The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette provides a walkthrough of the annotaR
package, demonstrating how to perform a multi-layered annotation of a
gene list.
First, we define a character vector of our genes of interest. For
this example, we use a small list of well-known cancer-related genes.
Then, we initialize the pipeline with the annotaR()
function.
# A small list of well-known genes involved in cancer
genes_of_interest <- c(
"TP53", "EGFR", "BRCA1", "BRCA2", "KRAS", "PIK3CA", "AKT1", "BRAF",
"MYC", "ERBB2", "CDKN2A", "PTEN"
)
# Create the initial object
annotaR_obj <- annotaR(genes_of_interest)
print(annotaR_obj)
#> # A tibble: 12 × 1
#> gene
#> <chr>
#> 1 TP53
#> 2 EGFR
#> 3 BRCA1
#> 4 BRCA2
#> 5 KRAS
#> 6 PIK3CA
#> 7 AKT1
#> 8 BRAF
#> 9 MYC
#> 10 ERBB2
#> 11 CDKN2A
#> 12 PTENThe power of annotaR comes from its pipe-friendly,
layered approach. We can chain functions together to progressively add
data. Here, we add Gene Ontology (GO) terms, disease associations, and
known drug links.
# Note: The following steps query live APIs and may take a few moments.
full_annotation <- annotaR_obj %>%
add_go_terms(sources = c("GO:BP")) %>%
add_disease_links() %>%
add_drug_links()
# Take a look at the resulting tidy data frame
# Use `head()` to show just the first few rows
head(full_annotation)
#> # A tibble: 6 × 11
#> gene term_id term_name p_value source disease_name association_score
#> <chr> <chr> <chr> <dbl> <chr> <chr> <dbl>
#> 1 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> 2 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> 3 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> 4 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> 5 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> 6 TP53 GO:0006915 apoptotic pro… 4.26e-10 GO:BP Li-Fraumeni… 0.876
#> # ℹ 4 more variables: drug_name <chr>, drug_type <chr>,
#> # mechanism_of_action <chr>, phase <int>After annotating, we can easily visualize the results. The
plot_enrichment_dotplot() function creates a
publication-ready plot for the GO enrichment data.
# The plot function uses the data from the `add_go_terms` step
plot_enrichment_dotplot(
full_annotation,
n_terms = 20,
title = "Top 20 Enriched GO Biological Processes"
)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.