The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Introduction

scfetch is designed to accelerate users download and prepare single-cell datasets from public resources. It can be used to:


Installation

scfetch is an R package distributed as part of the CRAN. To install the package, start R and enter:

# install via CRAN (v0.5.0) # old version, it's better to install via Github
install.packages("scfetch")
# if you install from CRAN, you should install the following packages
# install.packages("devtools") #In case you have not installed it.
devtools::install_github("alexvpickering/GEOfastq") # download fastq
devtools::install_github("cellgeni/sceasy") # format conversion
devtools::install_github("mojaveazure/seurat-disk") # format conversion
devtools::install_github("satijalab/seurat-wrappers") # format conversion

# install via Github (v0.5.0)
devtools::install_github("showteeth/scfetch")

For data structures conversion, scfetch requires several python pcakages, you can install with:

# install python packages
conda install -c bioconda loompy anndata
# or
pip install anndata loompy

In general, it is recommended to install from Github repository (update more timely).

Once scfetch is installed, it can be loaded by the following command.

library("scfetch")

Downloas fastq and bam

Since the downloading process is time-consuming, we provide the commands used to illustrate the usage.

Downloas fastq

Prepare run number

For fastq files stored in SRA, scfetch can extract sample information and run number with GEO accession number or users can also provide a dataframe contains the run number of interested samples.

Extract all samples under GSE130636 and the platform is GPL20301 (use platform = NULL for all platforms):

GSE130636.runs <- ExtractRun(acce = "GSE130636", platform = "GPL20301")

Download sra

With the dataframe contains gsm and run number, scfetch will download sra files using prefetch. The returned result is a dataframe contains failed runs. If not NULL, users can re-run DownloadSRA by setting gsm.df to the returned result.

# a small test
GSE130636.runs <- GSE130636.runs[GSE130636.runs$run %in% c("SRR9004346", "SRR9004351"), ]
# download, you may need to set prefetch.path
out.folder <- tempdir()
GSE130636.down <- DownloadSRA(
  gsm.df = GSE130636.runs,
  out.folder = out.folder
)
# GSE130636.down is null or dataframe contains failed runs

The out.folder structure will be: gsm_number/run_number.


Split fastq

After obtaining the sra files, scfetch provides function SplitSRA to split sra files to fastq files using parallel-fastq-dump (parallel, fastest and gzip output), fasterq-dump (parallel, fast but unzipped output) and fastq-dump (slowest and gzip output).

For fastqs generated with 10x Genomics, SplitSRA can identify read1, read2 and index files and format the read1 and read2 to 10x required format (sample1_S1_L001_R1_001.fastq.gz and sample1_S1_L001_R2_001.fastq.gz). In detail, the file with read length 26 or 28 is considered as read1, the files with read length 8 or 10 are considered as index files and the remain file is considered as read2. The read length rules is from Sequencing Requirements for Single Cell 3’ and Sequencing Requirements for Single Cell V(D)J.

The returned result is a vector of failed sra files. If not NULL, users can re-run SplitSRA by setting sra.path to the returned result.

# parallel-fastq-dump requires sratools.path
# you may need to set split.cmd.path and sratools.path
sra.folder <- tempdir()
GSE130636.split <- SplitSRA(
  sra.folder = sra.folder,
  fastq.type = "10x", split.cmd.threads = 4
)

Download bam

Prepare run number

scfetch can extract sample information and run number with GEO accession number or users can also provide a dataframe contains the run number of interested samples.

GSE138266.runs <- ExtractRun(acce = "GSE138266", platform = "GPL18573")

Download bam

With the dataframe contains gsm and run number, scfetch provides DownloadBam to download bam files using prefetch. It suooorts 10x generated bam files and normal bam files.

  • 10x generated bam: While bam files generated from 10x softwares (e.g. CellRanger) contain custom tags which are not kept when using default parameters of prefetch, scfetch adds --type TenX to make sure the downloaded bam files contain these tags.
  • normal bam: For normal bam files, DownloadBam will download sra files first and then convert sra files to bam files with sam-dump. After testing the efficiency of prefetch + sam-dump and sam-dump, the former is much faster than the latter (52G sra and 72G bam files):
# # use prefetch to download sra file
# prefetch -X 60G SRR1976036
# # real    117m26.334s
# # user    16m42.062s
# # sys 3m28.295s

# # use sam-dump to convert sra to bam
# time (sam-dump SRR1976036.sra | samtools view -bS - -o SRR1976036.bam)
# # real    536m2.721s
# # user    749m41.421s
# # sys 20m49.069s


# use sam-dump to download bam directly
# time (sam-dump SRR1976036 | samtools view -bS - -o SRR1976036.bam)
# # more than 36hrs only get ~3G bam files, too slow

The returned result is a dataframe containing failed runs (either failed to download sra files or failed to convert to bam files for normal bam; failed to download bam files for 10x generated bam). If not NULL, users can re-run DownloadBam by setting gsm.df to the returned result. The following is an example to download 10x generated bam file:

# a small test
GSE138266.runs <- GSE138266.runs[GSE138266.runs$run %in% c("SRR10211566"), ]
# download, you may need to set prefetch.path
out.folder <- tempdir()
GSE138266.down <- DownloadBam(
  gsm.df = GSE138266.runs,
  out.folder = out.folder
)
# GSE138266.down is null or dataframe contains failed runs

The out.folder structure will be: gsm_number/run_number.


Convert bam to fastq

With downloaded bam files, scfetch provides function Bam2Fastq to convert bam files to fastq files. For bam files generated from 10x softwares, Bam2Fastq utilizes bamtofastq tool developed by 10x Genomics.

The returned result is a vector of bam files failed to convert to fastq files. If not NULL, users can re-run Bam2Fastq by setting bam.path to the returned result.

bam.folder <- tempdir()
# you may need to set bamtofastq.path and bamtofastq.paras
GSE138266.convert <- Bam2Fastq(
  bam.folder = bam.folder
)

Download count matrix

scfetch provides functions for users to download count matrices and annotations (e.g. cell type annotation and composition) from GEO and some single-cell databases (e.g. PanglaoDB and UCSC Cell Browser). scfetch also supports loading the downloaded data to Seurat.

Until now, the public resources supported and the returned results:

Resources URL Download Type Returned results
GEO https://www.ncbi.nlm.nih.gov/geo/ count matrix SeuratObject or count matrix for bulk RNA-seq
PanglaoDB https://panglaodb.se/index.html count matrix SeuratObject
UCSC Cell Browser https://cells.ucsc.edu/ count matrix SeuratObject

GEO

GEO is an international public repository that archives and freely distributes microarray, next-generation sequencing, and other forms of high-throughput functional genomics data submitted by the research community. It provides a very convenient way for users to explore and select interested scRNA-seq datasets.

Extract metadata

scfetch provides ExtractGEOMeta to extract sample metadata, including sample title, source name/tissue, description, cell type, treatment, paper title, paper abstract, organism, protocol, data processing methods, et al.

# extract metadata of specified platform
GSE200257.meta <- ExtractGEOMeta(acce = "GSE200257", platform = "GPL24676")
# set VROOM_CONNECTION_SIZE to avoid error: Error: The size of the connection buffer (786432) was not large enough
Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 60)
# extract metadata of all platforms
GSE94820.meta <- ExtractGEOMeta(acce = "GSE94820", platform = NULL)

Download matrix and load to Seurat

After manually check the extracted metadata, users can download count matrix and load the count matrix to Seurat with ParseGEO.

For count matrix, ParseGEO supports downloading the matrix from supplementary files and extracting from ExpressionSet, users can control the source by specifying down.supp or detecting automatically (ParseGEO will extract the count matrix from ExpressionSet first, if the count matrix is NULL or contains non-integer values, ParseGEO will download supplementary files). While the supplementary files have two main types: single count matrix file containing all cells and CellRanger-style outputs (barcode, matrix, feature/gene), users are required to choose the type of supplementary files with supp.type.

With the count matrix, ParseGEO will load the matrix to Seurat automatically. If multiple samples available, users can choose to merge the SeuratObject with merge.

# for cellranger output
out.folder <- tempdir()
GSE200257.seu <- ParseGEO(
  acce = "GSE200257", platform = NULL, supp.idx = 1, down.supp = TRUE, supp.type = "10x",
  out.folder = out.folder
)
# for count matrix, no need to specify out.folder, download count matrix to tmp folder
GSE94820.seu <- ParseGEO(acce = "GSE94820", platform = NULL, supp.idx = 1, down.supp = TRUE, supp.type = "count")

For bulk RNA-seq, set data.type = "bulk" in ParseGEO, this will return count matrix.


PanglaoDB

PanglaoDB is a database which contains scRNA-seq datasets from mouse and human. Up to now, it contains 5,586,348 cells from 1368 datasets (1063 from Mus musculus and 305 from Homo sapiens). It has well organized metadata for every dataset, including tissue, protocol, species, number of cells and cell type annotation (computationally identified). Daniel Osorio has developed rPanglaoDB to access PanglaoDB data, the functions of scfetch here are based on rPanglaoDB.

Since PanglaoDB is no longer maintained, scfetch has cached all metadata and cell type composition and use these cached data by default to accelerate, users can access the cached data with PanglaoDBMeta (all metadata) and PanglaoDBComposition (all cell type composition).

Summarise attributes

scfetch provides StatDBAttribute to summary attributes of PanglaoDB:

# use cached metadata
StatDBAttribute(df = PanglaoDBMeta, filter = c("species", "protocol"), database = "PanglaoDB")

Extract metadata

scfetch provides ExtractPanglaoDBMeta to select interested datasets with specified species, protocol, tissue and cell number (The available values of these attributes can be obtained with StatDBAttribute). User can also choose to whether to add cell type annotation to every dataset with show.cell.type.

scfetch uses cached metadata and cell type composition by default, users can change this by setting local.data = FALSE.

hsa.meta <- ExtractPanglaoDBMeta(
  species = "Homo sapiens", protocol = c("Smart-seq2", "10x chromium"),
  show.cell.type = TRUE, cell.num = c(1000, 2000)
)

Extract cell type composition

scfetch provides ExtractPanglaoDBComposition to extract cell type annotation and composition (use cached data by default to accelerate, users can change this by setting local.data = FALSE).

hsa.composition <- ExtractPanglaoDBComposition(species = "Homo sapiens", protocol = c("Smart-seq2", "10x chromium"))

Download matrix and load to Seurat

After manually check the extracted metadata, scfetch provides ParsePanglaoDB to download count matrix and load the count matrix to Seurat. With available cell type annotation, uses can filter datasets without specified cell type with cell.type. Users can also include/exclude cells expressing specified genes with include.gene/exclude.gene.

With the count matrix, ParsePanglaoDB will load the matrix to Seurat automatically. If multiple datasets available, users can choose to merge the SeuratObject with merge.

# small test
hsa.seu <- ParsePanglaoDB(hsa.meta[1:3, ], merge = TRUE)

UCSC Cell Browser

The UCSC Cell Browser is a web-based tool that allows scientists to interactively visualize scRNA-seq datasets. It contains 1040 single cell datasets from 17 different species. And, it is organized with the hierarchical structure, which can help users quickly locate the datasets they are interested in.

Show available datasets

scfetch provides ShowCBDatasets to show all available datasets. Due to the large number of datasets, ShowCBDatasets enables users to perform lazy load of dataset json files instead of downloading the json files online (time-consuming!!!). This lazy load requires users to provide json.folder to save json files and set lazy = TRUE (for the first time of run, ShowCBDatasets will download current json files to json.folder, for next time of run, with lazy = TRUE, ShowCBDatasets will load the downloaded json files from json.folder.). And, ShowCBDatasets supports updating the local datasets with update = TRUE.

json.folder <- tempdir()
# first time run, the json files are stored under json.folder
# ucsc.cb.samples = ShowCBDatasets(lazy = TRUE, json.folder = json.folder, update = TRUE)

# second time run, load the downloaded json files
ucsc.cb.samples <- ShowCBDatasets(lazy = TRUE, json.folder = json.folder, update = FALSE)

# always read online
# ucsc.cb.samples = ShowCBDatasets(lazy = FALSE)

The number of datasets and all available species:

# the number of datasets
nrow(ucsc.cb.samples)

# available species
unique(unlist(sapply(unique(gsub(pattern = "\\|parent", replacement = "", x = ucsc.cb.samples$organisms)), function(x) {
  unlist(strsplit(x = x, split = ", "))
})))

Summarise attributes

scfetch provides StatDBAttribute to summary attributes of UCSC Cell Browser:

StatDBAttribute(df = ucsc.cb.samples, filter = c("organism", "organ"), database = "UCSC")

Extract metadata

scfetch provides ExtractCBDatasets to filter metadata with collection, sub-collection, organ, disease status, organism, project and cell number (The available values of these attributes can be obtained with StatDBAttribute except cell number). All attributes except cell number support fuzzy match with fuzzy.match, this is useful when selecting datasets.

hbb.sample.df <- ExtractCBDatasets(all.samples.df = ucsc.cb.samples, organ = c("brain", "blood"), organism = "Human (H. sapiens)", cell.num = c(1000, 2000))

Extract cell type composition

scfetch provides ExtractCBComposition to extract cell type annotation and composition.

hbb.sample.ct <- ExtractCBComposition(json.folder = json.folder, sample.df = hbb.sample.df)

Load the online datasets to Seurat

After manually check the extracted metadata, scfetch provides ParseCBDatasets to load the online count matrix to Seurat. All the attributes available in ExtractCBDatasets are also same here. Please note that the loading process provided by ParseCBDatasets will load the online count matrix instead of downloading it to local. If multiple datasets available, users can choose to merge the SeuratObject with merge.

hbb.sample.seu <- ParseCBDatasets(sample.df = hbb.sample.df)

Download object

scfetch provides functions for users to download processed single-cell RNA-seq data from Zenodo, CELLxGENE and Human Cell Atlas, including RDS, RData, h5ad, h5, loom objects.

Until now, the public resources supported and the returned results:

Resources URL Download Type Returned results
Zenodo https://zenodo.org/ count matrix, rds, rdata, h5ad, et al. NULL or failed datasets
CELLxGENE https://cellxgene.cziscience.com/ rds, h5ad NULL or failed datasets
Human Cell Atlas https://www.humancellatlas.org/ rds, rdata, h5, h5ad, loom NULL or failed projects

Zenodo

Zenodo contains various types of processed objects, such as SeuratObject which has been clustered and annotated, AnnData which contains processed results generated by scanpy.

Extract metadata

scfetch provides ExtractZenodoMeta to extract dataset metadata, including dataset title, description, available files and corresponding md5. Please note that when the dataset is restricted access, the returned dataframe will be empty.

# single doi
zebrafish.df <- ExtractZenodoMeta(doi = "10.5281/zenodo.7243603")

# vector dois
multi.dois <- ExtractZenodoMeta(doi = c("1111", "10.5281/zenodo.7243603", "10.5281/zenodo.7244441"))

Download object

After manually check the extracted metadata, users can download the specified objects with ParseZenodo. The downloaded objects are controlled by file.ext and the provided object formats should be in lower case (e.g. rds/rdata/h5ad).

The returned result is a dataframe containing failed objects. If not NULL, users can re-run ParseZenodo by setting doi.df to the returned result.

out.folder <- tempdir()
multi.dois.parse <- ParseZenodo(
  doi = c("1111", "10.5281/zenodo.7243603", "10.5281/zenodo.7244441"),
  file.ext = c("rdata", "rds"), out.folder = out.folder
)

CELLxGENE

The CELLxGENE is a web server contains 910 single-cell datasets, users can explore, download and upload own datasets. The downloaded datasets provided by CELLxGENE have two formats: h5ad (AnnData v0.8) and rds (Seurat v4).

Show available datasets

scfetch provides ShowCELLxGENEDatasets to extract dataset metadata, including dataset title, description, contact, organism, ethnicity, sex, tissue, disease, assay, suspension type, cell type, et al.

# all available datasets
all.cellxgene.datasets <- ShowCELLxGENEDatasets()

Summarise attributes

scfetch provides StatDBAttribute to summary attributes of CELLxGENE:

StatDBAttribute(df = all.cellxgene.datasets, filter = c("organism", "sex"), database = "CELLxGENE")

Extract metadata

scfetch provides ExtractCELLxGENEMeta to filter dataset metadata, the available values of attributes can be obtained with StatDBAttribute except cell number:

# human 10x v2 and v3 datasets
human.10x.cellxgene.meta <- ExtractCELLxGENEMeta(
  all.samples.df = all.cellxgene.datasets,
  assay = c("10x 3' v2", "10x 3' v3"), organism = "Homo sapiens"
)

Download object

After manually check the extracted metadata, users can download the specified objects with ParseCELLxGENE. The downloaded objects are controlled by file.ext (choose from "rds" and "h5ad").

The returned result is a dataframe containing failed datasets. If not NULL, users can re-run ParseCELLxGENE by setting meta to the returned result.

out.folder <- tempdir()
ParseCELLxGENE(
  meta = human.10x.cellxgene.meta[1:5, ], file.ext = "rds",
  out.folder = out.folder
)

Format conversion

There are many tools have been developed to process scRNA-seq data, such as Scanpy, Seurat, scran and Monocle. These tools have their own objects, such as Anndata of Scanpy, SeuratObject of Seurat, SingleCellExperiment of scran and CellDataSet/cell_data_set of Monocle2/Monocle3. There are also some file format designed for large omics datasets, such as loom. To perform a comprehensive scRNA-seq data analysis, we usually need to combine multiple tools, which means we need to perform object conversion frequently. To facilitate user analysis of scRNA-seq data, scfetch provides multiple functions to perform object conversion between widely used tools and formats. The object conversion implemented in scfetch has two main advantages:


Test data

# library
library(Seurat) # pbmc_small
library(scRNAseq) # seger

SeuratObject:

# object
pbmc_small

SingleCellExperiment:

seger <- scRNAseq::SegerstolpePancreasData()

Convert SeuratObject to other objects

Here, we will convert SeuratObject to SingleCellExperiment, CellDataSet/cell_data_set, Anndata, loom.

SeuratObject to SingleCellExperiment

The conversion is performed with functions implemented in Seurat:

sce.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", to = "SCE")

SeuratObject to CellDataSet/cell_data_set

To CellDataSet (The conversion is performed with functions implemented in Seurat):

# BiocManager::install("monocle") # reuqire monocle
cds.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", reduction = "tsne", to = "CellDataSet")

To cell_data_set (The conversion is performed with functions implemented in SeuratWrappers):

# remotes::install_github('cole-trapnell-lab/monocle3') # reuqire monocle3
cds3.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", to = "cell_data_set")

SeuratObject to AnnData

AnnData is a Python object, reticulate is used to communicate between Python and R. User should create a Python environment which contains anndata package and specify the environment path with conda.path to ensure the exact usage of this environment.

The conversion is performed with functions implemented in sceasy:

# remove pbmc_small.h5ad first
anndata.file <- tempfile(pattern = "pbmc_small_", fileext = ".h5ad")
# you may need to set conda.path
ExportSeurat(
  seu.obj = pbmc_small, assay = "RNA", to = "AnnData",
  anndata.file = anndata.file
)

SeuratObject to loom

The conversion is performed with functions implemented in SeuratDisk:

loom.file <- tempfile(pattern = "pbmc_small_", fileext = ".loom")
ExportSeurat(
  seu.obj = pbmc_small, assay = "RNA", to = "loom",
  loom.file = loom.file
)

Convert other objects to SeuratObject

SingleCellExperiment to SeuratObject

The conversion is performed with functions implemented in Seurat:

seu.obj.sce <- ImportSeurat(obj = sce.obj, from = "SCE", count.assay = "counts", data.assay = "logcounts", assay = "RNA")

CellDataSet/cell_data_set to SeuratObject

CellDataSet to SeuratObject (The conversion is performed with functions implemented in Seurat):

seu.obj.cds <- ImportSeurat(obj = cds.obj, from = "CellDataSet", count.assay = "counts", assay = "RNA")

cell_data_set to SeuratObject (The conversion is performed with functions implemented in Seurat):

seu.obj.cds3 <- ImportSeurat(obj = cds3.obj, from = "cell_data_set", count.assay = "counts", data.assay = "logcounts", assay = "RNA")

AnnData to SeuratObject

AnnData is a Python object, reticulate is used to communicate between Python and R. User should create a Python environment which contains anndata package and specify the environment path with conda.path to ensure the exact usage of this environment.

The conversion is performed with functions implemented in sceasy:

# you may need to set conda.path
seu.obj.h5ad <- ImportSeurat(
  anndata.file = anndata.file, from = "AnnData", assay = "RNA"
)

loom to SeuratObject

The conversion is performed with functions implemented in SeuratDisk and Seurat:

# loom will lose reduction
seu.obj.loom <- ImportSeurat(loom.file = loom.file, from = "loom")

Conversion between SingleCellExperiment and AnnData

The conversion is performed with functions implemented in zellkonverter.

SingleCellExperiment to AnnData

# remove seger.h5ad first
seger.anndata.file <- tempfile(pattern = "seger_", fileext = ".h5ad")
SCEAnnData(
  from = "SingleCellExperiment", to = "AnnData", sce = seger, X_name = "counts",
  anndata.file = seger.anndata.file
)

AnnData to SingleCellExperiment

seger.anndata <- SCEAnnData(
  from = "AnnData", to = "SingleCellExperiment",
  anndata.file = seger.anndata.file
)

Conversion between SingleCellExperiment and loom

The conversion is performed with functions implemented in LoomExperiment.

SingleCellExperiment to loom

# remove seger.loom first
seger.loom.file <- tempfile(pattern = "seger_", fileext = ".loom")
SCELoom(
  from = "SingleCellExperiment", to = "loom", sce = seger,
  loom.file = seger.loom.file
)

loom to SingleCellExperiment

seger.loom <- SCELoom(
  from = "loom", to = "SingleCellExperiment",
  loom.file = seger.loom.file
)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.