The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
describe_draws() extracts structured metadata from rbmi
draws objects, including method type, formula, sample count, and (for
Bayesian methods) MCMC convergence diagnostics (ESS, Rhat).describe_imputation() extracts imputation metadata
including method, number of imputations (M), reference arm mappings, and
a missingness breakdown by visit and treatment arm.pool_to_ard() gains an analysis_obj
parameter that enriches the ARD with MI diagnostic statistics (FMI,
lambda, RIV, Barnard-Rubin adjusted df, relative efficiency) when the
pooling method is Rubin’s rules.efficacy_table() gains font_family,
font_size, and row_padding parameters for
publication-ready table styling.plot_forest() gains font_family and
panel_widths parameters for customizable typography and
panel layout.plot_forest() left panel now uses left-aligned text
(hjust=0) for consistent positioning regardless of label length.cli::cli_inform() message when MI diagnostics are not
applicable, rather than returning NA rows.plot_forest() and
efficacy_table() help pages.validate_data() now uses cli-formatted error messages
with clearer guidance for malformed interaction terms, empty data, and
type mismatches.prepare_data_ice() now errors immediately when
vars$strategy is NULL instead of silently using a default
column name.prepare_data_ice() warns when visit column is character
with guidance to convert to factor for correct ordering.validate_data() batches all type coercion warnings into
a single message and warns on all-NA covariate columns.tidy_pool_obj() now uses regex-based parameter parsing
instead of splitting on _. Output columns
(parameter_type, lsm_type, visit)
now contain the full visit name rather than truncated fragments.efficacy_table() creates regulatory-style gt summary
tables from pool objects.plot_forest() creates publication-quality three-panel
forest plots from pool objects.pool_to_ard() converts pool objects to pharmaverse ARD
format via the cards package.print() and summary() S3 methods for pool
and analysis objects.create_impid() converts lists of imputed datasets into
stacked data.frames.combine_results() combines tidy results from multiple
analyses.format_results() and
format_results_table() for publication-ready
formatting.extract_trt_effects() and extract_lsm()
convenience filters for tidy results.cli (>= 3.6.0) and lifecycle
(>= 1.0.4) to Imports for improved error messaging and deprecation
support.analyse_mi_data() with
clearer error messages using inherits() instead of internal
class helpers.prepare_data_ice() to
check vars fields.reduce_imputed_data() and
expand_imputed_data() for efficient storage of imputed
datasets.validate_data() for pre-flight validation before
rbmi::draws().prepare_data_ice() to build data_ice from
flagged ICE columns.summarise_missingness() for tabulating missing data
patterns.format_pvalue(), format_estimate(),
format_results_table() formatting utilities.ADEFF and ADMI example datasets.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.