for class 'curve_projection'
summary(
object,
conf_level = 0.95,
null = 0,
df = NULL,
ci.type = "perc",
subset = NULL,
...

)

S3 method for class 'curve_projection'
coef(object, ...)

S3 method for class 'curve_projection'
vcov(object, ...)

S3 method for class 'curve_projection'
anova(object, object2, df = NULL, ...)

Arguments

x an effect_curve object; the output of a call to adrf().

model the projection model to be fit. Can be a one-sided formula corresponding to the
projection model or one of the following strings: "flat", "linear", "quadratic",
"cubic".

transform whether to compute the projection using a transformation of the linear predictor.
Allowable options include TRUE, FALSE, or a function specifying a transforma-
tion (of which the inverse is used as the inverse link of the projection model).
Ignored unless object is an ADRF. See Details.

object, object2 a curve_projection object; the output of a call to curve_projection().

conf_level the desired confidence level. Set to 0 to omit confidence intervals. Default is
.95.

null the null value for hypothesis test. Default is 0. Set to NA to omit tests.

df the "denominator" degrees of freedom to use for the test. Default is to use the
residual degrees of freedom from the original model if it is a linear model (in
which case an F-test is used) and Inf otherwise (in which case a χ2 test is used).

ci.type string; when bootstrapping or Bayesian inference is used in the original ef-
fect curve, which type of confidence interval is to be computed. For boot-
strapping, allowable options include "perc" for percentile intervals, "wald"
for Wald intervals, and other options allowed by fwb::summary.fwb(). When
simultaneous = TRUE, only "perc" and "wald" are allowed. For Bayesian
models, allowable options include "perc" for equi-tailed intervals and "wald"

10 curve_projection

for Wald intervals. Default is "perc". Ignored when bootstrapping is not used
and the model is not Bayesian.

subset an optional logical expression indicating the subset of subgroups for which to
compute the projection. Can only be used when by was supplied to the original
call to adrf(), and only to refer to variables defining subgroups.

... ignored.

Details

The projection model can be thought of as a linear regression of the effect curve estimates on the
treatment. Whereas the original effect curve may be complicated and nonlinear, the projection
model can be simple and easily interpretable, though it must be understood as a summary of the
original effect curve. For example, the original ADRF might have been computed from an outcome
model that involves treatment splines, covariates, and treatment-covariate interactions. Though the
ADRF is a univariable function (i.e., of only the treatment), it isn’t described by a single set of
parameters. The linear projection of the ADRF, though, could be a simple linear model, described
by an intercept and the slope on treatment. Though only a rough approximation to the ADRF, the
linear projection may be more easily interpreted. This concept is described in Neugebauer and van
der Laan (2007).

curve_projection() fits this projection model and accounts for the uncertainty in the estimates of
the effect curve in computing uncertainty estimates for the projection model parameters. Because
the true effect curve is continuous, the model is fit minimizing∫ aupper

alower

(
θ̂(a)−B(a)β̂

)2

da

where θ̂(a) is the effect curve estimate at treatment value a, B(a) is the basis function representation
of a (i.e., as specified in model), and β̂ is the vector of projection parameters to be estimated. This
integral is approximated using a trapezoidal Riemann sum over the effect curve grid points.

The covariance of the projection parameters can be computed using the delta method applied to
the estimated covariance of the original effect curve estimates. When bootstrapping or posterior
inference are used, the projection is applied to each bootstrap or posterior draw, respectively.

Transform:
When transform is specified, the projection minimizes the distance between the original effect
curve and the transformed linear predictor; that is, it minimizes∫ aupper

alower

(
θ̂(a)− f−1

(
B(a)β̂

))2

da

where f−1(y) is the inverse of the transformation supplied to transform (i.e., corresponding to
the inverse link function of a generalized linear model), essentially using nonlinear least squares
(NLS) to estimate the effect curve projection. This make the coefficients in the projection model
correspond to the coefficients on the linear predictor B(a)β̂. In this case, the projection is not
simply a linear projection, but it may still be more interpretable than the original ADRF. For
example, if the outcome model was originally fit using logistic regression and transform = TRUE
in the call to curve_projection() with model = "linear", the resulting projection would be a
logistic curve governed by the intercept and slope of the linear predictor. See Examples for an
example of this.

curve_projection 11

By default, transform is TRUE, which means that when the original outcome model had a family
component (e.g., a generalized linear model) and an ADRF is supplied to curve_projection(),
the link is automatically supplied to transform and the projection model will be a nonlinear
function of the linear predictor. Set transform to FALSE to require that the projection curve be
simply the linear predictor with no transformation. Note this can lead to invalid estimates when
the outcome is bounded.

Comparing projection models:
anova() performs a Wald test comparing two nested projection models. The null hypothesis
is that the simpler model is sufficient, i.e., that the coefficients on the terms in the larger model
(supplied to object) that are not in the smaller model (supplied to object2) are all zero. Rejecting
the null hypothesis implies that the larger model fits better.

Value

curve_projection() returns an curve_projection object, which inherits from effect_curve.
This object is a function that produces estimates of the effect curve projection when called with
values of the treatment as inputs. See effect_curve for details on calling this function.

The coefficients and covariance matrix of the fitted projection should be extracted with coef() and
vcov(), respectively. summary() produces the coefficients and quantities of interest for inference
(test statistics, p-values, and confidence intervals). Using plot() on a curve_projection object
plots the projection curve as if it was an effect curve; see plot.effect_curve() for adding the
projection curve to the plot of the original effect curve.

References

Neugebauer, R., & van der Laan, M. (2007). Nonparametric causal effects based on marginal
structural models. Journal of Statistical Planning and Inference, 137(2), 419–434. doi:10.1016/
j.jspi.2005.12.008

See Also

• plot.effect_curve() for plotting the effect curve and its projection

• effect_curve for computing point estimates along the effect curve projection

• summary.effect_curve() for testing hypotheses about the effect curve, such as whether a
given projection is sufficient

• anova() for comparing linear models

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
(Male + Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

ADRF of logBLL on Math, unconditional
inference

https://doi.org/10.1016/j.jspi.2005.12.008
https://doi.org/10.1016/j.jspi.2005.12.008

12 effect_curve

adrf1 <- adrf(fit, treat = "logBLL")

Linear projection is sufficient for
characterizing the ADRF
summary(adrf1, hypothesis = "linear")

Compute the linear projection
proj1 <- curve_projection(adrf1, "linear")
proj1 <- curve_projection(adrf1, ~logBLL) #same model

proj1

Coefficients of the projection model
coef(proj1)
summary(proj1)

Plot the projection
plot(proj1)

Plot the projection over the ADRF
plot(adrf1, proj = proj1)

Compute a cubic projection
proj2 <- curve_projection(adrf1, "cubic")
proj2 <- curve_projection(adrf1, ~poly(logBLL, 3)) #same model

Compare cubic to linear projection
anova(proj2, proj1)

effect_curve Effect curve objects

Description

An effect_curve object is a function that takes in values of the treatment and produces esti-
mates of the effect curve at those values. effect_curve objects are produces by adrf() and func-
tions that modify effect curves, such as amef(), curve_contrast(), reference_curve(), and
curve_projection(). The output of an effect_curve object is a curve_est object containing
the effect curve estimates. This page describes effect_curve and curve_est objects.

Usage:

f <- adrf(x, ...)

f({treat}, subset = NULL)

Arguments

{treat} the values of the treatment at which to evaluate the effect curve.

effect_curve 13

subset an optional logical expression indicating the subset of the subgroups for which
to compute estimates. Can only be used when by was supplied to the original
call to adrf(), and only to refer to variables defining subgroups.

x a curve_est object; the output of an effect_curve object call.

digits the number of digits to display.

... arguments passed to print.data.frame().

Details

An effect_curve object contains a set of grid points on which the effect curve is initially evaluated.
The effect curve estimates produced by a call to the effect_curve object are interpolated using 3rd-
degree local polynomial regression with a Gaussian kernel and bandwidth equal to half the distance
between grid points, unless they coincide with the grid points; this means the produced estimates
are linear combinations of the grid point estimates.

Value

A call to an effect_curve object returns a curve_est object, which is a data.frame containing
a column for the treatment and a column for the effect curve estimates. curve_est objects have
print(), summary(), ceof(), and vcov() methods.

See Also

• adrf() for generating an effect curve

• summary.curve_est() for performing inference on effect curve estimates

• plot.effect_curve() for plotting the effect curve

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
(Male + Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

ADRF of logBLL on Math, unconditional
inference
adrf1 <- adrf(fit, treat = "logBLL")

adrf1

Compute estimates along the ADRF
adrf1(logBLL = c(0, 1, 2))

Perform inference on the estimates
adrf1(logBLL = c(0, 1, 2)) |>

summary()

ADRF within groups defined by `Male`

14 plot.effect_curve

adrf2 <- adrf(fit, treat = "logBLL",
by = ~Male)

adrf2

Estimates in both groups
adrf2(logBLL = c(0, 1, 2))

Estimates in one group
adrf2(logBLL = c(0, 1, 2), subset = Male == 1)

nhanes3lead Data from NHANES III on blood lead levels and cognitive outcomes

Description

This is a subsample of the data from NHANES III containing observations of 2521 adolescents that
participated in survey, and in particular the portions of survey that included assessing participants’
blood lead levels and scores on several cognitive tests.

Usage

nhanes3lead

Format

An object of class data.frame with 2521 rows and 14 columns.

Details

The treatment is logBLL, the natural log of blood levels measured in µg/dL. The covariates are Age,
Male, Race, PIR, Enough_Food, Smoke_in_Home, Smoke_Pregnant, and NICU. The outcomes are
Math, Reading, Block, and Digit. MEC_wt are sampling weights.

plot.effect_curve Plot an effect curve

Description

plot() plots an effect curve and its confidence band.

plot.effect_curve 15

Usage

S3 method for class 'effect_curve'
plot(
x,
conf_level = 0.95,
simultaneous = TRUE,
null = NULL,
subset = NULL,
proj = NULL,
transform = TRUE,
ci.type = "perc",
df = NULL,
...

)

Arguments

x an effect_curve object; the output of a call to adrf() or functions that modify
it.

conf_level the desired confidence level. Default is .95 for 95% confidence bands.

simultaneous logical; whether the computed confidence bands should be simultaneous (TRUE)
or pointwise (FALSE). Simultaneous (also known as uniform) bands cover the
full line at the desired confidence level, whereas pointwise confidence bands
only cover each point at the desired level. Default is TRUE. See Details.

null the value at which to plot a horizontal reference line. Default is to plot a line
with a y-intercept of 0 when the effect curve is an AMEF, a curve contrast, or a
reference effect curve, and to omit a line otherwise. Set to NA to manually omit
the line.

subset an optional logical expression indicating the subset of the subgroups to plot. Can
only be used when by was supplied to the original call to adrf(), and only to
refer to variables defining subgroups.

proj an optional curve_projection object, the output of a call to curve_projection().
Supplying this adds the projection curve to the effect curve plot.

transform whether to compute intervals on the transformed estimates. Allowable options
include TRUE, FALSE, or a function specifying a transformation. Ignored unless
x is an ADRF. See Details.

ci.type string; when bootstrapping is used in the original effect curve, what type of
confidence interval is to be computed. Allowable options include "perc" for
percentile intervals, "wald" for Wald intervals, and other options allowed by
fwb::summary.fwb(). When simultaneous = TRUE, only "perc" and "wald"
are allowed. Default is "perc". Ignored when bootstrapping is not used.

df the "denominator" degrees of freedom to use for the critical test statistics for
confidence bands. Default is to use the residual degrees of freedom from the
original model if it is a linear model and Inf otherwise.

... ignored.

16 plot.effect_curve

Details

plot() displays the effect curve in a plot. The solid line corresponds to the effect curve and the
ribbon around it corresponds to its confidence band. When null is not NA, an additional flat line at
null is displayed. When proj is supplied, a dashed line corresponding to the projection is added.

When by is supplied to adrf(), plot() produces an effect curve plot for each subgroup. When x is
the output of a call to curve_contrast(), plot() produces an effect curve plot for each treatment
contrast.

Transform:
The usual confidence bands assume the estimates along the effect curve are normally distributed
(or t-distributed when df is not Inf). However, when the outcome is bounded (e.g., a probability
bounded between 0 and 1), this assumption may not be valid for the ADRF in finite samples.
transform transforms the estimates to ones that are unbounded and computes the corresponding
distribution of transformed estimates using the delta method. By default, if a generalized linear
model is used for the outcome with a non-identity link function, the estimates are transformed
by the link function to be on an unbounded scale. Note this is not the same as using the linear
predictor for the effect curve; this is simple a transformation of the estimated points along the
curve already computed. Confidence bands are computed using the transformed estimates before
being back-transformed to ensure they are within the bounds of the outcome.

Simultaneous confidence bands:
Simultaneous confidence bands ensure the whole effect curve, not just a given individual point, is
contained within the band at the given confidence level. These are wider than pointwise bands to
reflect that they are covering multiple estimates, which otherwise would decrease the true cover-
age rate from that specified. plot() uses the "sup-t" simultaneous confidence band, which is the
smallest one-parameter band that covers the whole effect curve at the desired rate.

Value

A ggplot object that can modified using functions in ggplot2. Below are some common tasks and
instructions to perform them. Note all should be run after running library("ggplot2").

• Change the position of the legend:

theme(legend.position = "{POSITION}")

• Remove the legend:

theme(legend.position = "none")

• Change the color of the plotted line:

theme(geom = element_geom(ink = "{COLOR}"))

• Change the color scheme of the plotted lines:

scale_color_brewer(aesthetics = c("color", "fill"),
palette = "{PALETTE}")

• Change the title, subtitle, or axis labels:

labs(title = "{TITLE}", subtitle = "{SUBTITLE}",
x = "{X-AXIS}", y = "{Y-AXIS}")

plot.effect_curve 17

• Change the y-axis range:

coord_cartesian(ylim = c({LOWER}, {UPPER}),
expand = FALSE)

Values in brackets are to be changed by the user. Refer to the ggplot2 documentation for other
options.

See Also

• adrf() for computing the ADRF

• summary.effect_curve() for testing hypotheses about an effect curve

Examples

data("nhanes3lead")

fit <- glm(Block >= 12 ~ poly(logBLL, 3) *
Male * (Age + Race + PIR + NICU +

Smoke_Pregnant),
data = nhanes3lead,
family = binomial)

ADRF of logBLL on P(Block >= 12)
adrf1 <- adrf(fit, treat = "logBLL",

n = 50) #using 50 to speed up examples

Plot the ADRF; simultaneous inference,
CIs computed on transformed estimates
plot(adrf1)

Plot the ADRF; simultaneous inference,
CIs computed on original estimates
plot(adrf1, transform = FALSE)

Plot the ADRF; pointwise inference
plot(adrf1, simultaneous = FALSE)

ADRF within subgroups
adrf2 <- adrf(fit, treat = "logBLL",

by = ~Male, n = 50)

Plot subgroup ADRFs
plot(adrf2)

Plot ADRF in one subgroup
plot(adrf2, subset = Male == 1)

ADRF contrast
adrf_contrast <- curve_contrast(adrf2)

plot(adrf_contrast)

https://CRAN.R-project.org/package=ggplot2

18 point_contrast

point_contrast Contrast point estimates along an effect curve

Description

point_contrast() computes pairwise contrasts of estimates from an effect curve.

Usage

point_contrast(object)

S3 method for class 'curve_est_contrast'
summary(
object,
conf_level = 0.95,
simultaneous = TRUE,
null = 0,
ci.type = "perc",
df = NULL,
...

)

Arguments

object for point_contrast(), a curve_est object; the output of a an effect_curve
object. For summary(), a curve_est_contrast object; the output of a call to
point_contrast().

conf_level the desired confidence level. Set to 0 to omit confidence intervals. Default is
.95.

simultaneous logical; whether the computed p-values and confidence intervals should be
simultaneous (TRUE) or pointwise (FALSE). Simultaneous (also known as uni-
form) intervals jointly cover all specified estimates at the desired confidence
level, whereas pointwise confidence intervals only cover each estimate at the
desired level. Simultaneous p-values are inversions of the simultaneous confi-
dence intervals. Default is TRUE. See Details.

null the null value for hypothesis tests. Default is 0. Set to NA to omit tests.

ci.type string; when bootstrapping or Bayesian inference is used in the original ef-
fect curve, which type of confidence interval is to be computed. For boot-
strapping, allowable options include "perc" for percentile intervals, "wald"
for Wald intervals, and other options allowed by fwb::summary.fwb(). When
simultaneous = TRUE, only "perc" and "wald" are allowed. For Bayesian
models, allowable options include "perc" for equi-tailed intervals and "wald"
for Wald intervals. Default is "perc". Ignored when bootstrapping is not used
and the model is not Bayesian.

point_contrast 19

df the "denominator" degrees of freedom to use for the tests and critical test statis-
tics for confidence intervals. Default is to use the residual degrees of freedom
from the original model if it is a linear model and Inf otherwise.

... ignored.

Details

point_contrast() computes all pairwise contrasts between effect curve estimates. Because pair-
wise contrasts are a linear operation over the original estimates, the delta method can be used to
perform Wald inference for the contrasts. When by was specified in the original call to adrf() or
the effect curve is a contrast_curve object resulting from curve_contrast(), pairwise contrasts
occur only within subgroups or within subgroup contrasts, respectively. To compare points on an
effect curve to a single point, use reference_curve().

Value

point_contrast() returns an object of class curve_est_contrast, which is like a curve_est
object but with its own summary() method.

See Also

• adrf() for computing the ADRF

• reference_curve() for comparing points on an effect curve to a single point

• summary.curve_est() for inference on individual points on an effect curve

• marginaleffects::hypotheses() for general hypotheses on curve_est (and other) objects

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
(Male + Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

ADRF of logBLL on Math, unconditional
inference
adrf1 <- adrf(fit, treat = "logBLL")

Differences among ADRF estimates at given points
adrf1(logBLL = c(0, 1, 2)) |>

point_contrast() |>
summary()

20 reference_curve

reference_curve Contrast an effect curve with a reference point

Description

reference_curve() creates a new effect curve as the contrast between each point on a given effect
curve and a specified point along that curve. The new curve is called a "reference effect curve".

Usage

reference_curve(x, reference)

Arguments

x an effect_curve object; the output of a call to adrf() or a function that mod-
ifies it.

reference numeric; the value of the treatment to use as the reference value.

Details

The value supplied to reference is added as a grid point on the reference effect curve using the
interpolation method described in effect_curve. The delta method is used to compute the variance
of the difference between each point along the effect curve and the reference point.

Value

An object of class reference_curve, which inherits from effect_curve, with the value supplied
to reference as an additional attribute.

See Also

• adrf() for computing the ADRF

• plot.effect_curve() for plotting the reference effect curve

• summary.effect_curve() for testing hypotheses about the reference effect curve

• summary.curve_est() for performing inference on individual points on an effect curve, in-
cluding a reference effect curve

• point_contrast() for effect curve estimates to each other (rather than to a single point)

Examples

data("nhanes3lead")

fit <- lm(Math ~ poly(logBLL, 5) *
(Male + Age + Race + PIR +

Enough_Food),
data = nhanes3lead)

summary.curve_est 21

ADRF of logBLL on Math, unconditional
inference
adrf1 <- adrf(fit, treat = "logBLL")

Differences between ADRF estimates and estimate
at `logBLL = 0`
ref1 <- reference_curve(adrf1, reference = 0)

ref1

Plot the reference effect curve
plot(ref1)

Reference effect curve estimates at given points
ref1(logBLL = c(0, 1, 2)) |>

summary()

Test if reference effect curve is 0 (equivalent
to testing if ADRF is flat)
summary(ref1)

summary.curve_est Compute points on an effect curve

Description

summary() computes estimates and confidence intervals for specified points on the supplied effect
curve.

Usage

S3 method for class 'curve_est'
summary(
object,
conf_level = 0.95,
simultaneous = TRUE,
null = NULL,
transform = TRUE,
ci.type = "perc",
df = NULL,
...

)

S3 method for class 'curve_est'
coef(object, ...)

S3 method for class 'curve_est'
vcov(object, ...)

22 summary.curve_est

Arguments

object an effect_curve object; the output of a call to adrf() or a function that mod-
ifies it.

conf_level the desired confidence level. Set to 0 to omit confidence intervals. Default is
.95.

simultaneous logical; whether the computed p-values and confidence intervals should be
simultaneous (TRUE) or pointwise (FALSE). Simultaneous (also known as uni-
form) intervals jointly cover all specified estimates at the desired confidence
level, whereas pointwise confidence intervals only cover each estimate at the
desired level. Simultaneous p-values are inversions of the simultaneous confi-
dence intervals. Default is TRUE. See Details.

null the null value for the hypothesis tests. Default is to use a null value of 0 when
the effect curve is an AMEF, a curve contrast, or a reference effect curve, and to
omit hypothesis tests otherwise. Set to NA to manually omit hypothesis tests.

transform whether to compute intervals and perform tests on the transformed estimates.
Allowable options include TRUE, FALSE, or a function specifying a transforma-
tion. Ignored unless object is an ADRF. See Details.

ci.type string; when bootstrapping or Bayesian inference is used in the original ef-
fect curve, which type of confidence interval is to be computed. For boot-
strapping, allowable options include "perc" for percentile intervals, "wald"
for Wald intervals, and other options allowed by fwb::summary.fwb(). When
simultaneous = TRUE, only "perc" and "wald" are allowed. For Bayesian
models, allowable options include "perc" for equi-tailed intervals and "wald"
for Wald intervals. Default is "perc". Ignored when bootstrapping is not used
and the model is not Bayesian.

df the "denominator" degrees of freedom to use for the tests and critical test statis-
tics for confidence intervals. Default is to use the residual degrees of freedom
from the original model if it is a linear model and Inf otherwise.

... ignored.

Details

Transform:
The usual confidence intervals and tests assume the estimates along the effect curve are normally
distributed (or t-distributed when df is not Inf). However, when the outcome is bounded (e.g.,
a probability bounded between 0 and 1), this assumption may not be valid for the ADRF in fi-
nite samples. transform transforms the estimates to ones that are unbounded and computes the
corresponding distribution of transformed estimates using the delta method. By default, if a gen-
eralized linear model is used for the outcome with a non-identity link function, the estimates are
transformed by the link function to be on an unbounded scale. Note this is not the same as using
the linear predictor for the effect curve; this is simple a transformation of the estimated points
along the curve already computed. Confidence intervals are computed using the transformed esti-
mates before being back-transformed to ensure they are within the bounds of the outcome. When
null is a number, that number is also transformed. When transform is specified, standard errors
are not reported (i.e., because the standard errors used for tests and confidence intervals are those
of the transformed estimates).

summary.curve_est 23

Simultaneous confidence intervals and tests:
Simultaneous confidence intervals ensure all estimates, not just a given individual point, are con-
tained within the union of confidence intervals at the given confidence level. These are wider than
pointwise intervals to reflect that they are covering multiple estimates, which otherwise would
decrease the true coverage rate from that specified. summary() uses the "sup-t" simultaneous
confidence interval, which is the smallest one-parameter interval that covers all estimates at the
desired rate. Simultaneous hypothesis tests are performed by inverting the simultaneous confi-
dence intervals; the p-value for each test is the complement of the smallest confidence level for
which a simultaneous confidence intervals accounting for other tests contains the null value. The
widths of the confidence intervals and the p-values depend on how many and which estimates are
computed.

Value

summary() returns an object of class summary.curve_est, which inherits from curve_est. This
is a data.frame with columns for the treatment, estimates, and uncertainty measures (p-values,
confidence intervals, etc.).

See Also

• adrf() for computing the ADRF

• curve_est for information on the output of an effect curve

• plot.effect_curve() for plotting an effect curve

• summary.effect_curve() for testing omnibus hypotheses about a effect curve

Examples

data("nhanes3lead")

fit <- glm(Block >= 12 ~ poly(logBLL, 3) *
Male * (Age + Race + PIR + NICU +

Smoke_Pregnant),
data = nhanes3lead,
family = binomial)

ADRF of logBLL on P(Block >= 12)
adrf1 <- adrf(fit, treat = "logBLL")

Estimates along ADRF with simultaneous CIs computed
from transformed estimates
adrf1(logBLL = c(0, 1, 2)) |>

summary()

Estimates along ADRF with pointwise CIs computed
from transformed estimates
adrf1(logBLL = c(0, 1, 2)) |>

summary(simultaneous = FALSE)

Estimates along ADRF with simultaneous CIs computed
from original estimates

24 summary.effect_curve

adrf1(logBLL = c(0, 1, 2)) |>
summary(transform = FALSE)

Estimates along ADRF with simultaneous CIs computed
from transformed estimates, hypothesis tests against
null of .1
adrf1(logBLL = c(0, 1, 2)) |>

summary(null = .1)

summary.effect_curve Test omnibus hypotheses about an effect curves

Description

summary() tests an omnibus hypothesis about an effect curve. For example, it can be used to test
that the ADRF is flat, that the contrast between two ADRFs is 0 everywhere, or that the AMEF is 0
everywhere.

Usage

S3 method for class 'effect_curve'
summary(
object,
hypothesis,
method,
subset = NULL,
transform = TRUE,
df = NULL,
nsim = 1e+06,
...

)

S3 method for class 'summary.effect_curve'
print(x, digits = max(4L, getOption("digits") - 3L), ...)

Arguments

object an object of class effect_curve; the result of a call to adrf() or a function that
modifies it.

hypothesis the hypothesis to be tested. Allowable options include "flat" (the default),
"linear", "quadratic", "cubic", a one-sided formula corresponding to a pro-
jection model, or a single number (e.g., 0). See Details. The default is "flat"
for ADRFs and 0 otherwise.

method string; the method used to compute the p-value of the test. Allowable op-
tions include "sim" for simulation-based, "imhof" for Imhof’s approximation,
"davies" for Davies’s approximation, "liu" for Liu’s approximation, "satterthwaite"

summary.effect_curve 25

for Satterthwaite’s approximation, and "saddlepoint" for a saddlepoint ap-
proximation. Default is "imhof" when the CompQuadForm package is in-
stalled, otherwise "saddlepoint" when the survey package is installed, and
"sim" otherwise. See Details.

subset an optional logical expression indicating the subset of the subgroups for which
to perform tests. Can only be used when by was supplied to the original call to
adrf(), and only to refer to variables defining subgroups.

transform whether to perform the test on the transformed estimates. Allowable options
include TRUE, FALSE, or a function specifying a transformation. Ignored unless
object is an ADRF object. See Details.

df the "denominator" degrees of freedom to use for the tests. Default is to use the
residual degrees of freedom from the original model if it is a linear model and
Inf otherwise.

nsim when method is "sim", the number of iterations used to simulate the p-values.
Higher numbers give more accurate p-values subject to less Monte Carlo error
but are slower and require more memory. Default is 1,000,000.

... when method is "imhof", "davies", or "liu", further arguments passed to
CompQuadForm::imhof(), CompQuadForm::davies(), or CompQuadForm::liu(),
respectively.

x a summary.effect_curve object.
digits numeric; the number of digits to print.

Details

summary() performs an omnibus test for an effect curve. The hypothesis tested is determined
by the argument to "hypothesis". When supplied as a single number, summary() tests whether
all values on the effect curve are equal to that number. When supplied as a one-sided formula,
summary() tests whether the projection of the effect curve model onto the model represented in the
formula is sufficient to describe the effect curve. The test itself tests whether the residuals around
the projection are all equal to 0, incorporating the uncertainty in estimating the effect curve. See
curve_projection() for more information on how the curve projection and the uncertainty in the
residuals are computed.
"flat" tests whether all values on the curve are equal to each other (i.e., whether the curve is
flat), without specifying what value they are equal to. This is equivalent to testing whether the
variance around the mean estimate is different from 0 or whether an intercept-only projection model
is sufficient. "linear" tests whether the curve is linear, i.e., whether the residuals around linear
projection of the curve are all 0. "quadratic" and "cubic" test whether the curve is quadratic or
cubic, respectively, using the same method.
Rejecting the null hypothesis means that the curve is more complicated than the specified model.
For example, rejecting the null hypothesis that the curve is linear implies that the curve is nonlinear
(and, therefore, not flat either).
The test involves computing a test statistic, specifying its distribution under the null hypothesis, and
computing the p-value using the compliment of the cumulative density function of the distribution
evaluated at the test statistic value. The test statistic depends on "hypothesis". For hypothesis
equal to a constant, say, c, the test statistic is

T ∗ =

∫
A
(θ(a)− c)2 da

26 summary.effect_curve

Otherwise, the test statistic is

T ∗ =

∫
A
(θ(a)− θ̂0(a))

2 da

where θ̂0 is the projection of θ(a) onto the null subspace specified by hypothesis.

Each of these can be approximated as a quadratic form, T = θ′Wθ where θ is a vector of estimates
at evaluation points along the curve and W is a diagonal matrix of weights implementing a trape-
zoidal approximation to the integral. The null hypothesis is that T = 0, which approximates the
null hypothesis that T ∗ = 0. Each of the allowable options to method corresponds to a method of
approximating the distribution of T under the null hypothesis:

• "sim" simulates the null distribution by simulating from a multivariate normal distribution
under the null hypothesis and computing the test statistic in each simulation. The p-value is
the proportion of simulated estimates greater than the observed test statistic. When df is not
Inf, the simulation is done from a multivariate t-distribution.

• "imhof", "davies", and "liu" assume the test statistic follows a generalized χ2-distribution
and approximate its CDF numerically. "imhof" tends to be the most accurate and is recom-
mended. These methods require the CompQuadForm package to be installed.

• "satterthwaite" also assumes the test statistic follows a generalized χ2-distribution, but this
distribution is approximated using a scaled F-distribution with the same first two moments.

• "saddlepoint" also assumes the test statistic follows a generalized χ2-distribution, and this
distribution is approximated using a saddlepoint method as implemented in survey::pFsum().
This method requires the survey package to be installed.

In general, we recommend using method = "imhof", though this requires CompQuadForm to be
installed (and is the default when it is). method = "saddlepoint" has also been shown to be quite
accurate and very fast. When using "sim", increasing nsim improves the accuracy of the p-value by
reducing Monte Carlo error. The default value of 1e6 ensures that the simulated p-value is within
.0005 of the true p-value with at least 98\

Transform:
When the effect curve is an ADRF and the outcomes are bounded (e.g., a probability between 0
and 1), the transform argument can be specified, which changes the details of the tests.
The tests above assume the estimates along the effect curve are normally distributed (or t-distributed
when df is not Inf). However, when the outcome is bounded (e.g., a probability bounded between
0 and 1), this assumption may not be valid for the ADRF in finite samples. transform transforms
the estimates to ones that are unbounded and computes the corresponding distribution of trans-
formed estimates using the delta method. By default, if a generalized linear model is used for the
outcome with a non-identity link function, the estimates are transformed by the link function to
be on an unbounded scale. Note this is not the same as using the linear predictor for the effect
curve; this is simple a transformation of the estimated points along the curve already computed.
When hypothesis is a number, that number is also transformed.
Tests on the transformed and untransformed ADRFs correspond to different hypotheses; the dif-
ference is not simply a matter of the appropriate distribution of the statistic. For example, for
binary outcome model with a logistic transformation, testing that the transformed ADRF is linear
corresponds to testing whether the ADRF is a sigmoid function, whereas testing that the untrans-
formed ADRF is linear corresponds to testing whether the ADRF is a straight line. These choices
correspond to how the projection of the ADRF is formed; see curve_projection() for details.

https://CRAN.R-project.org/package=CompQuadForm
https://CRAN.R-project.org/package=survey

summary.effect_curve 27

See Examples for an example with a binary outcome. In the example, there is evidence to reject
that the transformed ADRF is linear for one of the groups, indicating that a sigmoid function is not
sufficient for describing the ADRF, but there is indeterminate evidence (at the .05) to reject that
the untransformed ADRF is linear for either group, indicating that a linear function is sufficient
for describing the ADRF (at least in the treatment range examined).

Value

An object of class "summary.effect_curve", which is a data.frame with a column for the p-value
and, for stratified effect curves or contrasts thereof, additional columns identifying the subset to
which the p-value refers.

See Also

• adrf() for computing the ADRF

• summary.curve_est() for performing inference on individual points on an effect curve

• plot.effect_curve() for plotting the effect curve

• curve_projection() for projecting a simpler model onto an effect curve

Examples

data("nhanes3lead")

fit <- glm(Block >= 12 ~ poly(logBLL, 3) *
Male * (Age + Race + PIR + NICU +

Smoke_Pregnant),
data = nhanes3lead,
family = binomial)

ADRFs of logBLL on P(Block >= 12) within
groups defined by `Male`
adrf1 <- adrf(fit, treat = "logBLL",

by = ~Male)

adrf1

Test if ADRFs are flat
summary(adrf1)

Test if logit-transformed ADRFs are linear
(i.e., if ADRFs have sigmoid shape)
summary(adrf1, hypothesis = "linear")
summary(adrf1, hypothesis = ~logBLL) # same test

proj1 <- curve_projection(adrf1, "linear")

plot(adrf1, proj = proj1, conf_level = 0)

Test if un-transformed ADRFs are linear
summary(adrf1, hypothesis = "linear",

transform = FALSE)

28 summary.effect_curve

proj2 <- curve_projection(adrf1, "linear",
transform = FALSE)

plot(adrf1, proj = proj2, conf_level = 0)

Test if ADRFs differ from each other by
testing if the ADRF contrast is 0
curve_contrast(adrf1) |>

summary()

Index

∗ data
nhanes3lead, 14

adrf, 2
adrf(), 6–10, 12, 13, 15–17, 19, 20, 22–25, 27
amef, 6
amef(), 4, 12
anova(), 11
anova.curve_projection

(curve_projection), 8

ceof(), 13
coef.curve_est (summary.curve_est), 21
coef.curve_projection

(curve_projection), 8
CompQuadForm::davies(), 25
CompQuadForm::imhof(), 25
CompQuadForm::liu(), 25
curve_contrast, 7
curve_contrast(), 4, 6, 12, 16, 19
curve_est, 18, 23
curve_est (effect_curve), 12
curve_est-class (effect_curve), 12
curve_projection, 8
curve_projection(), 4, 6, 12, 15, 25–27

effect_curve, 4, 6, 7, 9, 11, 12, 20, 22, 24
effect_curve-class (effect_curve), 12

fwb::fwb(), 3
fwb::summary.fwb(), 9, 15, 18, 22

glm(), 3

lm(), 3

marginaleffects::avg_predictions(), 4
marginaleffects::avg_slopes(), 6
marginaleffects::get_predict(), 3
marginaleffects::get_vcov(), 3
marginaleffects::hypotheses(), 19

nhanes3lead, 14

plot.effect_curve, 14
plot.effect_curve(), 4, 6, 8, 11, 13, 20, 23,

27
point_contrast, 18
point_contrast(), 20
print.data.frame(), 13
print.summary.effect_curve

(summary.effect_curve), 24

reference_curve, 20
reference_curve(), 4, 6, 8, 12, 19

sandwich::bread(), 4
sandwich::estfun(), 4
summary(), 13
summary.curve_est, 21
summary.curve_est(), 8, 13, 19, 20, 27
summary.curve_est_contrast

(point_contrast), 18
summary.curve_projection

(curve_projection), 8
summary.effect_curve, 24
summary.effect_curve(), 4, 6, 8, 11, 17, 20,

23
survey::pFsum(), 26

vcov(), 13
vcov.curve_est (summary.curve_est), 21
vcov.curve_projection

(curve_projection), 8

29

	adrf
	amef
	curve_contrast
	curve_projection
	effect_curve
	nhanes3lead
	plot.effect_curve
	point_contrast
	reference_curve
	summary.curve_est
	summary.effect_curve
	Index

