The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Vignette: Intro to healthiar
Hi there!
This vignette will tell you about healthiar and show you
how to use healthiar with the help of examples.
NOTE: Before using healthiar, please read
carefully the information provided in the readme
file or the welcome
webpage. By using healthiar, you agree to the terms
of use and disclaimer.
About healthiar
The healthiar functions allow you to quantify and
monetize the health impacts (or burden of disease) attributable to
exposure. The main focus of the EU project that initiated the
development of healthiar (BEST-COST) has been two
environmental exposures: air pollution and noise. However,
healthiar can be (and has been) used for many other
exposures such as green spaces, chemicals, physical activity…
See below a an overview of the package. The whole list of functions
included in healthiar is available here.
Figure:healthiar overview
Be aware that healthiar functions are easier to use if
your data is prepared in a tidy format, i.e.:
Each variable is a column; each column is a variable.
Each observation is a row; each row is an observation.
Each value is a cell; each cell is a single value.
Source: Hadley Wickham (2014). Tidy Data. Link. For additional
information see this informal explanation of
tidy data (by the author).
Function examples
The descriptions of the healthiar
functions provide examples that you can execute (with
healthiar loaded) by running
example("function_name"),
e.g. example("attribute_health"). In the sections below in
this vignette, you find additional examples and more detailed
explanations.
Relative risk
Goal: E.g. To quantify the COPD cases attributable to PM2.5 (air
pollution) exposure in a country.
Methodological refresher
Figure: Relative risk approach
Function call
Hard coded
results_pm_copd <- attribute_health(
erf_shape = "log_linear", # shape of the exposure-response function (ERF)
rr_central = 1.369, # relative risk (RR) central estimate
rr_increment = 10, # increment for which relative risk is valid (in \\mu g / m^3)
exp_central = 8.85, # PM2.5 exposure (in \\mu g / m^3) (here: population-weighted)
cutoff_central = 5, # cutoff (in \\mu g / m^3) below which no health effects occur
bhd_central = 30747 # baseline health data (BHD; here: COPD incidence)
)
For alternative ERF shapes see the function documentation of
attribute_health().
Function call - Pre-loaded data
healthiar comes with some example data that start with
exdat_ that allow you to test functions. Some of these
example data will be used in some examples in this vignette.
Now we call attribute_health with input data from the
healthiar example data. Note that we can easily provide
input data to the function argument using the $
operator.
results_pm_copd <- attribute_health(
erf_shape = "log_linear",
rr_central = exdat_pm$relative_risk,
rr_increment = 10,
exp_central = exdat_pm$mean_concentration,
cutoff_central = exdat_pm$cut_off_value,
bhd_central = exdat_pm$incidence
)
Output structure
Every attribute_health() output consists of two lists
(“folders”)
NOTE: attribute_lifetable() creates additional
output that is specific to life table calculations
Main results
Let’s inspect the main results
There exist different, equivalent ways of accessing the output
With $ operator:
results_pm_copd$health_main$impact_rounded (as in the
example above)
By mouse: go to the Environment tab in RStudio and click
on the variable you want to inspect, and then open the
health_main results table
With [[]] operator
results_pm_copd[["health_main"]]
With pluck() & pull(): use the
purrr::pluck function to select a list and then the
dplyr::pull function extract values from a specified
column,
e.g. results_pm_copd |> purrr::pluck("health_main") |> dplyr::pull("impact_rounded")
results_pm_copd$health_main
#> # A tibble: 1 × 24
#> geo_id_micro erf_ci exp_ci bhd_ci cutoff_ci exp_category sex age_group
#> <chr> <chr> <chr> <chr> <chr> <int> <chr> <chr>
#> 1 a central central central central 1 all all
#> # ℹ 16 more variables: impact <dbl>, impact_rounded <dbl>, approach_risk <chr>,
#> # rr_increment <dbl>, erf_shape <chr>, prop_pop_exp <dbl>, exp_length <int>,
#> # exp_type <chr>, exp <dbl>, bhd <dbl>, cutoff <dbl>, rr <dbl>,
#> # is_lifetable <lgl>, pop_fraction_type <chr>, rr_at_exp <dbl>,
#> # pop_fraction <dbl>
It is a table of the format tibble (very similar to a
data.frame) of 3 rows and 23 columns. Let’s zoom in on some
relevant aspects
results_pm_copd$health_main |>
dplyr::select(exp, bhd, rr, erf_ci, pop_fraction, impact_rounded) |>
knitr::kable() # For formatting reasons only: prints tibble in nice layout
| 8.85 |
30747 |
1.369 |
central |
0.1138961 |
3502 |
Interpretation: this table shows us that exposure was 8.85 \(\mu g/m^3\), the baseline health data
(bhd_central) was 30747 (COPD incidence in this instance).
The 1st row further shows that the impact attributable to this exposure
using the central relative risk (rr_central) estimate of
1.369 is 3502 COPD cases, or ~11% of all baseline cases.
Some of the most results columns include:
- impact_rounded rounded attributable health
impact/burden
- impact raw impact/burden
- pop_fraction population attributable fraction (PAF) or
population impact fraction (PIF)
NOTE: The main output contains more columns that provide
additional information about the assessment.
Absolute risk
Goal: E.g. To quantify the incidence cases of high annoyance
attributable to (road traffic) noise exposure.
Refresher - Burden of disease with absolute risk
Figure: Absolute risk approach
Function call
results_noise_ha <- attribute_health(
approach_risk = "absolute_risk", # default is "relative_risk"
exp_central = c(57.5, 62.5, 67.5, 72.5, 77.5), # mean of the exposure categories
pop_exp = c(387500, 286000, 191800, 72200, 7700), # population exposed per exposure category
erf_eq_central = "78.9270-3.1162*c+0.0342*c^2" # exposure-response function
)
The erf_eq_central argument can digest other types of
functions (see section on user-defined ERF)
Main results
| 78.9270-3.1162c+0.0342c^2 |
central |
174232 |
Results per noise exposure band
results_noise_ha$health_detailed$results_raw
| 1 |
57.5 |
387500 |
49674.594 |
| 2 |
62.5 |
286000 |
50788.595 |
| 3 |
67.5 |
191800 |
46813.105 |
| 4 |
72.5 |
72200 |
23657.232 |
| 5 |
77.5 |
7700 |
3298.314 |
Alternatively, it’s also possible to only assess the impacts for a
single noise exposure band
results_noise_ha <- attribute_health(
approach_risk = "absolute_risk",
exp_central = 57.5,
pop_exp = 387500,
erf_eq_central = "78.9270-3.1162*c+0.0342*c^2"
)
Multiple geographic units
using relative risk
Goal: e.g. To quantify the disease cases attributable to PM2.5
exposure in multiple cities using one single command.
Enter unique ID’s as a vector (numeric or
character) to the geo_id_micro argument
(e.g. municipality names or province abbrevations)
Optional: aggregate unit-specific results by providing
higher-level ID’s (e.g. region names or country abbreviations) as a
vector (numeric or character) to the
geo_id_macro argument
Input to the other function arguments is specified as usual, either
as a vector or a single values (which will be recycled to match the
length of the other input vectors).
Function call
results_iteration <- attribute_health(
# Names of Swiss cantons
geo_id_micro = c("Zurich", "Basel", "Geneva", "Ticino", "Jura"),
# Names of languages spoken in the selected Swiss cantons
geo_id_macro = c("German","German","French","Italian","French"),
rr_central = 1.369,
rr_increment = 10,
cutoff_central = 5,
erf_shape = "log_linear",
exp_central = c(11, 11, 10, 8, 7),
bhd_central = c(4000, 2500, 3000, 1500, 500)
)
In this example we want to aggregate the lower-level geographic units
(municipalities) by the higher-level language region
("German", "French", "Italian")
Main results
The main output contains aggregated results
| German |
1116 |
central |
central |
central |
| French |
466 |
central |
central |
central |
| Italian |
135 |
central |
central |
central |
In this case health_main contains the cumulative /
summed number of stroke cases attributable to PM2.5 exposure in the 5
geo units, which is 1717 (using a relative risk of 1.369).
Detailed results
The geo unit-specific information and results are stored under
health_detailed>results_raw
| Zurich |
687 |
German |
| Basel |
429 |
German |
| Geneva |
436 |
French |
| Ticino |
135 |
Italian |
| Jura |
30 |
French |
health_detailed also contains impacts obtained through
all combinations of input data central, lower and upper estimates (as
usual), besides the results per geo unit (not shown above)
using absolute risk
Goal: E.g.To quantify high annoyance cases attributable to noise
exposure in rural and urban areas.
Function call
data <- exdat_noise |>
## Filter for urban and rural regions
dplyr::filter(region == "urban" | region == "rural")
results_iteration_ar <- attribute_health(
# Both the rural and urban areas belong to the higher-level "total" region
geo_id_macro = "total",
geo_id_micro = data$region,
approach_risk = "absolute_risk",
exp_central = data$exposure_mean,
pop_exp = data$exposed,
erf_eq_central = "78.9270-3.1162*c+0.0342*c^2"
)
NOTE: the length of the input vectors fed to
geo_id_micro, exp_central,
pop_exp must match and must be
(number of geo units) x (number of exposure categories) = 2 x 5 =
10,
because we have 2 geo units ("rural" and
"urban") and 5 exposure categories.
Main results
health_main contains the aggregated results (i.e. sum of
impacts in rural and urban areas)
| total |
174232 |
central |
central |
Detailed results
Impact by geo unit, in this case impact in the rural and in the urban
area
| urban |
total |
150904.00 |
| rural |
total |
23327.84 |
Uncertainty
Confidence interval
Goal: E.g. To quantify the COPD cases attributable to PM2.5 exposure
taking into account uncertainty (lower and upper bound of confidence
interval) in several input arguments: relative risk, exposure and
baseline health data.
Function call
results_pm_copd <- attribute_health(
erf_shape = "log_linear",
rr_central = 1.369,
rr_lower = 1.124, # lower 95% confidence interval (CI) bound of RR
rr_upper = 1.664, # upper 95% CI bound of RR
rr_increment = 10,
exp_central = 8.85,
exp_lower = 8, # lower 95% CI bound of exposure
exp_upper = 10, # upper 95% CI bound of exposure
cutoff_central = 5,
bhd_central = 30747,
bhd_lower = 28000, # lower 95% confidence interval estimate of BHD
bhd_upper = 32000 # upper 95% confidence interval estimate of BHD
)
Detailed results
Let’s inspect the detailed results:
| central |
central |
central |
3502 |
| lower |
central |
central |
1353 |
| upper |
central |
central |
5474 |
| central |
central |
lower |
3189 |
| lower |
central |
lower |
1232 |
| upper |
central |
lower |
4985 |
| central |
central |
upper |
3645 |
| lower |
central |
upper |
1408 |
| upper |
central |
upper |
5697 |
Each row contains the estimated attributable cases
(impact_rounded) obtained by the input data specified in
the columns ending in “_ci” and the other calculation pathway
specifications in that row (not shown).
The 1st contains the estimated attributable impact when using the
central estimates of relative risk, exposure and baseline health
data
The 2nd row shows the impact when using the central estimates of
the relative risk, exposure in combination with the lower estimate of
the baseline health data
…
NOTE: only 9 of the 27 possible combinations are displayed
due to space constraints
NOTE: only a selection of columns are shown
Monte Carlo simulation
Goal: E.g. To summarize uncertainty of attributable health impacts
(i.e. to get a single confidence interval instead of many combinations)
by using a Monte Carlo simulation.
You can do this carrying out a Monte Carlo uncertainty analysis via
the summarize_uncertainty() function.
The outcome of the Monte Carlo analysis is added to the variable
entered as the results argument, which is
results_pm_copd in our case.
Two lists (“folders”) are added:
uncertainty_main contains the central estimate and
the corresponding 95% confidence intervals obtained through the Monte
Carlo assessment
uncertainty_detailed contains all n_sim
simulations of the Monte Carlo assessment
Function call
results_pm_copd_summarized <-
summarize_uncertainty(
output_attribute = results_pm_copd,
n_sim = 100
)
Main results
| a |
central_estimate |
3654.885 |
3655 |
| a |
lower_estimate |
1589.442 |
1589 |
| a |
upper_estimate |
5600.248 |
5600 |
Detailed results
The folder uncertainty_detailed contains all single
simulations. Let’s look at the impact of the first 10 simulations.
| a |
central |
central |
central |
central |
1 |
all |
all |
1 |
2629.951 |
2630 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.276850 |
8.740519 |
30103.82 |
paf |
1.095725 |
0.0873627 |
| a |
central |
central |
central |
central |
1 |
all |
all |
2 |
4628.066 |
4628 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.551852 |
8.758388 |
30399.07 |
paf |
1.179584 |
0.1522437 |
| a |
central |
central |
central |
central |
1 |
all |
all |
3 |
4493.994 |
4494 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.543406 |
8.798881 |
29566.80 |
paf |
1.179238 |
0.1519946 |
| a |
central |
central |
central |
central |
1 |
all |
all |
4 |
4474.906 |
4475 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.419867 |
9.213612 |
32586.97 |
paf |
1.159181 |
0.1373219 |
| a |
central |
central |
central |
central |
1 |
all |
all |
5 |
1650.331 |
1650 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.157613 |
8.812466 |
30409.10 |
paf |
1.057385 |
0.0542710 |
| a |
central |
central |
central |
central |
1 |
all |
all |
6 |
3728.251 |
3728 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.430150 |
8.830799 |
29108.69 |
paf |
1.146895 |
0.1280803 |
| a |
central |
central |
central |
central |
1 |
all |
all |
7 |
3879.688 |
3880 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.465879 |
8.502208 |
30948.22 |
paf |
1.143328 |
0.1253606 |
| a |
central |
central |
central |
central |
1 |
all |
all |
8 |
3917.858 |
3918 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.442681 |
8.684553 |
31015.55 |
paf |
1.144583 |
0.1263191 |
| a |
central |
central |
central |
central |
1 |
all |
all |
9 |
3038.873 |
3039 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.320146 |
8.880695 |
29741.04 |
paf |
1.113806 |
0.1021778 |
| a |
central |
central |
central |
central |
1 |
all |
all |
10 |
2145.128 |
2145 |
relative_risk |
10 |
log_linear |
1 |
1 |
population_weighted_mean |
5 |
FALSE |
1 |
1.253879 |
8.549538 |
27799.07 |
paf |
1.083618 |
0.0771655 |
User-defined ERF
Goal: E.g. To quantify COPD cases attributable to air pollution
exposure by applying a user-defined exposure-response function (ERF),
such as the MR-BRT curves from Global Burden of Disease study.
In this case, the function arguments erf_eq_... require
a function as input, so we use an auxiliary function
(splinefun()) to transform the points on the ERF into type
function.
results_pm_copd_mr_brt <- attribute_health(
exp_central = 8.85,
bhd_central = 30747,
cutoff_central = 0,
# Specify the function based on x-y point pairs that lie on the ERF
erf_eq_central = splinefun(
x = c(0, 5, 10, 15, 20, 25, 30, 50, 70, 90, 110),
y = c(1.00, 1.04, 1.08, 1.12, 1.16, 1.20, 1.23, 1.35, 1.45, 1.53, 1.60),
method = "natural")
)
The ERF curve created looks as follows

Alternatively, other functions (e.g. approxfun()) can be
used to create the ERF
Sub-group analysis
by age group
Goal: e.g. To quantify health impacts attributable to air pollution
in a country by age group.
To obtain age-group-specific results, the baseline health data (and
possibly exposure) must be available by age group.
If the age argument was specified, age-group-specific
results are available under health_detailed in the
sub-folder results_by_age_group.
results_age_group <- attribute_health(
approach_risk = "relative_risk",
age = c("below_65", "65_plus"),
exp_central = c(8, 7),
cutoff_central = c(5, 5),
bhd_central = c(1000, 5000),
rr_central = 1.06,
rr_increment = 10,
erf_shape = "log_linear"
)
results_age_group$health_detailed$results_by_age_group |>
dplyr::select(age_group, impact_rounded, exp, bhd) |>
knitr::kable()
| below_65 |
17 |
8 |
1000 |
| 65_plus |
58 |
7 |
5000 |
by sex
Goal: e.g. To quantify health impacts attributable to air pollution
in a country by sex.
To obtain sex-specific results, the baseline health data (and
possibly exposure) must be entered by sex.
If the sex argument was specified, sex-specific results
are available under health_detailed in the sub-folder
results_by_sex.
results_sex <- attribute_health(
approach_risk = "relative_risk",
sex = c("female", "male"),
exp_central = c(8, 8),
cutoff_central = c(5, 5),
bhd_central = c(1000, 1100),
rr_central = 1.06,
rr_increment = 10,
erf_shape = "log_linear"
)
results_sex$health_detailed$results_by_sex |>
dplyr::select(sex, impact_rounded, exp, bhd) |>
knitr::kable()
| female |
17 |
8 |
1000 |
| male |
19 |
8 |
1100 |
by other sub-groups
Goal: e.g. To quantify health impacts attributable to air pollution
in a country by education level.
A (random) ID vector of unique values must be entered to the argument
geo_id_micro, to indicate that each row is an observation
on its own (and not just exposure categories)
A single vector (or a data frame / tibble with multiple columns) to
group the results by can be entered to the info argument.
In this example, this will be information about the education level.
In a second step one can group the results based on one or more
columns and so summarize the results by the preferred sub-groups
info <- data.frame(
education = rep(c("secondary", "bachelor", "master"), each = 5) # education level
)
output_attribute <- attribute_health(
rr_central = 1.063,
rr_increment = 10,
erf_shape = "log_linear",
cutoff_central = 0,
exp_central = sample(6:10, 15, replace = TRUE),
bhd_central = sample(100:500, 15, replace = TRUE),
geo_id_micro = c(1:nrow(info)), # (random) ID must be entered
info = info
)
output_stratified <- output_attribute$health_detailed$results_raw |>
dplyr::group_by(info_column_1) |>
dplyr::summarize(mean_impact = mean(impact)) |>
print()
#> # A tibble: 3 × 2
#> info_column_1 mean_impact
#> <chr> <dbl>
#> 1 bachelor 18.2
#> 2 master 17.1
#> 3 secondary 11.1
YLL & deaths with life table
YLL
Goal: E.g. To quantify the years of life lost (YLL) due to deaths
from COPD attributable to PM2.5 exposure during one year.
We can use attribute_lifetable() combined with life
table input data to determine YLL attributable to an environmental
stressor.
Function call
results_pm_yll <- attribute_lifetable(
year_of_analysis = 2019,
health_outcome = "yll",
rr_central = 1.118,
rr_increment = 10,
erf_shape = "log_linear",
exp_central = 8.85,
cutoff_central = 5,
min_age = 20, # age from which population is affected by the exposure
# Life table information
age_group = exdat_lifetable$age_group,
sex = exdat_lifetable$sex,
population = exdat_lifetable$midyear_population,
# In the life table case, BHD refers to deaths
bhd_central = exdat_lifetable$deaths
)
Main results
Total YLL attributable to exposure (sum of sex-specific impacts)
| 28810 |
central |
central |
central |
Use the two arguments approach_exposure and
approach_newborns to modify the life table calculation
approach_exposure
approach_newborns
"without_newborns" (default) assumes that the
population in the year of analysis is followed over time, without
considering newborns being born
"with_newborns" assumes that for each year after the
year of analysis n babies are born, with n being equal to the (male and
female) population aged 0 that is provided in the argument
population
Detailed results
Attributable YLL results
are available.
Note: We will inspect the results for females; male results
are also available.
Results per year
NOTE: only a selection of years is shown
results_pm_yll$health_detailed$results_raw |>
dplyr::summarize(
.by = year,
impact = sum(impact, na.rm = TRUE)
)
#> # A tibble: 100 × 2
#> year impact
#> <chr> <dbl>
#> 1 2019 1300.
#> 2 2020 2422.
#> 3 2021 2221.
#> 4 2022 2033.
#> 5 2023 1858.
#> 6 2024 1695.
#> 7 2025 1545.
#> 8 2026 1409.
#> 9 2027 1284.
#> 10 2028 1171.
#> # ℹ 90 more rows
results_pm_yll$health_detailed$results_raw |>
dplyr::summarize(
.by = year,
impact = sum(impact, na.rm = TRUE)) |>
knitr::kable()
| 2019 |
1299.683 |
| 2020 |
2421.604 |
| 2021 |
2221.148 |
| 2022 |
2032.978 |
| 2023 |
1857.582 |
| 2024 |
1694.959 |
| 2025 |
1545.430 |
| 2026 |
1408.650 |
| 2027 |
1284.054 |
| 2028 |
1170.668 |
YLL
| 91 |
92 |
29.480668 |
| 92 |
93 |
27.542091 |
| 93 |
94 |
25.166285 |
| 94 |
95 |
22.111703 |
| 95 |
96 |
18.514777 |
| 96 |
97 |
14.505077 |
| 97 |
98 |
11.222461 |
| 98 |
99 |
8.170093 |
| 99 |
100 |
31.772534 |
Population (baseline scenario)
Baseline scenario refers to the scenario with exposure (i.e. the
scenario specified in the assessment).
| 91 |
10560 |
10980.4178 |
11536.8448 |
11815.045 |
| 92 |
8728 |
9105.4297 |
9498.3206 |
9979.643 |
| 93 |
7140 |
7377.6106 |
7725.1173 |
8058.449 |
| 94 |
5655 |
5910.7546 |
6133.2128 |
6422.105 |
| 95 |
4332 |
4582.9334 |
4813.1037 |
4994.250 |
| 96 |
3118 |
3436.4582 |
3654.9171 |
3838.479 |
| 97 |
2234 |
2419.2261 |
2682.1499 |
2852.657 |
| 98 |
1520 |
1695.7730 |
1848.4164 |
2049.304 |
| 99 |
2246 |
879.8714 |
988.6583 |
1077.651 |
Population (unexposed scenario)
Impacted scenario refers to the scenario without exposure.
| 91 |
10589.481 |
11037.9003 |
11589.268 |
11861.323 |
| 92 |
8755.542 |
9160.1507 |
9548.044 |
10024.990 |
| 93 |
7165.166 |
7428.2700 |
7771.543 |
8100.635 |
| 94 |
5677.112 |
5956.6019 |
6175.327 |
6460.700 |
| 95 |
4350.515 |
4622.8492 |
4850.437 |
5028.544 |
| 96 |
3132.505 |
3469.5619 |
3686.750 |
3868.253 |
| 97 |
2245.222 |
2444.9150 |
2707.987 |
2877.502 |
| 98 |
1528.170 |
1715.4685 |
1868.044 |
2069.045 |
| 99 |
2277.773 |
890.9436 |
1000.141 |
1089.095 |
Deaths
Goal: E.g. To determine premature deaths from COPD attributable to
PM2.5 exposure during one year.
See example on YLL for additional info on
attribute_lifetable() calculations and its output.
Function call
results_pm_deaths <- attribute_lifetable(
health_outcome = "deaths",
year_of_analysis = 2019,
rr_central = 1.118,
rr_increment = 10,
erf_shape = "log_linear",
exp_central = 8.85,
cutoff_central = 5,
min_age = 20, # age from which population is affected by the exposure
# Life table information
age_group = exdat_lifetable$age_group,
sex = exdat_lifetable$sex,
population = exdat_lifetable$midyear_population,
bhd_central = exdat_lifetable$deaths
)
Main results
Total premature deaths attributable to exposure (sum of sex-specific
impacts)
| 2599 |
central |
central |
central |
Detailed results
Attributable premature deaths results
are available
Note: we will inspect the results for females; male results
are also available
Note: because we set the function argument
approach_exposure = "constant" in the function call results
are available for one year (the year of analysis)
| 2019 |
91 |
91 |
92 |
1498 |
1498 |
10560 |
0.9579656 |
0.8675391 |
0.9337696 |
0.1418561 |
TRUE |
0.8727528 |
0.9363764 |
0.1358932 |
10589.481 |
11309.0 |
9869.961 |
1439.0387 |
11787.888 |
11037.9003 |
11589.268 |
11861.323 |
11991.477 |
12265.850 |
12512.888 |
12769.668 |
12923.628 |
12937.782 |
13087.942 |
13493.406 |
13781.906 |
14395.083 |
15234.221 |
15942.155 |
16503.722 |
16736.242 |
17144.305 |
17523.206 |
17615.762 |
17563.740 |
17487.849 |
17327.801 |
17396.479 |
17724.984 |
18021.187 |
18497.456 |
19086.121 |
19752.285 |
20340.322 |
21046.251 |
21864.815 |
22561.281 |
23299.067 |
24167.730 |
25051.954 |
25223.832 |
25088.811 |
24970.171 |
24737.928 |
24460.360 |
23918.913 |
23464.843 |
22946.050 |
22309.247 |
21967.734 |
21705.628 |
21616.207 |
21709.437 |
21762.433 |
21960.537 |
22410.913 |
22674.269 |
22790.852 |
22667.517 |
22513.809 |
22624.072 |
22594.616 |
22384.888 |
22414.277 |
22338.820 |
22005.184 |
21654.820 |
21071.478 |
20152.307 |
19055.507 |
18337.577 |
17892.410 |
17392.955 |
16780.243 |
16401.199 |
16167.398 |
15569.439 |
14925.742 |
14821.967 |
14890.031 |
14965.530 |
14935.964 |
15055.898 |
15266.562 |
15439.292 |
15679.316 |
15705.345 |
15577.437 |
15590.451 |
15724.301 |
15885.290 |
16009.468 |
16006.122 |
15860.208 |
15449.662 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
12376.719 |
12667.259 |
12806.257 |
13099.273 |
13363.097 |
13637.323 |
13801.745 |
13816.861 |
13977.223 |
14410.237 |
14718.340 |
15373.180 |
16269.335 |
17025.370 |
17625.094 |
17873.413 |
18309.203 |
18713.849 |
18812.693 |
18757.137 |
18676.089 |
18505.166 |
18578.511 |
18929.336 |
19245.666 |
19754.295 |
20382.958 |
21094.386 |
21722.378 |
22476.272 |
23350.455 |
24094.243 |
24882.160 |
25809.845 |
26754.149 |
26937.706 |
26793.510 |
26666.809 |
26418.787 |
26122.358 |
25544.122 |
25059.199 |
24505.156 |
23825.085 |
23460.367 |
23180.452 |
23084.955 |
23184.520 |
23241.117 |
23452.681 |
23933.658 |
24214.908 |
24339.414 |
24207.698 |
24043.546 |
24161.302 |
24129.843 |
23905.866 |
23937.251 |
23856.668 |
23500.362 |
23126.191 |
22503.214 |
21521.588 |
20350.264 |
19583.553 |
19108.139 |
18574.747 |
17920.403 |
17515.605 |
17265.918 |
16627.330 |
15939.896 |
15829.069 |
15901.758 |
15982.387 |
15950.812 |
16078.895 |
16303.874 |
16488.339 |
16744.673 |
16772.470 |
16635.871 |
16649.769 |
16792.714 |
16964.642 |
17097.257 |
17093.684 |
16937.855 |
16499.414 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
1499.9759 |
1574.9029 |
1611.8734 |
1629.5605 |
1666.8460 |
1700.4167 |
1735.3113 |
1756.2335 |
1758.1569 |
1778.5626 |
1833.6625 |
1872.8677 |
1956.1943 |
2070.2274 |
2166.4308 |
2242.7440 |
2274.3419 |
2329.7949 |
2381.2850 |
2393.8627 |
2386.793 |
2376.480 |
2354.731 |
2364.064 |
2408.705 |
2448.957 |
2513.679 |
2593.675 |
2684.202 |
2764.112 |
2860.043 |
2971.280 |
3065.925 |
3166.185 |
3284.231 |
3404.391 |
3427.748 |
3409.399 |
3393.277 |
3361.717 |
3323.997 |
3250.418 |
3188.713 |
3118.213 |
3031.676 |
2985.266 |
2949.648 |
2937.496 |
2950.165 |
2957.367 |
2984.288 |
3045.491 |
3081.279 |
3097.122 |
3080.362 |
3059.474 |
3074.458 |
3070.455 |
3041.955 |
3045.948 |
3035.694 |
2990.355 |
2942.743 |
2863.471 |
2738.562 |
2589.514 |
2491.952 |
2431.457 |
2363.585 |
2280.321 |
2228.812 |
2197.040 |
2115.781 |
2028.307 |
2014.205 |
2023.454 |
2033.714 |
2029.696 |
2045.995 |
2074.622 |
2098.0951 |
2130.7129 |
2134.2499 |
2116.8681 |
2118.6366 |
2136.8260 |
2158.703 |
2175.578 |
2175.124 |
2155.295 |
2099.504 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
| 2019 |
92 |
92 |
93 |
1412 |
1412 |
8728 |
0.9579656 |
0.8503286 |
0.9251643 |
0.1617782 |
TRUE |
0.8561675 |
0.9280837 |
0.1549779 |
8755.542 |
9434.0 |
8077.084 |
1356.9158 |
9869.961 |
9160.1507 |
9548.044 |
10024.990 |
10260.324 |
10372.911 |
10610.250 |
10823.944 |
11046.064 |
11179.243 |
11191.487 |
11321.379 |
11672.115 |
11921.674 |
12452.087 |
13177.961 |
13790.340 |
14276.109 |
14477.245 |
14830.229 |
15157.987 |
15238.050 |
15193.050 |
15127.402 |
14988.957 |
15048.365 |
15332.529 |
15588.752 |
16000.736 |
16509.945 |
17086.193 |
17594.859 |
18205.504 |
18913.581 |
19516.040 |
20154.243 |
20905.657 |
21670.531 |
21819.210 |
21702.413 |
21599.787 |
21398.892 |
21158.789 |
20690.424 |
20297.643 |
19848.875 |
19298.026 |
19002.608 |
18775.880 |
18698.529 |
18779.176 |
18825.018 |
18996.383 |
19385.968 |
19613.778 |
19714.625 |
19607.938 |
19474.976 |
19570.357 |
19544.876 |
19363.457 |
19388.879 |
19323.607 |
19035.004 |
18731.930 |
18227.326 |
17432.221 |
16483.463 |
15862.437 |
15477.357 |
15045.317 |
14515.306 |
14187.424 |
13985.181 |
13467.932 |
12911.119 |
12821.351 |
12880.228 |
12945.537 |
12919.962 |
13023.707 |
13205.937 |
13355.352 |
13562.979 |
13585.494 |
13474.851 |
13486.108 |
13601.892 |
13741.151 |
13848.568 |
13845.673 |
13719.454 |
13364.322 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
10287.912 |
10801.816 |
11055.386 |
11176.697 |
11432.428 |
11662.680 |
11902.012 |
12045.511 |
12058.704 |
12198.660 |
12576.575 |
12845.472 |
13416.986 |
14199.107 |
14858.939 |
15382.350 |
15599.071 |
15979.408 |
16332.564 |
16418.831 |
16370.344 |
16299.609 |
16150.436 |
16214.447 |
16520.631 |
16796.709 |
17240.616 |
17789.284 |
18410.185 |
18958.266 |
19616.229 |
20379.175 |
21028.318 |
21715.975 |
22525.614 |
23349.758 |
23509.958 |
23384.111 |
23273.532 |
23057.070 |
22798.361 |
22293.704 |
21870.486 |
21386.944 |
20793.410 |
20475.101 |
20230.804 |
20147.459 |
20234.354 |
20283.750 |
20468.393 |
20888.167 |
21133.629 |
21242.291 |
21127.336 |
20984.072 |
21086.843 |
21059.388 |
20863.911 |
20891.303 |
20820.973 |
20510.006 |
20183.448 |
19639.743 |
18783.026 |
17760.750 |
17091.601 |
16676.682 |
16211.163 |
15640.082 |
15286.793 |
15068.878 |
14511.549 |
13911.588 |
13814.865 |
13878.304 |
13948.673 |
13921.116 |
14032.901 |
14229.251 |
14390.244 |
14613.960 |
14638.220 |
14519.003 |
14531.132 |
14655.888 |
14805.939 |
14921.679 |
14918.560 |
14782.561 |
14399.910 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
1419.6212 |
1479.7362 |
1553.6522 |
1590.1238 |
1607.5723 |
1644.3546 |
1677.4724 |
1711.8962 |
1732.5360 |
1734.4335 |
1754.5638 |
1808.9202 |
1847.5964 |
1929.7987 |
2042.2931 |
2137.1984 |
2212.4819 |
2243.6534 |
2298.3582 |
2349.1535 |
2361.561 |
2354.587 |
2344.413 |
2322.958 |
2332.164 |
2376.204 |
2415.913 |
2479.761 |
2558.677 |
2647.983 |
2726.815 |
2821.451 |
2931.188 |
3024.556 |
3123.463 |
3239.915 |
3358.454 |
3381.496 |
3363.395 |
3347.490 |
3316.356 |
3279.145 |
3206.559 |
3145.687 |
3076.138 |
2990.768 |
2944.985 |
2909.847 |
2897.859 |
2910.358 |
2917.462 |
2944.020 |
3004.397 |
3039.703 |
3055.332 |
3038.798 |
3018.192 |
3032.973 |
3029.024 |
3000.909 |
3004.848 |
2994.733 |
2950.006 |
2903.036 |
2824.833 |
2701.610 |
2554.573 |
2458.328 |
2398.649 |
2331.692 |
2249.552 |
2198.738 |
2167.394 |
2087.232 |
2000.939 |
1987.027 |
1996.151 |
2006.273 |
2002.309 |
2018.387 |
2046.6288 |
2069.7848 |
2101.9624 |
2105.4518 |
2088.3045 |
2090.0491 |
2107.993 |
2129.575 |
2146.222 |
2145.774 |
2126.213 |
2071.175 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
| 2019 |
93 |
93 |
94 |
1302 |
1302 |
7140 |
0.9579656 |
0.8328841 |
0.9164420 |
0.1823529 |
TRUE |
0.8393444 |
0.9196722 |
0.1746878 |
7165.166 |
7791.0 |
6539.333 |
1251.6674 |
8077.084 |
7428.2700 |
7771.543 |
8100.635 |
8505.280 |
8704.939 |
8800.458 |
9001.819 |
9183.118 |
9371.567 |
9484.557 |
9494.944 |
9605.146 |
9902.713 |
10114.441 |
10564.447 |
11180.284 |
11699.832 |
12111.962 |
12282.607 |
12582.081 |
12860.154 |
12928.080 |
12889.902 |
12834.205 |
12716.748 |
12767.150 |
13008.237 |
13225.619 |
13575.149 |
14007.166 |
14496.059 |
14927.615 |
15445.691 |
16046.429 |
16557.560 |
17099.017 |
17736.522 |
18385.447 |
18511.587 |
18412.496 |
18325.427 |
18154.986 |
17951.281 |
17553.917 |
17220.678 |
16839.940 |
16372.595 |
16121.960 |
15929.603 |
15863.978 |
15932.398 |
15971.292 |
16116.679 |
16447.206 |
16640.481 |
16726.041 |
16635.527 |
16522.721 |
16603.643 |
16582.025 |
16428.107 |
16449.675 |
16394.298 |
16149.445 |
15892.315 |
15464.205 |
14789.632 |
13984.698 |
13457.815 |
13131.110 |
12764.564 |
12314.898 |
12036.721 |
11865.136 |
11426.299 |
10953.894 |
10877.734 |
10927.686 |
10983.094 |
10961.396 |
11049.414 |
11204.019 |
11330.784 |
11506.937 |
11526.039 |
11432.168 |
11441.719 |
11539.951 |
11658.099 |
11749.233 |
11746.777 |
11639.692 |
11338.395 |
NA |
NA |
NA |
NA |
NA |
NA |
8450.340 |
8808.176 |
9248.164 |
9465.262 |
9569.125 |
9788.073 |
9985.208 |
10190.116 |
10312.975 |
10324.270 |
10444.097 |
10767.655 |
10997.876 |
11487.187 |
12156.814 |
12721.741 |
13169.868 |
13355.418 |
13681.050 |
13983.410 |
14057.269 |
14015.756 |
13955.195 |
13827.478 |
13882.283 |
14144.428 |
14380.796 |
14760.855 |
15230.607 |
15762.202 |
16231.452 |
16794.778 |
17447.987 |
18003.762 |
18592.512 |
19285.699 |
19991.304 |
20128.462 |
20020.716 |
19926.042 |
19740.714 |
19519.216 |
19087.145 |
18724.799 |
18310.806 |
17802.642 |
17530.116 |
17320.957 |
17249.600 |
17323.997 |
17366.287 |
17524.373 |
17883.770 |
18093.926 |
18186.959 |
18088.539 |
17965.880 |
18053.870 |
18030.364 |
17863.003 |
17886.455 |
17826.241 |
17560.001 |
17280.412 |
16814.909 |
16081.416 |
15206.177 |
14633.273 |
14278.033 |
13879.471 |
13390.530 |
13088.055 |
12901.484 |
12424.316 |
11910.650 |
11827.838 |
11882.153 |
11942.400 |
11918.807 |
12014.514 |
12182.622 |
12320.459 |
12511.998 |
12532.768 |
12430.698 |
12441.083 |
12547.895 |
12676.363 |
12775.457 |
12772.786 |
12656.348 |
12328.735 |
NA |
NA |
NA |
NA |
NA |
NA |
1297.6284 |
1357.5941 |
1415.0824 |
1485.7689 |
1520.6469 |
1537.3330 |
1572.5083 |
1604.1791 |
1637.0987 |
1656.8368 |
1658.6514 |
1677.9021 |
1729.8835 |
1766.8699 |
1845.4805 |
1953.0598 |
2043.8184 |
2115.8125 |
2145.6221 |
2197.9366 |
2246.513 |
2258.378 |
2251.709 |
2241.980 |
2221.461 |
2230.266 |
2272.381 |
2310.355 |
2371.413 |
2446.882 |
2532.285 |
2607.673 |
2698.174 |
2803.116 |
2892.404 |
2986.990 |
3098.355 |
3211.714 |
3233.749 |
3216.439 |
3201.229 |
3171.455 |
3135.870 |
3066.456 |
3008.243 |
2941.733 |
2860.093 |
2816.310 |
2782.708 |
2771.244 |
2783.196 |
2789.991 |
2815.388 |
2873.127 |
2906.890 |
2921.836 |
2906.024 |
2886.318 |
2900.455 |
2896.678 |
2869.791 |
2873.558 |
2863.885 |
2821.112 |
2776.194 |
2701.409 |
2583.569 |
2442.957 |
2350.917 |
2293.845 |
2229.814 |
2151.263 |
2102.669 |
2072.695 |
1996.035 |
1913.512 |
1900.208 |
1908.934 |
1918.613 |
1914.823 |
1930.1984 |
1957.2060 |
1979.3503 |
2010.1219 |
2013.4588 |
1997.0608 |
1998.729 |
2015.889 |
2036.528 |
2052.448 |
2052.019 |
2033.313 |
1980.680 |
NA |
NA |
NA |
NA |
NA |
NA |
| 2019 |
94 |
94 |
95 |
1155 |
1155 |
5655 |
0.9579656 |
0.8146811 |
0.9073406 |
0.2042440 |
TRUE |
0.8217767 |
0.9108884 |
0.1956588 |
5677.112 |
6232.5 |
5121.723 |
1110.7766 |
6539.333 |
5956.6019 |
6175.327 |
6460.700 |
6734.283 |
7070.675 |
7236.657 |
7316.066 |
7483.462 |
7634.181 |
7790.844 |
7884.776 |
7893.411 |
7985.024 |
8232.401 |
8408.416 |
8782.519 |
9294.481 |
9726.395 |
10069.011 |
10210.872 |
10459.834 |
10691.004 |
10747.472 |
10715.734 |
10669.432 |
10571.786 |
10613.686 |
10814.109 |
10994.825 |
11285.398 |
11644.546 |
12050.977 |
12409.741 |
12840.432 |
13339.843 |
13764.760 |
14214.888 |
14744.864 |
15284.333 |
15389.197 |
15306.820 |
15234.437 |
15092.745 |
14923.399 |
14593.059 |
14316.028 |
13999.510 |
13610.993 |
13402.634 |
13242.722 |
13188.166 |
13245.046 |
13277.379 |
13398.243 |
13673.020 |
13833.695 |
13904.823 |
13829.576 |
13735.797 |
13803.070 |
13785.098 |
13657.142 |
13675.072 |
13629.036 |
13425.483 |
13211.723 |
12855.824 |
12295.032 |
11625.869 |
11187.856 |
10916.257 |
10611.537 |
10237.717 |
10006.461 |
9863.818 |
9499.000 |
9106.276 |
9042.963 |
9084.489 |
9130.551 |
9112.513 |
9185.685 |
9314.213 |
9419.596 |
9566.036 |
9581.916 |
9503.879 |
9511.819 |
9593.482 |
9691.702 |
9767.464 |
9765.422 |
9676.399 |
9425.923 |
NA |
NA |
NA |
NA |
NA |
6779.456 |
7092.746 |
7393.094 |
7762.395 |
7944.615 |
8031.792 |
8215.565 |
8381.029 |
8553.017 |
8656.139 |
8665.619 |
8766.194 |
9037.771 |
9231.006 |
9641.707 |
10203.755 |
10677.923 |
11054.056 |
11209.796 |
11483.113 |
11736.898 |
11798.891 |
11764.047 |
11713.216 |
11606.017 |
11652.017 |
11872.047 |
12070.441 |
12389.442 |
12783.725 |
13229.916 |
13623.779 |
14096.604 |
14644.871 |
15111.358 |
15605.521 |
16187.344 |
16779.590 |
16894.713 |
16804.277 |
16724.813 |
16569.258 |
16383.345 |
16020.689 |
15716.556 |
15369.073 |
14942.548 |
14713.805 |
14538.249 |
14478.356 |
14540.800 |
14576.297 |
14708.985 |
15010.643 |
15187.036 |
15265.123 |
15182.515 |
15079.562 |
15153.415 |
15133.686 |
14993.212 |
15012.896 |
14962.356 |
14738.889 |
14504.218 |
14113.501 |
13497.847 |
12763.220 |
12282.356 |
11984.188 |
11649.657 |
11239.267 |
10985.387 |
10828.789 |
10428.281 |
9997.138 |
9927.630 |
9973.219 |
10023.787 |
10003.985 |
10084.315 |
10225.417 |
10341.109 |
10501.876 |
10519.309 |
10433.638 |
10442.354 |
10532.006 |
10639.835 |
10723.008 |
10720.767 |
10623.035 |
10348.055 |
NA |
NA |
NA |
NA |
NA |
1165.4613 |
1208.2568 |
1264.0925 |
1317.6214 |
1383.4395 |
1415.9154 |
1431.4523 |
1464.2049 |
1493.6944 |
1524.3468 |
1542.7254 |
1544.4150 |
1562.3399 |
1610.7412 |
1645.1802 |
1718.3766 |
1818.5466 |
1903.0544 |
1970.0901 |
1997.8466 |
2046.558 |
2091.788 |
2102.837 |
2096.627 |
2087.568 |
2068.462 |
2076.661 |
2115.875 |
2151.234 |
2208.087 |
2278.357 |
2357.879 |
2428.075 |
2512.343 |
2610.057 |
2693.196 |
2781.267 |
2884.962 |
2990.514 |
3011.031 |
2994.913 |
2980.751 |
2953.028 |
2919.894 |
2855.260 |
2801.056 |
2739.127 |
2663.110 |
2622.343 |
2591.054 |
2580.380 |
2591.509 |
2597.835 |
2621.484 |
2675.246 |
2706.683 |
2720.600 |
2705.878 |
2687.529 |
2700.691 |
2697.175 |
2672.139 |
2675.648 |
2666.640 |
2626.813 |
2584.989 |
2515.354 |
2405.631 |
2274.703 |
2189.002 |
2135.861 |
2076.240 |
2003.099 |
1957.852 |
1929.942 |
1858.562 |
1781.723 |
1769.335 |
1777.460 |
1786.472 |
1782.9429 |
1797.2598 |
1822.4073 |
1843.0264 |
1871.6787 |
1874.7858 |
1859.517 |
1861.071 |
1877.049 |
1896.266 |
1911.090 |
1910.690 |
1893.272 |
1844.264 |
NA |
NA |
NA |
NA |
NA |
| 2019 |
95 |
95 |
96 |
976 |
976 |
4332 |
0.9579656 |
0.7975104 |
0.8987552 |
0.2253001 |
TRUE |
0.8051929 |
0.9025964 |
0.2158297 |
4350.515 |
4820.0 |
3881.030 |
938.9704 |
5121.723 |
4622.8492 |
4850.437 |
5028.544 |
5260.922 |
5483.700 |
5757.622 |
5892.781 |
5957.443 |
6093.753 |
6216.483 |
6344.053 |
6420.541 |
6427.573 |
6502.173 |
6703.611 |
6846.939 |
7151.570 |
7568.459 |
7920.165 |
8199.155 |
8314.672 |
8517.401 |
8705.641 |
8751.623 |
8725.779 |
8688.075 |
8608.563 |
8642.682 |
8805.886 |
8953.041 |
9189.655 |
9482.107 |
9813.062 |
10105.203 |
10455.912 |
10862.580 |
11208.589 |
11575.126 |
12006.683 |
12445.971 |
12531.361 |
12464.282 |
12405.341 |
12289.961 |
12152.064 |
11883.069 |
11657.484 |
11399.745 |
11083.377 |
10913.711 |
10783.495 |
10739.070 |
10785.388 |
10811.716 |
10910.135 |
11133.885 |
11264.722 |
11322.642 |
11261.368 |
11185.004 |
11239.784 |
11225.150 |
11120.956 |
11135.557 |
11098.069 |
10932.317 |
10758.253 |
10468.445 |
10011.795 |
9466.898 |
9110.226 |
8889.064 |
8640.932 |
8336.532 |
8148.221 |
8032.067 |
7734.997 |
7415.204 |
7363.648 |
7397.463 |
7434.971 |
7420.283 |
7479.867 |
7584.526 |
7670.339 |
7789.585 |
7802.516 |
7738.971 |
7745.436 |
7811.934 |
7891.914 |
7953.606 |
7951.944 |
7879.453 |
7675.491 |
NA |
NA |
NA |
NA |
5373.871 |
5571.199 |
5828.654 |
6075.472 |
6378.956 |
6528.700 |
6600.339 |
6751.360 |
6887.334 |
7028.670 |
7113.413 |
7121.204 |
7203.855 |
7427.030 |
7585.826 |
7923.330 |
8385.208 |
8774.868 |
9083.966 |
9211.949 |
9436.555 |
9645.109 |
9696.054 |
9667.420 |
9625.648 |
9537.555 |
9575.356 |
9756.172 |
9919.208 |
10181.355 |
10505.368 |
10872.037 |
11195.704 |
11584.261 |
12034.814 |
12418.162 |
12824.254 |
13302.383 |
13789.077 |
13883.682 |
13809.363 |
13744.062 |
13616.231 |
13463.452 |
13165.429 |
12915.500 |
12629.947 |
12279.438 |
12091.463 |
11947.194 |
11897.976 |
11949.291 |
11978.461 |
12087.501 |
12335.397 |
12480.353 |
12544.523 |
12476.637 |
12392.033 |
12452.724 |
12436.510 |
12321.073 |
12337.249 |
12295.716 |
12112.076 |
11919.229 |
11598.146 |
11092.217 |
10488.517 |
10093.355 |
9848.326 |
9573.417 |
9236.168 |
9027.535 |
8898.847 |
8569.718 |
8215.415 |
8158.295 |
8195.759 |
8237.315 |
8221.042 |
8287.056 |
8403.009 |
8498.083 |
8630.197 |
8644.523 |
8574.121 |
8581.283 |
8654.957 |
8743.569 |
8811.919 |
8810.077 |
8729.763 |
8503.791 |
NA |
NA |
NA |
NA |
997.7483 |
1046.8685 |
1085.3094 |
1135.4634 |
1183.5454 |
1242.6661 |
1271.8374 |
1285.7933 |
1315.2131 |
1341.7019 |
1369.2352 |
1385.7437 |
1387.2614 |
1403.3623 |
1446.8385 |
1477.7731 |
1543.5214 |
1633.4984 |
1709.4070 |
1769.6214 |
1794.554 |
1838.308 |
1878.936 |
1888.861 |
1883.283 |
1875.145 |
1857.984 |
1865.348 |
1900.572 |
1932.333 |
1983.401 |
2046.521 |
2117.951 |
2181.003 |
2256.697 |
2344.468 |
2419.147 |
2498.256 |
2591.399 |
2686.211 |
2704.640 |
2690.163 |
2677.441 |
2652.539 |
2622.777 |
2564.720 |
2516.032 |
2460.404 |
2392.122 |
2355.503 |
2327.399 |
2317.811 |
2327.807 |
2333.490 |
2354.732 |
2403.023 |
2431.262 |
2443.763 |
2430.538 |
2414.057 |
2425.880 |
2422.721 |
2400.233 |
2403.384 |
2395.293 |
2359.519 |
2321.951 |
2259.402 |
2160.843 |
2043.238 |
1966.258 |
1918.524 |
1864.970 |
1799.271 |
1758.628 |
1733.559 |
1669.442 |
1600.422 |
1589.294 |
1596.592 |
1604.6879 |
1601.5177 |
1614.3776 |
1636.9663 |
1655.4873 |
1681.2240 |
1684.015 |
1670.300 |
1671.695 |
1686.048 |
1703.310 |
1716.625 |
1716.266 |
1700.620 |
1656.599 |
NA |
NA |
NA |
NA |
| 2019 |
96 |
96 |
97 |
772 |
772 |
3118 |
0.9579656 |
0.7796804 |
0.8898402 |
0.2475946 |
TRUE |
0.7879595 |
0.8939798 |
0.2371871 |
3132.505 |
3504.0 |
2761.010 |
742.9898 |
3881.030 |
3469.5619 |
3686.750 |
3868.253 |
4010.294 |
4195.617 |
4373.284 |
4591.739 |
4699.529 |
4751.097 |
4859.805 |
4957.683 |
5059.421 |
5120.421 |
5126.028 |
5185.523 |
5346.170 |
5460.476 |
5703.420 |
6035.892 |
6316.379 |
6538.876 |
6631.002 |
6792.679 |
6942.802 |
6979.473 |
6958.861 |
6928.793 |
6865.381 |
6892.591 |
7022.747 |
7140.105 |
7328.805 |
7562.038 |
7825.976 |
8058.960 |
8338.653 |
8662.973 |
8938.917 |
9231.233 |
9575.402 |
9925.737 |
9993.837 |
9940.340 |
9893.334 |
9801.319 |
9691.344 |
9476.820 |
9296.914 |
9091.365 |
8839.060 |
8703.750 |
8599.903 |
8564.474 |
8601.412 |
8622.409 |
8700.899 |
8879.341 |
8983.684 |
9029.875 |
8981.009 |
8920.109 |
8963.796 |
8952.125 |
8869.030 |
8880.674 |
8850.777 |
8718.589 |
8579.772 |
8348.649 |
7984.467 |
7549.908 |
7265.460 |
7089.082 |
6891.195 |
6648.435 |
6498.255 |
6405.622 |
6168.707 |
5913.670 |
5872.554 |
5899.521 |
5929.435 |
5917.720 |
5965.239 |
6048.705 |
6117.142 |
6212.241 |
6222.554 |
6171.876 |
6177.032 |
6230.064 |
6293.849 |
6343.049 |
6341.723 |
6283.911 |
6121.250 |
NA |
NA |
NA |
4123.975 |
4327.003 |
4485.890 |
4693.190 |
4891.927 |
5136.289 |
5256.862 |
5314.546 |
5436.147 |
5545.632 |
5659.435 |
5727.669 |
5733.942 |
5800.492 |
5980.191 |
6108.053 |
6379.809 |
6751.710 |
7065.461 |
7314.344 |
7417.396 |
7598.247 |
7766.173 |
7807.193 |
7784.138 |
7750.503 |
7679.571 |
7710.008 |
7855.600 |
7986.875 |
8197.954 |
8458.847 |
8754.087 |
9014.701 |
9327.564 |
9690.346 |
9999.015 |
10325.998 |
10710.983 |
11102.866 |
11179.041 |
11119.201 |
11066.620 |
10963.692 |
10840.675 |
10600.709 |
10399.468 |
10169.543 |
9887.316 |
9735.959 |
9619.796 |
9580.165 |
9621.484 |
9644.971 |
9732.770 |
9932.373 |
10049.091 |
10100.760 |
10046.099 |
9977.976 |
10026.844 |
10013.789 |
9920.840 |
9933.864 |
9900.423 |
9752.557 |
9597.278 |
9338.745 |
8931.374 |
8445.279 |
8127.097 |
7929.802 |
7708.447 |
7436.896 |
7268.907 |
7165.288 |
6900.276 |
6614.994 |
6569.001 |
6599.167 |
6632.627 |
6619.524 |
6672.678 |
6766.043 |
6842.596 |
6948.973 |
6960.509 |
6903.821 |
6909.588 |
6968.910 |
7040.259 |
7095.294 |
7093.811 |
7029.143 |
6847.191 |
NA |
NA |
NA |
822.9354 |
874.4497 |
917.4997 |
951.1902 |
995.1463 |
1037.2865 |
1089.1013 |
1114.6676 |
1126.8989 |
1152.6831 |
1175.8985 |
1200.0294 |
1214.4978 |
1215.8279 |
1229.9392 |
1268.0427 |
1295.1545 |
1352.7778 |
1431.6357 |
1498.1638 |
1550.937 |
1572.788 |
1611.136 |
1646.743 |
1655.441 |
1650.552 |
1643.420 |
1628.380 |
1634.834 |
1665.705 |
1693.541 |
1738.298 |
1793.618 |
1856.221 |
1911.482 |
1977.821 |
2054.746 |
2120.196 |
2189.530 |
2271.162 |
2354.257 |
2370.409 |
2357.721 |
2346.571 |
2324.746 |
2298.662 |
2247.780 |
2205.108 |
2156.355 |
2096.511 |
2064.417 |
2039.786 |
2031.383 |
2040.144 |
2045.124 |
2063.741 |
2106.065 |
2130.814 |
2141.770 |
2130.180 |
2115.735 |
2126.097 |
2123.329 |
2103.620 |
2106.381 |
2099.290 |
2067.937 |
2035.011 |
1980.192 |
1893.813 |
1790.741 |
1723.274 |
1681.439 |
1634.503 |
1576.923 |
1541.302 |
1519.331 |
1463.138 |
1402.646 |
1392.894 |
1399.2905 |
1406.3855 |
1403.6070 |
1414.8778 |
1434.6750 |
1450.9073 |
1473.464 |
1475.910 |
1463.889 |
1465.112 |
1477.691 |
1492.820 |
1504.490 |
1504.175 |
1490.463 |
1451.882 |
NA |
NA |
NA |
| 2019 |
97 |
97 |
98 |
603 |
603 |
2234 |
0.9579656 |
0.7621771 |
0.8810885 |
0.2699194 |
TRUE |
0.7710294 |
0.8855147 |
0.2585735 |
2245.222 |
2535.5 |
1954.945 |
580.5551 |
2761.010 |
2444.9150 |
2707.987 |
2877.502 |
3019.165 |
3130.028 |
3274.672 |
3413.341 |
3583.845 |
3667.974 |
3708.223 |
3793.070 |
3869.463 |
3948.869 |
3996.480 |
4000.857 |
4047.292 |
4172.677 |
4261.892 |
4451.510 |
4711.003 |
4929.924 |
5103.582 |
5175.486 |
5301.674 |
5418.845 |
5447.467 |
5431.380 |
5407.911 |
5358.418 |
5379.656 |
5481.242 |
5572.840 |
5720.120 |
5902.158 |
6108.162 |
6290.005 |
6508.305 |
6761.436 |
6976.810 |
7204.962 |
7473.586 |
7747.022 |
7800.173 |
7758.419 |
7721.731 |
7649.913 |
7564.078 |
7396.642 |
7256.226 |
7095.796 |
6898.872 |
6793.263 |
6712.210 |
6684.557 |
6713.388 |
6729.776 |
6791.037 |
6930.311 |
7011.750 |
7047.803 |
7009.663 |
6962.130 |
6996.228 |
6987.119 |
6922.263 |
6931.351 |
6908.017 |
6804.844 |
6696.498 |
6516.106 |
6231.863 |
5892.691 |
5670.680 |
5533.017 |
5378.566 |
5189.092 |
5071.878 |
4999.577 |
4814.666 |
4615.610 |
4583.519 |
4604.567 |
4627.914 |
4618.771 |
4655.859 |
4721.005 |
4774.419 |
4848.644 |
4856.693 |
4817.139 |
4821.163 |
4862.555 |
4912.339 |
4950.739 |
4949.705 |
4904.582 |
4777.626 |
NA |
NA |
3058.094 |
3249.525 |
3409.503 |
3534.699 |
3698.044 |
3854.640 |
4047.188 |
4142.195 |
4187.647 |
4283.463 |
4369.734 |
4459.406 |
4513.172 |
4518.115 |
4570.553 |
4712.149 |
4812.898 |
5027.031 |
5320.074 |
5567.297 |
5763.407 |
5844.608 |
5987.111 |
6119.430 |
6151.752 |
6133.585 |
6107.082 |
6051.191 |
6075.174 |
6189.895 |
6293.334 |
6459.656 |
6665.229 |
6897.866 |
7103.219 |
7349.743 |
7635.601 |
7878.819 |
8136.468 |
8439.821 |
8748.609 |
8808.632 |
8761.480 |
8720.049 |
8638.945 |
8542.013 |
8352.930 |
8194.360 |
8013.188 |
7790.805 |
7671.542 |
7580.009 |
7548.782 |
7581.340 |
7599.847 |
7669.028 |
7826.308 |
7918.277 |
7958.990 |
7915.919 |
7862.241 |
7900.748 |
7890.461 |
7817.220 |
7827.483 |
7801.132 |
7684.620 |
7562.266 |
7358.553 |
7037.561 |
6654.538 |
6403.823 |
6248.363 |
6073.944 |
5859.973 |
5727.604 |
5645.957 |
5437.138 |
5212.347 |
5176.107 |
5199.876 |
5226.242 |
5215.917 |
5257.800 |
5331.368 |
5391.688 |
5475.509 |
5484.599 |
5439.931 |
5444.476 |
5491.219 |
5547.439 |
5590.804 |
5589.636 |
5538.680 |
5395.310 |
NA |
NA |
632.1903 |
700.2138 |
744.0459 |
780.6761 |
809.3424 |
846.7435 |
882.5995 |
926.6873 |
948.4410 |
958.8483 |
980.7874 |
1000.5408 |
1021.0730 |
1033.3838 |
1034.5156 |
1046.5225 |
1078.9438 |
1102.0125 |
1151.0426 |
1218.1407 |
1274.748 |
1319.651 |
1338.244 |
1370.873 |
1401.170 |
1408.571 |
1404.411 |
1398.343 |
1385.545 |
1391.037 |
1417.304 |
1440.989 |
1479.072 |
1526.142 |
1579.409 |
1626.429 |
1682.875 |
1748.328 |
1804.018 |
1863.012 |
1932.471 |
2003.175 |
2016.918 |
2006.122 |
1996.635 |
1978.065 |
1955.870 |
1912.576 |
1876.268 |
1834.785 |
1783.866 |
1756.558 |
1735.600 |
1728.450 |
1735.904 |
1740.142 |
1755.982 |
1791.995 |
1813.053 |
1822.375 |
1812.513 |
1800.222 |
1809.039 |
1806.684 |
1789.914 |
1792.264 |
1786.230 |
1759.552 |
1731.537 |
1684.893 |
1611.395 |
1523.694 |
1466.288 |
1430.692 |
1390.755 |
1341.762 |
1311.453 |
1292.758 |
1244.945 |
1193.474 |
1185.1766 |
1190.6190 |
1196.6560 |
1194.2919 |
1203.8819 |
1220.7268 |
1234.538 |
1253.731 |
1255.812 |
1245.585 |
1246.625 |
1257.328 |
1270.201 |
1280.130 |
1279.863 |
1268.195 |
1235.368 |
NA |
NA |
| 2019 |
98 |
98 |
99 |
443 |
443 |
1520 |
0.9579656 |
0.7456216 |
0.8728108 |
0.2914474 |
TRUE |
0.7550044 |
0.8775022 |
0.2791965 |
1528.170 |
1741.5 |
1314.840 |
426.6598 |
1954.945 |
1715.4685 |
1868.044 |
2069.045 |
2198.564 |
2306.801 |
2391.507 |
2502.022 |
2607.972 |
2738.246 |
2802.526 |
2833.278 |
2898.106 |
2956.474 |
3017.145 |
3053.521 |
3056.866 |
3092.345 |
3188.145 |
3256.311 |
3401.189 |
3599.455 |
3766.722 |
3899.406 |
3954.344 |
4050.759 |
4140.284 |
4162.152 |
4149.861 |
4131.930 |
4094.114 |
4110.341 |
4187.959 |
4257.944 |
4370.474 |
4509.560 |
4666.958 |
4805.896 |
4972.689 |
5166.094 |
5330.651 |
5504.971 |
5710.214 |
5919.133 |
5959.744 |
5927.842 |
5899.810 |
5844.937 |
5779.355 |
5651.425 |
5544.140 |
5421.562 |
5271.102 |
5190.411 |
5128.482 |
5107.355 |
5129.383 |
5141.904 |
5188.711 |
5295.123 |
5357.347 |
5384.893 |
5355.752 |
5319.435 |
5345.487 |
5338.528 |
5288.974 |
5295.918 |
5278.090 |
5199.260 |
5116.478 |
4978.649 |
4761.473 |
4502.327 |
4332.699 |
4227.517 |
4109.509 |
3964.740 |
3875.182 |
3819.941 |
3678.659 |
3526.570 |
3502.050 |
3518.132 |
3535.970 |
3528.985 |
3557.322 |
3607.097 |
3647.908 |
3704.620 |
3710.770 |
3680.548 |
3683.623 |
3715.249 |
3753.286 |
3782.626 |
3781.836 |
3747.360 |
3650.358 |
NA |
2128.820 |
2357.880 |
2505.479 |
2628.827 |
2725.357 |
2851.300 |
2972.041 |
3120.501 |
3193.754 |
3228.799 |
3302.676 |
3369.193 |
3438.333 |
3479.788 |
3483.599 |
3524.031 |
3633.205 |
3710.886 |
3875.989 |
4101.933 |
4292.550 |
4443.756 |
4506.364 |
4616.238 |
4718.260 |
4743.181 |
4729.174 |
4708.740 |
4665.646 |
4684.138 |
4772.590 |
4852.345 |
4980.584 |
5139.087 |
5318.457 |
5476.791 |
5666.867 |
5887.272 |
6074.801 |
6273.456 |
6507.350 |
6745.434 |
6791.714 |
6755.358 |
6723.414 |
6660.880 |
6586.143 |
6440.354 |
6318.092 |
6178.403 |
6006.939 |
5914.984 |
5844.410 |
5820.333 |
5845.436 |
5859.705 |
5913.046 |
6034.313 |
6105.224 |
6136.615 |
6103.406 |
6062.019 |
6091.708 |
6083.777 |
6027.306 |
6035.219 |
6014.902 |
5925.068 |
5830.729 |
5673.660 |
5426.166 |
5130.844 |
4937.536 |
4817.671 |
4683.189 |
4518.211 |
4416.151 |
4353.198 |
4192.193 |
4018.873 |
3990.930 |
4009.257 |
4029.586 |
4021.625 |
4053.918 |
4110.641 |
4157.150 |
4221.778 |
4228.787 |
4194.347 |
4197.851 |
4233.891 |
4277.238 |
4310.674 |
4309.773 |
4270.485 |
4159.942 |
NA |
478.9529 |
521.5515 |
577.6703 |
613.8314 |
644.0510 |
667.7004 |
698.5560 |
728.1369 |
764.5089 |
782.4556 |
791.0415 |
809.1411 |
825.4374 |
842.3764 |
852.5327 |
853.4664 |
863.3719 |
890.1192 |
909.1507 |
949.6001 |
1004.955 |
1051.656 |
1088.701 |
1104.039 |
1130.958 |
1155.953 |
1162.059 |
1158.627 |
1153.620 |
1143.063 |
1147.593 |
1169.264 |
1188.803 |
1220.221 |
1259.054 |
1302.999 |
1341.790 |
1388.357 |
1442.356 |
1488.299 |
1536.969 |
1594.272 |
1652.602 |
1663.940 |
1655.033 |
1647.207 |
1631.886 |
1613.576 |
1577.858 |
1547.905 |
1513.682 |
1471.674 |
1449.145 |
1431.855 |
1425.956 |
1432.106 |
1435.602 |
1448.670 |
1478.380 |
1495.753 |
1503.444 |
1495.308 |
1485.168 |
1492.442 |
1490.498 |
1476.663 |
1478.602 |
1473.624 |
1451.615 |
1428.503 |
1390.022 |
1329.387 |
1257.034 |
1209.674 |
1180.308 |
1147.361 |
1106.942 |
1081.937 |
1066.514 |
1027.069 |
984.6061 |
977.7603 |
982.2503 |
987.2308 |
985.2804 |
993.1921 |
1007.089 |
1018.483 |
1034.317 |
1036.034 |
1027.596 |
1028.455 |
1037.285 |
1047.905 |
1056.096 |
1055.875 |
1046.250 |
1019.167 |
NA |
| 2019 |
99 |
99 |
100 |
2231 |
2231 |
2246 |
0.9579656 |
0.3363082 |
0.6681541 |
0.9933215 |
TRUE |
0.3552120 |
0.6776060 |
0.9515678 |
2277.773 |
3361.5 |
1194.045 |
2167.4549 |
1314.840 |
890.9436 |
1000.141 |
1089.095 |
1206.281 |
1281.792 |
1344.896 |
1394.280 |
1458.712 |
1520.483 |
1596.434 |
1633.910 |
1651.839 |
1689.634 |
1723.664 |
1759.036 |
1780.244 |
1782.194 |
1802.878 |
1858.731 |
1898.473 |
1982.938 |
2098.531 |
2196.049 |
2273.406 |
2305.436 |
2361.647 |
2413.841 |
2426.590 |
2419.424 |
2408.970 |
2386.923 |
2396.384 |
2441.636 |
2482.438 |
2548.045 |
2629.134 |
2720.899 |
2801.902 |
2899.144 |
3011.902 |
3107.841 |
3209.472 |
3329.131 |
3450.934 |
3474.610 |
3456.011 |
3439.668 |
3407.677 |
3369.441 |
3294.856 |
3232.308 |
3160.843 |
3073.123 |
3026.079 |
2989.974 |
2977.656 |
2990.499 |
2997.799 |
3025.088 |
3087.128 |
3123.405 |
3139.465 |
3122.475 |
3101.302 |
3116.491 |
3112.433 |
3083.543 |
3087.591 |
3077.197 |
3031.238 |
2982.975 |
2902.619 |
2776.002 |
2624.917 |
2526.021 |
2464.699 |
2395.898 |
2311.497 |
2259.283 |
2227.077 |
2144.707 |
2056.037 |
2041.742 |
2051.118 |
2061.518 |
2057.445 |
2073.966 |
2102.986 |
2126.779 |
2159.843 |
2163.428 |
2145.809 |
2147.602 |
2166.040 |
2188.216 |
2205.322 |
2204.861 |
2184.761 |
2128.208 |
1475.992 |
1607.268 |
1780.210 |
1891.648 |
1984.776 |
2057.657 |
2152.744 |
2243.904 |
2355.992 |
2411.298 |
2437.757 |
2493.535 |
2543.756 |
2595.956 |
2627.255 |
2630.133 |
2660.659 |
2743.086 |
2801.735 |
2926.388 |
3096.978 |
3240.894 |
3355.055 |
3402.325 |
3485.280 |
3562.307 |
3581.123 |
3570.547 |
3555.119 |
3522.583 |
3536.545 |
3603.327 |
3663.542 |
3760.363 |
3880.033 |
4015.459 |
4135.001 |
4278.510 |
4444.917 |
4586.502 |
4736.487 |
4913.078 |
5092.833 |
5127.774 |
5100.325 |
5076.207 |
5028.994 |
4972.567 |
4862.496 |
4770.187 |
4664.722 |
4535.266 |
4465.839 |
4412.555 |
4394.377 |
4413.330 |
4424.103 |
4464.376 |
4555.933 |
4609.471 |
4633.171 |
4608.099 |
4576.851 |
4599.267 |
4593.278 |
4550.643 |
4556.617 |
4541.277 |
4473.452 |
4402.226 |
4283.638 |
4096.779 |
3873.810 |
3727.861 |
3637.363 |
3535.828 |
3411.270 |
3334.213 |
3286.684 |
3165.124 |
3034.267 |
3013.170 |
3027.007 |
3042.355 |
3036.345 |
3060.726 |
3103.552 |
3138.667 |
3187.461 |
3192.753 |
3166.750 |
3169.396 |
3196.606 |
3229.334 |
3254.578 |
3253.898 |
3224.235 |
3140.775 |
847.7932 |
951.7020 |
1036.3474 |
1147.8581 |
1219.7120 |
1279.7597 |
1326.7523 |
1388.0638 |
1446.8424 |
1519.1154 |
1554.7762 |
1571.8368 |
1607.8015 |
1640.1831 |
1673.8416 |
1694.0226 |
1695.8780 |
1715.5608 |
1768.7089 |
1806.5253 |
1886.900 |
1996.894 |
2089.690 |
2163.300 |
2193.778 |
2247.267 |
2296.933 |
2309.065 |
2302.246 |
2292.298 |
2271.319 |
2280.322 |
2323.382 |
2362.208 |
2424.637 |
2501.799 |
2589.120 |
2666.199 |
2758.732 |
2866.029 |
2957.321 |
3054.030 |
3167.894 |
3283.797 |
3306.327 |
3288.629 |
3273.077 |
3242.635 |
3206.252 |
3135.279 |
3075.760 |
3007.757 |
2924.285 |
2879.519 |
2845.163 |
2833.442 |
2845.662 |
2852.609 |
2878.576 |
2937.611 |
2972.132 |
2987.413 |
2971.247 |
2951.099 |
2965.552 |
2961.691 |
2934.200 |
2938.052 |
2928.161 |
2884.428 |
2838.503 |
2762.039 |
2641.554 |
2497.786 |
2403.680 |
2345.328 |
2279.860 |
2199.546 |
2149.861 |
2119.214 |
2040.8342 |
1956.4587 |
1942.8560 |
1951.7778 |
1961.6741 |
1957.7986 |
1973.520 |
2001.133 |
2023.775 |
2055.237 |
2058.649 |
2041.883 |
2043.588 |
2061.133 |
2082.236 |
2098.513 |
2098.074 |
2078.948 |
2025.134 |
YLD
Goal: E.g. To quantify the years lived with disability (YLD)
attributable to air pollution exposure using disability weights.
Function call
results_pm_copd_yld <- attribute_health(
rr_central = 1.1,
rr_increment = 10,
erf_shape = "log_linear",
exp_central = 8.85,
cutoff_central = 5,
bhd_central = 1000,
duration_central = 10,
dw_central = 0.2
)
DALYs
Goal: To obtain the Disability-Adjusted Life Years as the sum of YLLs
and YLDs.
This is possible using the function daly().
Function call
results_daly <- daly(
output_attribute_yll = results_pm_yll,
output_attribute_yld = results_pm_copd_yld
)
Main results
YLL, YLD & DALY
Comparison of two health scenarios
Goal: E.g. To compare the health impacts in the scenario “before
intervention” vs. “after intervention”.
Function call
- Use
attribute_health() to calculate burden of scenarios
A & B
scenario_A <- attribute_health(
exp_central = 8.85, # EXPOSURE 1
cutoff_central = 5,
bhd_central = 25000,
approach_risk = "relative_risk",
erf_shape = "log_linear",
rr_central = 1.118,
rr_increment = 10)
scenario_B <- attribute_health(
exp_central = 6, # EXPOSURE 2
cutoff_central = 5,
bhd_central = 25000,
approach_risk = "relative_risk",
erf_shape = "log_linear",
rr_central = 1.118,
rr_increment = 10)
Alternatively, the function attribute_mod() can be used
to modify an existing scenario, e.g. scenario_A
scenario_B <- attribute_mod(
output_attribute = scenario_A,
exp_central = 6
)
- Use
compare() to compare scenarios A & B
results_comparison <- compare(
approach_comparison = "delta", # or "pif" (population impact fraction)
output_attribute_scen_1 = scenario_A,
output_attribute_scen_2 = scenario_B
)
The default value for the argument approach_comparison
is "delta". The alterntive is "pif"
(population impact fraction). See the function documentation of
compare() for more details.
Main results
| 773.5564 |
774 |
1050.86 |
277.304 |
25000 |
1 |
1 |
population_weighted_mean |
8.85 |
6 |
Detailed results
The compare() results contain two additional outputs in
addition to those we have already seen
Threshold additional to cut-off
Goal: To quantify health impacts in the exposure group 55dB+
(calculation threshold) that are affected by a exposure above the effect
threshold of 45 dB (cut-off).
The function arguments erf_eq_... require a function as
input. Instead of using a splinefun() this can also be
fulfilled by using a ‘function(c)’ which is of type ‘function’.
#setting up function parameters
threshold_effect <- 45
RR <- 1.055
threshold_calculation <- 55
rr_increment <- 10
# define categorical function, the ifelse condition enables the case distinction
erf_function <- function(c){
output <- ifelse(c<threshold_calculation, 1, exp((log(RR)/rr_increment)*(c-threshold_effect)))
return(output)
}
# attribute_health
results_catERF_different_calc_thesh <- healthiar::attribute_health(
approach_risk = "relative_risk",
erf_eq_central = erf_function,
prop_pop_exp = c(300000,200000,150000,120000,100000,70000,60000)/10000000,
exp_central = c(47,52,57,62,67,72,77),
cutoff_central=0,
bhd_central=50000)$health_main$impact_rounded
The used function is equal to \[
f(c) =
\begin{cases}
1, & c < \text{threshold} \\
\exp\left( \frac{\log(RR)}{rr_{increment}} (c - threshold_{effect})
\right), & c \ge \text{threshold}
\end{cases}
\]
The categorical ERF curve created looks as follows

Economic dimension
Monetization
Goal: E.g. To monetize the attributable health impact of a policy
that will have health benefits five years from now.
The outcome of the monetization is added to the variable entered to
the output_attribute argument, which is
results_pm_copd in our case.
Two folders are added:
monetization_main contains the central monetization
estimate and the corresponding 95% confidence intervals obtained through
the specified monetization
monetization_detailed contains the monetized results
for each unique combination of the input variable estimates that were
provided to the initial attribute_health() call
Function call
monetized_pm_copd <- monetize(
output_attribute = results_pm_copd,
discount_shape = "exponential",
discount_rate = 0.03,
n_years = 5,
valuation = 50000 # E.g. EURO
)
Main results
| central |
151041153 |
| lower |
58358321 |
| upper |
236091201 |
We see that the monetized impact (discounted) is more than 160
million EURO.
Alternatively, you can also monetize (attributable) health impacts
from a non-healthiar source.
results <- monetize(
impact = 1151,
valuation = 100
)
Cost-benefit analysis
Goal: E.g. To estimate the net-benefit of a health policy via
cost-benefit analysis (CBA).
Let’s imagine we design a policy that would reduce air pollution to 5
\(\mu g/m^3\), which is the
concentration specified in the cutoff_central argument in
the initial attribute_health() call. So we could avoid all
COPD cases attributed to air pollution.
Considering the cost to implement the policy (estimated at 100
million EURO), what would be the monetary net benefit of such a policy,
? We can find out using healthiar’s cba()
function.
The outcome of the CBA is contained in two folders, which are added
to the existing assessment:
Function call
cba <- cba(
output_attribute = results_pm_copd,
valuation = 50000,
cost = 100000000,
discount_shape = "exponential",
discount_rate_benefit = 0.03,
discount_rate_cost = 0.03,
n_years_benefit = 5,
n_years_cost = 5
)
Main results
cba$cba_main |>
dplyr::select(benefit, cost, net_benefit) |>
knitr::kable()
| 151041153 |
86260878 |
64780274 |
| 58358321 |
86260878 |
-27902557 |
| 236091201 |
86260878 |
149830323 |
We see that the central and upper 95% confidence interval estimates
of avoided attributable COPD cases result in a net monetary benefit of
the policy, while the lower 95% confidence interval estimate results in
a net cost!
Multiple deprivation index
Goal: E.g. To estimate the multiple deprivation index (MDI) to use it
for the argument social_indicator in the function
socialize().
Function call
mdi <- prepare_mdi(
geo_id_micro = exdat_prepare_mdi$id,
edu = exdat_prepare_mdi$edu,
unemployed = exdat_prepare_mdi$unemployed,
single_parent = exdat_prepare_mdi$single_parent,
pop_change = exdat_prepare_mdi$pop_change,
no_heating = exdat_prepare_mdi$no_heating,
n_quantile = 10,
verbose = FALSE
)
Note: verbose = FALSE suppresses any output to
the console (default: verbose = TRUE, i.e. with printing
turned on).
Main results
Function output includes
mdi_main, a tibble containing the BEST-COST MDI
mdi$mdi_main |>
select(geo_id_micro, MDI, MDI_index)
| 11001 |
0.2117721 |
1 |
| 11002 |
0.4319924 |
8 |
| 11004 |
0.1847750 |
1 |
| 11005 |
0.3787937 |
7 |
| 11007 |
0.3121354 |
5 |
| 11008 |
0.2565185 |
2 |
| 11009 |
0.2245822 |
1 |
| 11013 |
0.2140148 |
1 |
| 11016 |
0.2656597 |
3 |
| 11018 |
0.3566141 |
6 |
Detailed results
mdi_detailed
DESCRIPTIVE STATISTICS
PEARSON’S CORRELATION COEFFICIENTS
CRONBACH’S α, including the reliability rating this value
indicates
Code for boxplots of the single indicators
Code for histogram of the MDI’s for the geo units with a normal
distribution curve
To reproduce the boxlots run
eval(mdi$mdi_detailed$boxplot)
Analogeously, to reproduce the histogram run
eval(mdi$mdi_detailed$histogram)

Export and visualize
Exporting and visualizing results is out of scope of
healthiar. To export and visualize, you can make use of
existing functions in other packages beyond healthiar as
indicated below.
Export results
Export as .csv file
Save as .Rdata file
Export to Excel (as .xlsx file)
Visualize results
Visualization is out of scope of healthiar. You can
visualize in
Abbreviations
BHD/bhd = baseline health data
CI = confidence interval
CBA/cba = cost-benefit analysis
exp = exposure
ERF = exposure-response function
RR/rr = relative risk
YLL/yll = years of life lost
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.