The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Welcome to the comprehensive guide for evanverse - a feature-rich R utility package providing 55+ functions for data analysis, visualization, and bioinformatics workflows.
The evanverse package provides robust package management utilities:
# Check if packages are installed
required_packages <- c("dplyr", "ggplot2", "tidyr")
check_pkg(required_packages)
#> # A tibble: 3 × 4
#> package name installed source
#> <chr> <chr> <lgl> <chr>
#> 1 dplyr dplyr TRUE CRAN
#> 2 ggplot2 ggplot2 TRUE CRAN
#> 3 tidyr tidyr TRUE CRAN
# Get package version (skip on CRAN due to network dependency)
if (!identical(Sys.getenv("NOT_CRAN"), "false")) {
try(pkg_version("evanverse"), silent = TRUE)
}
#> package version latest source
#> 1 evanverse 0.4.0 0.3.7 CRAN# List all available palettes
palettes_info <- list_palettes()
print(palettes_info)
#> name type n_color
#> 12 div_contrast diverging 2
#> 14 div_fireice diverging 2
#> 16 div_polar diverging 2
#> 18 div_sunset diverging 2
#> 15 div_pinkgreen_rb diverging 3
#> 13 div_earthy diverging 5
#> 17 div_sage diverging 7
#> 29 qual_earthy qualitative 3
#> 70 qual_primary qualitative 3
#> 77 qual_softtrio qualitative 3
#> 90 qual_vintage qualitative 3
#> 21 qual_balanced qualitative 4
#> 30 qual_egypt_met qualitative 4
#> 46 qual_kandinsky_met qualitative 4
#> 34 qual_greek_met qualitative 5
#> 40 qual_isfahan2_met qualitative 5
#> 42 qual_java_met qualitative 5
#> 44 qual_johnson_met qualitative 5
#> 56 qual_navajo_met qualitative 5
#> 58 qual_newkingdom_met qualitative 5
#> 79 qual_tara_met qualitative 5
#> 89 qual_vibrant qualitative 5
#> 91 qual_violin qualitative 5
#> 93 qual_wissing_met qualitative 5
#> 33 qual_gauguin_met qualitative 6
#> 35 qual_harmony qualitative 6
#> 38 qual_homer2_met qualitative 6
#> 45 qual_juarez_met qualitative 6
#> 47 qual_klimt_met qualitative 6
#> 48 qual_lakota_met qualitative 6
#> 64 qual_pastel qualitative 6
#> 66 qual_peru1_met qualitative 6
#> 67 qual_peru2_met qualitative 6
#> 68 qual_pillement_met qualitative 6
#> 19 qual_archambault_met qualitative 7
#> 20 qual_austria_met qualitative 7
#> 26 qual_degas_met qualitative 7
#> 28 qual_derain_met qualitative 7
#> 36 qual_hokusai1_met qualitative 7
#> 41 qual_jama_g qualitative 7
#> 53 qual_moreau_met qualitative 7
#> 55 qual_nattier_met qualitative 7
#> 62 qual_okeeffe2_met qualitative 7
#> 69 qual_pissaro_met qualitative 7
#> 82 qual_tron_g qualitative 7
#> 84 qual_tsimshian_met qualitative 7
#> 85 qual_vangogh1_met qualitative 7
#> 88 qual_veronese_met qualitative 7
#> 22 qual_cassatt1_met qualitative 8
#> 37 qual_homer1_met qualitative 8
#> 39 qual_ingres_met qualitative 8
#> 54 qual_morgenstern_met qualitative 8
#> 57 qual_nejm_g qualitative 8
#> 59 qual_nizami_met qualitative 8
#> 74 qual_set2_rb qualitative 8
#> 78 qual_tam_met qualitative 8
#> 80 qual_thomas_met qualitative 8
#> 81 qual_tiepolo_met qualitative 8
#> 83 qual_troy_met qualitative 8
#> 86 qual_vangogh2_met qualitative 8
#> 87 qual_vangogh3_met qualitative 8
#> 25 qual_cross_met qualitative 9
#> 49 qual_lancet_g qualitative 9
#> 52 qual_monet_met qualitative 9
#> 73 qual_set1_rb qualitative 9
#> 92 qual_vivid qualitative 9
#> 23 qual_cassatt2_met qualitative 10
#> 24 qual_cosmic_g qualitative 10
#> 27 qual_demuth_met qualitative 10
#> 31 qual_flatui_g qualitative 10
#> 43 qual_jco_g qualitative 10
#> 51 qual_mobility qualitative 10
#> 60 qual_npg_g qualitative 10
#> 50 qual_manet_met qualitative 11
#> 61 qual_okeeffe1_met qualitative 11
#> 63 qual_paquin_met qualitative 11
#> 32 qual_futurama_g qualitative 12
#> 71 qual_redon_met qualitative 12
#> 72 qual_renoir_met qualitative 12
#> 75 qual_set3_rb qualitative 12
#> 76 qual_signac_met qualitative 14
#> 65 qual_pbmc_sc qualitative 17
#> 2 seq_blues sequential 3
#> 3 seq_blush sequential 4
#> 4 seq_forest sequential 4
#> 11 seq_muted sequential 4
#> 6 seq_hokusai2 sequential 6
#> 7 seq_hokusai3 sequential 6
#> 9 seq_locuszoom sequential 7
#> 8 seq_isfahan sequential 8
#> 10 seq_mobility sequential 9
#> 5 seq_hiroshige sequential 10
#> 1 seq_benedictus sequential 13
#> colors
#> 12 #C64328, #56BBA5
#> 14 #2AA6C6, #C64328
#> 16 #8CB5D2, #E18E8F
#> 18 #57A2FF, #FF8000
#> 15 #E64B35B2, #00A087B2, #3C5488B2
#> 13 #283618, #606C38, #FEFAE0, #DDA15E, #BC6C25
#> 17 #EDEAE7, #B1CABA, #BBCDD7, #BBAAB6, #6D8092, #504B54, #0E0F0F
#> 29 #C64328, #56BBA5, #E3A727
#> 70 #C64328, #2AA6C6, #E3A727
#> 77 #E64B35B2, #00A087B2, #3C5488B2
#> 90 #96A0D9, #D9BDAD, #D9D5A0
#> 21 #5D83B4, #9FD0E8, #CDAE9D, #959683
#> 30 #dd5129, #0f7ba2, #43b284, #fab255
#> 46 #3b7c70, #ce9642, #898e9f, #3b3a3e
#> 34 #3c0d03, #8d1c06, #e67424, #ed9b49, #f5c34d
#> 40 #d7aca1, #ddc000, #79ad41, #34b6c6, #4063a3
#> 42 #663171, #cf3a36, #ea7428, #e2998a, #0c7156
#> 44 #a00e00, #d04e00, #f6c200, #0086a8, #132b69
#> 56 #660d20, #e59a52, #edce79, #094568, #e1c59a
#> 58 #e1846c, #9eb4e0, #e6bb9e, #9c6849, #735852
#> 79 #eab1c6, #d35e17, #e18a1f, #e9b109, #829d44
#> 89 #BF3F9D, #B3BCD7, #6DA6A0, #D98A29, #F2C894
#> 91 #37848C, #F2935C, #F2A88D, #D95555, #A7CAE9
#> 93 #4b1d0d, #7c291e, #ba7233, #3a4421, #2d5380
#> 33 #b04948, #811e18, #9e4013, #c88a2c, #4c6216, #1a472a
#> 35 #BF3641, #836AA6, #377BA6, #448C42, #D96236, #B79290
#> 38 #bf3626, #e9851d, #f9c53b, #aeac4c, #788f33, #165d43
#> 45 #a82203, #208cc0, #f1af3a, #cf5e4e, #637b31, #003967
#> 47 #df9ed4, #c93f55, #eacc62, #469d76, #3c4b99, #924099
#> 48 #04a3bd, #f0be3d, #931e18, #da7901, #247d3f, #20235b
#> 64 #B2AA76, #8C91CF, #D7D79C, #DABFAC, #BCEDDB, #C380A0
#> 66 #b5361c, #e35e28, #1c9d7c, #31c7ba, #369cc9, #3a507f
#> 67 #65150b, #961f1f, #c0431f, #f19425, #c59349, #533d14
#> 68 #a9845b, #697852, #738e8e, #44636f, #2b4655, #0f252f
#> 19 #88a0dc, #381a61, #7c4b73, #ed968c, #ab3329, #e78429, #f9d14a
#> 20 #a40000, #16317d, #007e2f, #ffcd12, #b86092, #721b3e, #00b7a7
#> 26 #591d06, #96410e, #e5a335, #556219, #418979, #2b614e, #053c29
#> 28 #efc86e, #97c684, #6f9969, #aab5d5, #808fe1, #5c66a8, #454a74
#> 36 #6d2f20, #b75347, #df7e66, #e09351, #edc775, #94b594, #224b5e
#> 41 #374E55, #DF8F44, #00A1D5, #B24745, #79AF97, #6A6599, #80796B
#> 53 #421600, #792504, #bc7524, #8dadca, #527baa, #104839, #082844
#> 55 #52271c, #944839, #c08e39, #7f793c, #565c33, #184948, #022a2a
#> 62 #fbe3c2, #f2c88f, #ecb27d, #e69c6b, #d37750, #b9563f, #92351e
#> 69 #134130, #4c825d, #8cae9e, #8dc7dc, #508ca7, #1a5270, #0e2a4d
#> 82 #FF410D, #6EE2FF, #F7C530, #95CC5E, #D0DFE6, #F79D1E, #748AA6
#> 84 #582310, #aa361d, #82c45f, #318f49, #0cb4bb, #2673a3, #473d7d
#> 85 #2c2d54, #434475, #6b6ca3, #969bc7, #87bcbd, #89ab7c, #6f9954
#> 88 #67322e, #99610a, #c38f16, #6e948c, #2c6b67, #175449, #122c43
#> 22 #b1615c, #d88782, #e3aba7, #edd7d9, #c9c9dd, #9d9dc7, #8282aa, #5a5a83
#> 37 #551f00, #a62f00, #df7700, #f5b642, #fff179, #c3f4f6, #6ad5e8, #32b2da
#> 39 #041d2c, #06314e, #18527e, #2e77ab, #d1b252, #a97f2f, #7e5522, #472c0b
#> 54 #98768e, #b08ba5, #c7a2b6, #dfbbc8, #ffc680, #ffb178, #db8872, #a56457
#> 57 #BC3C29, #0072B5, #E18727, #20854E, #7876B1, #6F99AD, #FFDC91, #EE4C97
#> 59 #dd7867, #b83326, #c8570d, #edb144, #8cc8bc, #7da7ea, #5773c0, #1d4497
#> 74 #66C2A5, #FC8D62, #8DA0CB, #E78AC3, #A6D854, #FFD92F, #E5C494, #B3B3B3
#> 78 #ffd353, #ffb242, #ef8737, #de4f33, #bb292c, #9f2d55, #62205f, #341648
#> 80 #b24422, #c44d76, #4457a5, #13315f, #b1a1cc, #59386c, #447861, #7caf5c
#> 81 #802417, #c06636, #ce9344, #e8b960, #646e3b, #2b5851, #508ea2, #17486f
#> 83 #421401, #6c1d0e, #8b3a2b, #c27668, #7ba0b4, #44728c, #235070, #0a2d46
#> 86 #bd3106, #d9700e, #e9a00e, #eebe04, #5b7314, #c3d6ce, #89a6bb, #454b87
#> 87 #e7e5cc, #c2d6a4, #9cc184, #669d62, #3c7c3d, #1f5b25, #1e3d14, #192813
#> 25 #c969a1, #ce4441, #ee8577, #eb7926, #ffbb44, #859b6c, #62929a, #004f63, #122451
#> 49 #00468B, #ED0000, #42B540, #0099B4, #925E9F, #FDAF91, #AD002A, #ADB6B6, #1B1919
#> 52 #4e6d58, #749e89, #abccbe, #e3cacf, #c399a2, #9f6e71, #41507b, #7d87b2, #c2cae3
#> 73 #E41A1C, #377EB8, #4DAF4A, #984EA3, #FF7F00, #FFFF33, #A65628, #F781BF, #999999
#> 92 #E64B35, #4DBBD5, #00A087, #3C5488, #F39B7F, #8491B4, #91D1C2, #DC0000, #7E6148
#> 23 #2d223c, #574571, #90719f, #b695bc, #dec5da, #c1d1aa, #7fa074, #466c4b, #2c4b27, #0e2810
#> 24 #2E2A2B, #CF4E9C, #8C57A2, #358DB9, #82581F, #2F509E, #E5614C, #97A1A7, #3DA873, #DC9445
#> 27 #591c19, #9b332b, #b64f32, #d39a2d, #f7c267, #b9b9b8, #8b8b99, #5d6174, #41485f, #262d42
#> 31 #c0392b, #d35400, #f39c12, #27ae60, #16a085, #2980b9, #8e44ad, #2c3e50, #7f8c8d, #bdc3c7
#> 43 #0073C2, #EFC000, #868686, #CD534C, #7AA6DC, #003C67, #8F7700, #3B3B3B, #A73030, #4A6990
#> 51 #f7fbff, #deebf7, #c6dbef, #9ecae1, #6baed6, #4292c6, #2171b5, #08519c, #08306b, #fdbf6f
#> 60 #E64B35, #4DBBD5, #00A087, #3C5488, #F39B7F, #8491B4, #91D1C2, #DC0000, #7E6148, #B09C85
#> 50 #3b2319, #80521c, #d29c44, #ebc174, #ede2cc, #7ec5f4, #4585b7, #225e92, #183571, #43429b, #5e65be
#> 61 #6b200c, #973d21, #da6c42, #ee956a, #fbc2a9, #f6f2ee, #bad6f9, #7db0ea, #447fdd, #225bb2, #133e7e
#> 63 #831818, #c62320, #f05b43, #f78462, #feac81, #f7dea3, #ced1af, #98ab76, #748f46, #47632a, #275024
#> 32 #FF6F00, #C71000, #008EA0, #8A4198, #5A9599, #FF6348, #84D7E1, #FF95A8, #3D3B25, #ADE2D0, #1A5354, #3F4041
#> 71 #5b859e, #1e395f, #75884b, #1e5a46, #df8d71, #af4f2f, #d48f90, #732f30, #ab84a5, #59385c, #d8b847, #b38711
#> 72 #17154f, #2f357c, #6c5d9e, #9d9cd5, #b0799a, #f6b3b0, #e48171, #bf3729, #e69b00, #f5bb50, #ada43b, #355828
#> 75 #8DD3C7, #FFFFB3, #BEBADA, #FB8072, #80B1D3, #FDB462, #B3DE69, #FCCDE5, #D9D9D9, #BC80BD, #CCEBC5, #FFED6F
#> 76 #fbe183, #f4c40f, #fe9b00, #d8443c, #9b3441, #de597c, #e87b89, #e6a2a6, #aa7aa1, #9f5691, #633372, #1f6e9c, #2b9b81, #92c051
#> 65 #a2d2e7, #67a8cd, #ffc17f, #cf9f88, #6fb3a8, #b3e19b, #50aa4b, #ff9d9f, #f36569, #3581b7, #cdb6da, #704ba3, #9a7fbd, #dba9a8, #e40300, #e99b78, #ff8831
#> 2 #deebf7, #9ecae1, #3182bd
#> 3 #FFCDB2, #FFB4A2, #E5989B, #B5828C
#> 4 #B2C9AD, #91AC8F, #66785F, #4B5945
#> 11 #E2E0C8, #A7B49E, #818C78, #5C7285
#> 6 #abc9c8, #72aeb6, #4692b0, #2f70a1, #134b73, #0a3351
#> 7 #d8d97a, #95c36e, #74c8c3, #5a97c1, #295384, #0a2e57
#> 9 #D43F3A, #EEA236, #5CB85C, #46B8DA, #357EBD, #9632B8, #B8B8B8
#> 8 #4e3910, #845d29, #ae8548, #e3c28b, #4fb6ca, #178f92, #175f5d, #054544
#> 10 #f7fbff, #deebf7, #c6dbef, #9ecae1, #6baed6, #4292c6, #2171b5, #08519c, #08306b
#> 5 #e76254, #ef8a47, #f7aa58, #ffd06f, #ffe6b7, #aadce0, #72bcd5, #528fad, #376795, #1e466e
#> 1 #9a133d, #b93961, #d8527c, #f28aaa, #f9b4c9, #f9e0e8, #ffffff, #eaf3ff, #c5daf6, #a1c2ed, #6996e3, #4060c8, #1a318b# Get specific palettes
vivid_colors <- get_palette("qual_vivid", type = "qualitative")
blues_gradient <- get_palette("seq_blues", type = "sequential")
cat("Vivid qualitative palette:\n")
#> Vivid qualitative palette:
print(vivid_colors)
#> [1] "#E64B35" "#4DBBD5" "#00A087" "#3C5488" "#F39B7F" "#8491B4" "#91D1C2"
#> [8] "#DC0000" "#7E6148"
cat("\nBlues sequential palette:\n")
#>
#> Blues sequential palette:
print(blues_gradient)
#> [1] "#deebf7" "#9ecae1" "#3182bd"# Create a custom palette (demonstration only - not executed to avoid file creation)
custom_colors <- c("#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4")
# Example of how to create a custom palette (using temp directory):
# create_palette(
# name = "custom_demo",
# colors = custom_colors,
# type = "qualitative",
# color_dir = tempdir() # Use temporary directory to avoid cluttering package
# )
# Preview the custom colors
print("Custom palette colors:")
#> [1] "Custom palette colors:"
print(custom_colors)
#> [1] "#FF6B6B" "#4ECDC4" "#45B7D1" "#96CEB4"
cat("This would create a palette named 'custom_demo' with", length(custom_colors), "colors\n")
#> This would create a palette named 'custom_demo' with 4 colors# Create sample data for Venn diagram
set1 <- c("A", "B", "C", "D", "E")
set2 <- c("C", "D", "E", "F", "G")
set3 <- c("E", "F", "G", "H", "I")
# Create Venn diagram
venn_plot <- plot_venn(
set1 = set1,
set2 = set2,
set3 = set3,
category.names = c("Set1", "Set2", "Set3"),
title = "Three-way Venn Diagram Example"
)Venn diagram example
Venn diagram example
# Sample data
sample_data <- data.frame(
Category = c("Type A", "Type B", "Type C"),
Count = c(25, 18, 12),
Group = c("High", "High", "Medium")
)
# Create bar plot with custom colors
vivid_colors <- get_palette("qual_vivid", type = "qualitative")
bar_plot <- plot_bar(data = sample_data,
x = "Category",
y = "Count",
fill = "Group") +
ggplot2::scale_fill_manual(values = vivid_colors) +
ggplot2::labs(title = "Sample Distribution by Category",
x = "Sample Type",
y = "Count")
print(bar_plot)Professional bar plot
# Create sample vector with void values
messy_vector <- c("A", "", "C", NA, "E")
print("Original vector:")
#> [1] "Original vector:"
print(messy_vector)
#> [1] "A" "" "C" NA "E"
# Check for void values
cat("\nAny void values:", any_void(messy_vector), "\n")
#>
#> Any void values: TRUE
# Replace void values
clean_vector <- replace_void(messy_vector, value = "MISSING")
print("After replacing voids:")
#> [1] "After replacing voids:"
print(clean_vector)
#> [1] "A" "MISSING" "C" "MISSING" "E"# Convert data frame to grouped list by cylinder count
grouped_data <- df2list(
data = mtcars[1:10, ],
key_col = "cyl",
value_col = "mpg"
)
print("Cars grouped by cylinder, showing MPG values:")
#> [1] "Cars grouped by cylinder, showing MPG values:"
str(grouped_data)
#> List of 3
#> $ 4: num [1:3] 22.8 24.4 22.8
#> $ 6: num [1:5] 21 21 21.4 18.1 19.2
#> $ 8: num [1:2] 18.7 14.3# Time execution of code
result <- with_timer(function() {
Sys.sleep(0.01) # Quick simulation
sum(1:1000)
}, name = "Sum calculation")
print(result)
#> function (...)
#> {
#> cli::cli_alert_info("{name} started at {format(Sys.time(), '%Y-%m-%d %H:%M:%S')}")
#> tictoc::tic()
#> result <- fn(...)
#> timing <- tictoc::toc(quiet = TRUE)
#> elapsed <- as.numeric(timing$toc - timing$tic, units = "secs")
#> cli::cli_alert_success("{name} completed in {sprintf('%.3f', elapsed)} seconds")
#> invisible(result)
#> }
#> <bytecode: 0x0000020de075f008>
#> <environment: 0x0000020de075fd98>The evanverse package provides a comprehensive toolkit for:
With 55+ functions across 8 major categories, evanverse streamlines your data analysis workflow while maintaining flexibility and reliability.
For more information, visit the evanverse website or the GitHub repository.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.