1
1.1

2

2.1
2.2
2.3

3

3.1
3.2
3.3
3.4
3.5
4

4.1
4.2
4.3
)

5.1
0.2
6

6.1

The ufrgscca, and associated, Packages
Version 1.12
(extended documentation)

Alceu Frigeri*

September 2023

Abstract

This bundled is aimed at producing undergraduate students final
work /report at UFRGS/EE (Engineering School at the Federal University
of Rio Grande do Sul), closely following ABNT rules (Brazilian Associa-
tion for Technical Norms). It is composed of a main class, ufrgscca, and
a set of auxiliary packages, some of which can be used independently.

Contents

Introduction.
Current Version

ufrgscca Class
Class Options.
Class Declared Commands.
Class Known Hooks

ufrgscca-abnt Package.........
Package Options
Commands
Environments.
Tabular New Columns
enumitem Extra Keys......

ufrgscca-core Package.........
Core Forms Commands
Core Global Commands
Core Specific Commands
ufrgscca-cover Package
Package Options
Defined Commands.
ufrgscca-forms Package.
Forms Defined Commands.............................

*https://github.com/alceu-frigeri/ufrgscca

© 00 O Ot Ot Ot W W NN

7 ufrgscca-lists Package 15

7.1 Environment 15
7.2 Declared Commands. 15
8 ufrgscca-gen Package (extended documentation) 16
8.1 Package Options i 16
8.2 Defined Commands. 16
9 ufrgscca-coord Package (extended documentation) 17
9.1 Package/Report Options 17
9.2 Defined Commands. 17
9.2.1 Global Commands T 18
9.2.2 Global Commands IT 19
9.2.3 Student Specific Commands 21
10 ufrgscca-ppc Package (beta) (extended documentation) 23
10.1 Package Options 24
10.2 Defined Commands. 24
10.3 Environments. 27
11 ufrgscca-curr Package (beta) (extended documentation).... 27
11.1 Commands Creating the many lists 27
11.2 List Processing Commands 28
12 ufrgscca-curr-tab Package (beta) (extended documentation) 28
12.1 Tabular Presentation Commands 29
13 ufrgscca-curr-graph Package (beta) (extended documenta-
BIOM) L 29
13.1 Graph Presentation Command 29

1 INTRODUCTION

ABNT rules can be quite challenging some times (read: bibliography
style/references) and sometimes just odd (line spacing, front matter, page
layout), nevertheless it is a Brazilian Standard for typography whose students
at UFRGS should grow cherished to follow.

In short, as of version 1.12 the bundle is composed of a class, ufrgscca
(based on the standard I¥TEX2e report class), which pre-loads all other, as
needed, packages: ufrgscca-abnt, ufrgscca-core, ufrgscca-cover, ufrgscca-
forms, ufrgscca-gen, ufrgscca-lists, ufrgscca-curr, ufrgscca-coord and
ufrgscca-ppc.

N.B.: This bundle requires a quite recent I4TEX2e kernel, at
least as recent as June 2022, which allows to declare package op-
tions using the key =value system and declare commands with
\NewDocumentCommand , out-of-the-box.

1.1 Current Version

For the sake of the “maintainer’s sanity”, since this is a bundle, all
files are saved with the same version (bundle version), with two exceptions:
ufrgscca-curr.sty ufrgscca-ppc.sty which are less tested than the others, and

tocdepth

secdepth

english

brazilian

relnum

openright

oneside

strict-abnt

pretextontoc

somewhat in what one would call 'beta’ state. Better said, all files are version
1.12, except ufrgscca-curr and ufrgscca-ppc whose versions are 1.12beta.

2 UFRGSCCA CLASS

The following packages are always pre-loaded: etex, etoolbox, lmodern,
fontenc (T1), inputenc (utf8), silence, ufrgscca-abnt and ufrgscca-gen,
ufrgscca-cover, ufrgscca-core and hyperref and (if it exists) a local.tex file.

Other set of auxiliary packages are also pre-loaded, depending on the
class options used, and finally it loads (normally) the report class (the exception
being if one uses the dctools option).

Being based on the report class, one can use all class options one would
with a report, plus the ones listed below.

2.1 Class Options

use: Usetocdepthnumber, whereas (number) indicates the deepest sectioning to
appears in the Table of Contents (0 being the top section, which is \chapter
for report based classes, 1 being \section, and so on.) The default value being
3 (\subsubsection).

use: Usesecdepthnumber, whereas (number) indicates the deepest sectioning to
be numbered. (0 being the top section, which is \chapter for report based
classes, 1 being \section, and so on.) The default value being 4 (\paragraph).

the default language being Portuguese, this option changes locale to English.

in some rare cases (to be further investigated) babel seems to get confused
about which language is active, this “shouldn’t be necessary” but one can
explicitly tell babel to use THIS language (which should, otherwise, be the
default one).

by default, figures, tables, etc. are numbered as a continuous series. With this
switch, those lists are reset at each chapter, e.g. Figure 5.1 instead of Figure
23.

in case of printed material, this will assure that a \chapter always starts at an
odd page, which is relevant in case of printing out (double sided) the document.

in case the document will be printed in single side sheets, otherwise it’s assumed
a two-sided printing.

to assure asymmetric margins, as defined by ABNT: inner ones greater than
outer ones, which matters if you are going to print the doc and make a book
of it, but makes it odd to look at in a computer screen, reason by which the
current default setting is for symmetric margins (same text width).

“pre-text” elements, like “list of...” will be inserted in the “table of contents”.

yearsonly

timesroman

repeatfields

xlists

xpacks

report

internship

nonrequired

forms

chapternopagenum

nomicrotype

showframes

showlabels

nofontwarning

nolocal

Cover pages, at their bottom, will display the years only (instead of the default
mouth year construct).

will set the default font to Roman (using the obsolete mathptmx package, based
on a free replacement of the proprietary Times New Roman (by Microsoft)
and Times Roman (By Adobe)) instead of the default Latin Modern Roman
font. As a side effect, the package microtype isn’t loaded (can’t be used),
resulting in a sub-optimal overall layout. NB. The alternative (newer and
maintained) packages newtxtext/newtxmath can’t be used due to some packages
incompatibilities.

in case of authors with multiple publications, their names will be repeated for
each entry. In the default setting the author’s name is written only in the first
entry, and replaced by underscores in the other entries.

this will load the ufrgscca-1ists package, for the definition of new floats/lists.

this will load a series of packages, which can be handy when writing Engi-
neering reports: relsize, keyval, graphicx, mathtools, mathrsfs, amsfonts,
amssymb, empheq, amsthm, extarrows, mathfixs, bigdelim, circuitikz and
steimenz and tikz libraries: fit, math, calc, shapes.geometry, shapes.misc,
shapes.multipart, graphs, 3d, positioning, shadows and babel. One is advised
to look after each package documentation (ctan.org) for further information.

in case the doc is just a class assignment with, possibly, many co-authors.
It changes mainly the front matter, which is simplified (no referral page, for
instance).

in case the doc is an internship report.

in case the internship report is related to a “non required” / “optional” intern-
ship. This option is ignored otherwise.

in the process of submitting a student final work/report, there is a series of
forms to be submitted, this allows the customization of said forms in a simple
way.

to suppress the page numbers at chapters begin.

in some rare cases, microtype might hurt page layout, this allows the suppression
of microtype.

for layout proof only, it will draw frames around each page main parts.
it will put a reference mark in each label created, and print out it’s name.
in case of ufrgscca-ppc is loaded, it will suppress some font related warnings.

this will suppress the loading of any local.tex file, which would, otherwise, be
loaded.

article

nogeometry

texlive

overleaf

miktex

\autonameref
\annexref
\autoannexref

\miktexHack
\overleafHack
\livetexHack

this will load the class article instead of report, it’s meant to document the
class itself.

the package geometry won’t be loaded. In case one wants to fully customize
the page geometry

this is a reserved key, in case some workaround for texlive is needed.
this is a reserved key, in case some workaround for overleaf is needed.

this is a reserved key, in case some workaround for miktex is needed.

2.2 Class Declared Commands

\autonameref (sep)(label)(spc)
\annexref {(label)}
\autoannexref (sep)(label)(spc)

The hyperref package, sometimes, gets the \autoref name wrong (when
referencing an annex), the \annexref {(label)} will assure the correct annex
name is used.

\autonameref {(label)} produces an entry of the form ‘“\autoref {(label)}
(sep) \nameref {(label)} (spc)’

\autoannexref {(label)} produces an entry of the form ‘\annexref {(label)}
(sep) \nameref {(label)} (spc)’

The default (sep) being a comma, and the default (spc) being empty space.

2.3 Class Known Hooks

\miktexHack

\overleafHack

\livetexHack

In case some workaround is needed due an unexpected error (when upgrading
packages/TEXsystem) the class “knows” about those three hooks. They will be
executed if, and only if, they are user defined and the corresponding package
option is used, i.e., for example, for the hook \miktexHack to be used/called by
the class ufrgscca, one has to: a) define it and b) use the class option miktex.

3 UFRGSCCA-ABNT PACKAGE

This package is the one that sets the page layout (using geometry,
titlesec and titletoc) and adjusts the main float environments (figure, tables,
captions). It can be used as a stand alone package, regardless of the underlying
class.

The following packages are always pre-loaded: babel, csquotes, geometry,
appendix, titlesec, titletoc, enumitem, chngctr, caption, biblatex, microtype,
array, nicematrix, contour and soul.

Take note that biblatex is loaded with the biber option, to correctly
handle ABNT biography style.

3.1 Package Options

strict-abnt to assure asymmetric margins, as defined by ABNT: inner ones greater than
outer ones, which matters if you are going to print the doc and make a book
of it, but makes it odd to look at in a computer screen, reason by which the
current default setting is for symmetric margins (same text width).

chapternopagenum to suppress the page numbers at chapters begin.

relnum by default, figures, tables, etc. are numbered as a continuous series. With this
switch, those lists are reset at each chapter, e.g. Figure 5.1 instead of Figure
23.

repeatfields in case of authors with multiple publications, their names will be repeated for
each entry. In the default setting the author’s name is written only in the first
entry, and replaced by underscores in the other entries.

yearsonly Cover pages, at their bottom, will display the years only (instead of the default
mouth year construct).

yearsonly (Cover pages, at their bottom, will display the years only, instead of the default
mouth year construct.

nomicrotype in some rare cases, microtype might hurt page layout, this allows the suppression
of microtype.

showframes for layout proof only, it will draw frames around each page main parts.
showlabels it will put a reference mark in each label created, and print out it’s name.

tocdepth use: tocdepth=(number), whereas (number) indicates the deepest sectioning to
appears in the Table of Contents (0 being the top section, which is \chapter
for report based classes, 1 being \section, and so on.) The default value being
3 (\subsubsection).

secdepth wuse: secdepth=(number), whereas (number) indicates the deepest sectioning to
be numbered. (0 being the top section, which is \chapter for report based
classes, 1 being \section, and so on.) The default value being 4 (\paragraph).

dctools this will change page layout and base class to article, it is meant to document
the class itself.

\keyword
\sourcecitation
\note

\nonum
\notoc

\tightul

\NewChapListEnv

3.2 Commands

\keyword {(keyword)}

This command can be invoked many times, it will construct a list of keywords
to be used when printing out the abstract environment.

\sourcecitation {(source)’}

\note {(text)}

When describing floating elements (like figure, tables, circuits) one always has
to cite the source of it, and in some cases it might be necessary to add a special
note. Those assure uniformity when doing that.

\nonum\chapter {(chap.title)}
\nonum\section {(sec.title)}
\notoc\chapter {(chap.title)}
\notoc\section {(sec.title)}

In some cases, it might be necessary to create a numberless chapters or sections.
Those two commands can be used as a prefir to any sectioning command.
Whilst \nonum will just suppress the sectioning number, the \notoc will also
suppress it from the table of contents.

ETEX Code:

\nonum\chapter{some title} Jthis one will appear in the toc
\notoc\section{some other titlel} Jthis won't even appear in the toc

\tightul {(text)}

This will underline a short text, take note that (text) ‘can’t be broken’ (think
paragraph justification), which can lead to text overflows and bad justification.

KETEX Code: ETEX Result:

\tightul{Some text examplel} Some text example

\NewChapListEnv {(envname)} {(displayname)}

)

This is the command used to created those chapter like lists, like ‘List of Symbols
or ‘List of acronyms’ With it, a new environment is created, (envname), with
an associated ‘numberless’ chapter name (displayname). The newly created
environment will implement a description like environment (thanks to enumitem)
with an optional and a mandatory argument (see below).

\date
\today
\monthname

abstract

otherabstract

listofabbrv
listofsymbols

appendix
annex

ETEX Code:

\def\listabbrvname{Lista de Abreviaturas}
\NewChapListEnv{listofabbrv}{\listabbrvname} 7 this is the actual code
used in ufrgscca-abnt.sty

\date [(day)] {(month)} {(year)}
\today
\monthname

The command \date is redefined, to allow a separation between the many
arguments (day), (month) and (year). If not called by the user it defaults to
current month / year. \today returns the current locale date, whilst \monthname
returns the locale name of the current month.

3.3 Environments

\begin{abstract} [(lang)] {(keywords)}...\end{abstract}

The standard environment abstract is redefined as a numberless chapter based
on the current locale (default: Portuguese), at the end of it the keywords list
created with \keyword will be added.

ETEX Code:

\keyword{a keyword}

\keyword{another keyword}

\begin{abstract} some short summary of things\ldots
\end{abstract}

\begin{otherabstract} [(lang)] {(keywords)}...\end{otherabstract}

This is the environment to create an abstract in a language other than the
default one. The default value for (1ang) is english, and it can be any value
that babel understands. The (keywords) are just a list of keywords which will
be added at the end of the otherabstract.

KETEX Code:

\begin{otherabstract}[english]{a keyword, another keyword} some short
summary of things\ldots
\end{otherabstract}

\begin{listofabbrv} [(enum-opt)] {(ABBRV)}...\end{listofabbrv}
\begin{listofsymbols} [(enum-opt)] {(SYMB)}...\end{listofsymbols}

Both environments create a description like list preceded by a numberless
(\nonum) chapter. (enum-opt) is any enumitem list valid key. Whereas (ABBRV) /
(SYMB) are just the ‘biggest’ abbreviation/symbol to be used as a tab reference.

\begin{appendix} \end{appendix}
\begin{annex} \end{annex}

Those two environments start the appendices and annex chapters (using locale).
Chapters are alphabetic numbered (starting at A).

3.4 Tabular New Columns

Thanks to array some new columns types are defined:
P p{(width)} Normal text, ragged left.

B{(width)} Bold text, ragged left.
C{(width)} Normal text, centered.
R{(width)} Normal text, ragged left.
L{(width)} Normal text, ragged right.
J{(width)} Normal text, justified.

O HMmaQw

3.5 enumitem Extra Keys

Besides the default keys defined by the enumitem package a few others
are defined for author’s convenience:

ppc, tcc ppc and tcc are alias of each other, and just assure that lists indentation will

be the same as paragraphs default.
parindent with parindent, the list number/mark is aligned with paragraph indentation.
noindent pnoindent removes the label indentation.

ETEX Code: ETEX Result:

\begin{enumerate}[tcc]

\item some A 1. some A
\item some B
\end{enumerate} 2. some B
\begin{enumerate} [tcc,parindent]
\item some A 1. some A
\item some B
\end{enumerate} 2. some B
\begin{enumerate} [parindent]
\item some A 1. some A
\item some B
\end{enumerate} 2 some B
\begin{enumerate} [noindent]
\item some A
\item some B 1. some A
\end{enumerate} 9 some B

New paragraph, for reference.
New paragraph, for reference.

tight allows for very tight lists (no indentation) to be used, for instance, inside quotes.
N.B. don’t use it in normal paragraph mode, otherwise the labels will spill

. outside the default text window. .
miditemsep miditemsep halves items separation, as an alternative to noitemsep from

enumitem

KTEX Code: BETEX Result:

\begin{enumerate} [tcc]

\item some A 1. some A
\item some B
\end{enumerate} 2. some B

\begin{enumerate} [tcc,miditemsep]
\item some A

\item some B 1. some A
\end{enumerate} 2. some B
\begin{enumerate}[tcc,noitemsep]

\item some A 1. some A

\item some B
\end{enumerate} 2. some B

bullet for simple itemized lists, it will replace the default black dot by an ‘open bullet’

ETEX Code: ETEX Result:
\begin{itemize}[tcc,miditemsep]
\item some A « some A
\item some B
\item some C e some B
\end{itemize} e some C
\begin{itemize}[tcc,bullet,
miditemsep]
\item some A o some A
\item some B o some B
\item some C o some C
\end{itemize}

arabic That’s the default enumerate style. Arabic numbers, starting at 1, followed by

a dot.
arabic) Label will be constructed as number followed by a parenthesis.
(arabic) Label will be enclosed by parenthesis.
arabic* (for secondary lists) Label will be constructed by the label of the outer list, this

item number and a final dot.
arabic*) (for secondary lists) Label will be constructed by the label of the outer list, this

item number and a final parenthesis.

roman This and below keys are the same as the arabic ones, but using lower case

roman numbers.)
roman) lower case roman number, followed by a parenthesis.

(roman) enclosed by parenthesis.
roman* preceding one followed by roman number and a final dot.
roman*) same, followed by a final parenthesis.

Roman This and below keys are the same as the arabic ones, but using upper case

roman numbers.)
Roman) upper case roman number, followed by a parenthesis.

(Roman) enclosed by parenthesis.
Roman* preceding one followed by roman number and a final dot.
Roman#*) same, followed by a final parenthesis.

alpha This and below keys are the same as the arabic ones, but using lower case alpha
numbers.

alpha)
(alpha)
alphax*

alphax*)
Alpha

Alpha)
(Alpha)
Alpha*
Alpha*)

lower case alpha number, followed by a parenthesis.
enclosed by parenthesis.

preceding one followed by alpha number and a final dot.
same, followed by a final parenthesis.

This and below keys are the same as the arabic ones, but using upper case

alpha numbers.
upper case roman number, followed by a parenthesis.

enclosed by parenthesis.
preceding one followed by roman number and a final dot.
same, followed by a final parenthesis.

KETEX Code: BETEX Result:
i. some A
\begin{enumerate}[tcc,roman] B
\item some A ii. some B
\item some B .
\em mae © iii. some C
\end{enumerate}
\begin{enumerate}[tcc,Roman] 1. some A
\item some A
\item some B II. some B
\begin{enumerate} [tcc,alphax*]
\item some A II.a. some A
\item some B
Ve semne © II.b. some B
NGkl Il.c. some C
\item some C
\endfenumerate} . I some C
\begin{enumerate}[tcc,arabic]
\item some A
\item some B 1. some A
\begin{enumerate}[tcc,romanx*)]
\item some A 2. some B
\item some B
\item some C 21) some A
\?nd{enumerate} 2,ﬁ) some B
\item some C
\end{enumerate} 2.iii) some C

3. some C

4 UFRGSCCA-CORE PACKAGE

The ufrgscca-core package defines a set of commands for author’s,
student’s, advisor’s examiner’s names and related info. It is needed by most/all
of the bundled packages.

4.1 Core Forms Commands

\tccbrief \tccbrief {(brief)}
\tcccoadvisorbrief \tcccoadvisorbrief {(brief)}
\tccadvisorsreview \tccadvisorsreview {(brief)}

Those commands are only of use when using ufrgscca-forms. \tccbrief sets
the work initial summary, \tcccoadvisorbrief sets the justification for having
a co-advisor, \tccadvisorsreview sets the advisor’s review.

4.2 Core Global Commands

\location \location {(city)}{(state)}
To redefine the default values of (city) and (state) (Porto Alegre and RS).

\TCCcoord \TCCcoord((title) full name)(gender)
\TCCcoordtitle \TCCcoordtitle {(coordinator denominatiomn)}

\coursecoord \coursecoord((title) full name)(gender)
\coursecoordtitle \coursecoordtitle {(course coordinator denomination)}

(coordinator denomination) and (course coordinator denomination) are the
full "job title’ of their position. (gender) can be either 'm’ or .

\internshipcoord \internshipcoord((title) full name)(gender)
\internshipcoordtitle \internshipcoordtitle {(internship coordinator denomination)}

(coordinator denomination) and (internship coordinator denomination) are
the full ’job title’ of their position. (gender) can be either 'm’ or 'f’.

4.3 Core Specific Commands

The following commands are more or less self-explanatory, (ID) is the
student’s university ID. (Nproc) is the process/request number. (gender) can
be either 'm’ or 'f".

\author \author(last)(first)(gender)
\authorinfo \authorinfo [(Nproc)] {(ID)} {(email)}
\student \student(last)(first)(gender)

\studentinfo \studentinfo [(Nproc)] {(ID)} {(email)}

\advisor
\advisorinfo

\coadvisor
\coadvisorinfo

\examiner
\examinerinfo

\altexaminer
\altexaminerinfo

\tutor

\tutorinfo

\supervisor
\supervisorinfo

report

\advisor(title)(last)(first)(gender)
\advisorinfo {(Institut)} {(title-info)} {(email)} {(phone)}

\coadvisor(title)(last)(first)(gender)
\coadvisorinfo {(Institut)} {(title-info)} {(email)} {(phone)}

\examiner(title)(last)(first)(gender)
\examinerinfo {(Institut)}{(title-info)} {(email)} {(phone)}

\altexaminer(title)(last)(first)(gender)
\altexaminerinfo {(Institut)} {(title-info)} {(email)} {(phone)}

\tutor(title)(last)(first)(gender)
\tutorinfo {(Institut)} {(title-info)} {(email)} {(phone)}

\supervisor(title)(last)(first)(gender)
\supervisorinfo {(register)} {(office)} {(email)} {(phone)}

N.B.: The commands \advisor, \coadvisor, \examiner and
\altexaminer are meant to be used in a ’final work’ doc. The
Macros \tutor and \supervisor in case of an internship report.

D UFRGSCCA-COVER PACKAGE

This package is the one that sets the front pages, depending on the kind
of 'report’ being generated. The default being to generate 3 cover pages: an
identification on, followed by presentation one, then an referral/approval one.

5.1 Package Options

in case the doc is just a class assignment with, possibly, many co-authors.
It changes mainly the front matter, which is simplified (no referral page, for
instance).

internship

nonrequired

\maketitle

in case the doc is an internship report.
in case the internship report is related to a “non required” / “optional” intern-
ship. This option is ignored otherwise.

5.2 Defined Commands

\maketitle

This is the only main command, which will typeset the front matter. It requires
that all specific info be already set up (like work title, author’s name, affiliation,
etc.)

\course
\courseacronym
\graduationtitle
\university
\universityacronym
\universitydivision
\divisiongradcounci
\department
\classcode
\classname

\subject

\course {(arg)}
\courseacronym {(arg)’}
\graduationtitle {(arg)’}
\university {(arg)}
\universityacronym {(arg)}
\universitydivision {(arg)}
1 \divisiongradcouncil {(arg)}
\department {(arg)}
\classcode {(arg)}
\classname {(arg)}
\subject {(arg)}

\tcforms
\tcemptyforms

update: 2023/05/29

c
co
board

In case some customization is needed, one can change them as needed. The
default values are set for the control and automation course at UFRGS/EE.

6 UFRGSCCA-FORMS PACKAGE

This package defines just two user commands to generate specific forms
needed at UFRGS/EE.

6.1 Forms Defined Commands

\tcforms {(formslist)}
\tcemptyforms {(formslist)}

The command \tcforms will generate the many forms ((formslist)) using the
information from local.tex, whilst \tcemptyforms will generate said forms with

‘blanks’ (to be fulfilled by hand, for instance).

(formslist) is a csv list of any of:
reqform-I
reqform-II Registration requirement form.
oadvisor-I

advisor-II (Coadvisor justification form.
approval-I

boardapproval-II
advisorsapproval-I
advisorsapproval-II
receipts-II1
examinersforms-I
examinersforms-II
rectifyapproval-I
rectifyapproval-II
internreqform
internsupervisorform

interntutorform

Boards approval form.

Advisors approval form.
Receipts forms (one per board member).

Grades and correction forms (per board member).

Corrections approval form.

Internship Registration requirement form.
Internship Supervisor evaluation form.
Internship tutor evaluation form.

Please note that those -1’ regards TCC-I, while *-II" regards TCC-II.

7 UFRGSCCA-LISTS PACKAGE

The following packages are always pre-loaded: newfloat, 1istings and
xcolor. It defines a new floating environment. Combined with 1istings one
can typeset exempts of code listing.

7.1 Environment

codelist \begin{codelist} ... \end{codelist}

\caption will be named 'Listing’ (Listagem).

ETEX Code:

\begin{codelist} [htbp]
\caption{sample C code}
\label{codeO1}
\begin{lstlisting}[language=C]

struct i2c_msg

{
__ul6 addr; /* endereco do escravo */
__ul6 flags;
}
\end{lstlisting}
{\sourcecitation{\textcite{Garg:SMA-2000}}}
\end{codelist}

7.2 Declared Commands

listofcodelist \listofcodelist
This will create the "List of ... associated with the codelist environment.

\DeclareNewFloat

family
group

\cmdfactory
\factory
\tcgen@cdef

\DeclareNewFloat {(env-name)} {(file-ext)} {(listname)} {(listofname)}

A new float environment, named env-name, will be created. Captions will be
associated (numbered) as (listname) num:. Finally, an associated command
\listof... will be defined, using (1istofname) as a numberless \chapter title.

ETEX Code:

\def\listingname{Listing}/

\def\listlistingname{List of Listingsl}/
\DeclareNewFloat{codelist}{lox}{\listingname}{\listlistingname}%/
%% after that, one can do as in the previous example

hle

%% the list of, will be created as

\listofcodelist

8 UFRGSCCA-GEN PACKAGE (EXTENDED DOCUMEN-
TATION)

Just two set of commands are defined, one is kind of a ‘command factory’
aimed at creating macros in a standard way, while the other helps create ’case
like” commands.

8.1 Package Options

sets the family name, defaults to tcdef.
sets the group name, defaults to gen.

8.2 Defined Commands

\cmdfactory(fam)(grp)(cmd-list)
\factory(fam)(grp)(cmd)
\tcgen@cdef (fam)(grp)(cmd)(new-val)

\cmdfactory is the actual command meant to be used (the other two are just
auxiliary ones). (cmd-1st) is a csv list of commands. (fam) is the command
family (defaults to tcdef) and (grp) is the family group (defaults to gen).
The newly created commands will be based on \tcgen@cdef (the actual
assigment command) having the form \cmd {(new-val)}, accepting a single
mandatory value. Internally (new-val) will be stored in a macro likely named
\fam@grp@cmd .

\factory is basically the same as \cmdfactory, whilst to create just one new
command (it is the command called by \cmdfactory via \forcsvlist.)

\mkswitch \mkswitch [(default)] {(sw-name)}

\addcase \addcase {(sw-name)} {(str-case)} {(code)}
mkswitch will create a command, \sw-name {(case)}, which will behave like
a switch/case in other programming languages. (default) is the code to be
executed in case a switching value isn’t defined. \addcase adds cases, one by
one, to the switch. (str-case) can be any \csname valid name. (code) is the
code to be executed.

KTEX Code:
\mkswitch[\gr@depcut] \gr@case@angle
\addcase\gr@case@angle{}{\def\groANG{0}}
\addcase\gr@case@angle{A}{\def\greANG{\gr@Al}}
Toe
%% actual use of the switch
\gr@case@angle{A} 7 this will result in \def\gr@ANG{\grG@A}

9 UFRGSCCA-COORD PACKAGE (EXTENDED DOCUMEN-
TATION)

This package defines a set of auxiliary commands meant to support the
Professor coordinating students work. it will always pre-load the longtable and
ufrgscca-forms packages. One can select the reports/forms to be generated
using the package options or the command \setreports {(keys)}

N.B. It might be also useful to use the commands defined at subsec-
tion 6.1, Forms Defined Commands .

9.1 Package/Report Options

calendar (alendar for the period.
checklist g students check list.
report g student control report.
reportxinfo report additional info.
boards exam board dates.
boarddates exam board dates with highlighted dates.
studentlist a simple student list.
revforms per student reviews forms.
referral per student referral letters.
cocertificate per student coadvisor certificate letter (if any).

9.2 Defined Commands

The report document to be created is composed of 2 main parts:

1. A global preamble, where one sets

\checkdef

\boardstitleB
\boards0BS
\TCCperiod

l.a. the current semester, Course/ TCC/internship coordinator’s names,
ete.

1.b. auxiliary data, like students check list items and

l.c. students data.

2. A ’final part’ whereas one set which reports are to be generated.

9.2.1 Global Commands |

One can (should) use the commands listed at subsection 4.2, Core Global
Commands , and these below:

\checkdef {(checkLC)} {(check-item)} {(check-text)}

Whereas one has a ’'4x5 alphabetic matrix’, lines A to D, columns A
to E. (checkLC) being one element of that matrix (from checkAA up to
checkDE), (chek-item) is a free identifier (to be used with the \checklist),
and (check-text) the text to appear in the ’check list report’ So, for instance:

KETEX Code:

\checkdef{checkAA}{tcc-part}{Rel. Parcial} % this creates the '
check item' tcc-part and associates it with the AA position (first
line, first column), display text 'Rel. Parcial'

\checkdef{checkBA}{partOK}{Aprov. Rel. Parcial} 7 this creates '
partOK' and associates it with BA position

\checkdef{checkAB}{board}{Banca def.} %
\checkdef{checkBB}{board-date}{Data defesa} % 'board-date' is
associated with the BB position

\checkdef{checkAE}{tcc-final}{TCC final} %

\checkdef{checkBE}{approval}{Aprovagdo Corregdes} 7%

\checkdef{checkDE}{exam}{Em Exame} % 'exam' (display 'Em
Exame') is associated with the DE position

Te

hte

%% later on, one can use (inside a \NewStudent command)

\checklist{tcc-part,partOK,exam} % this will, for a
given student, 'mark' the 'tcc-part', 'partOK' and 'exam' items.

Be aware that, \checkdef can and should be only used at the preamble, whereas
\checklist can only be used at the 'student data definition’ context (meaning,
inside the \NewStudent command).

Final Work Specific

\boardstitleB {(titleB)}
\boards0BS {(obs)}
\TCCperiod {(semester)}

boardstitleB sets a 2nd title line for the ’boards schedule report’. \boards0BS
allows to add an observation ((obs)) for the 'boards schedule report’, finally,
\TCCperiod {(s)}ets the current semester value.

\tcccalendarreset
\tcccalendarevent

\tcccalendarreset
\tcccalendarevent {(week)} {(description)}

\tcccalendareventdate \tcccalendareventdate {(date)}

update: 2023/05/29

\tcceventAweek
\tcceventBweek

\tcceventJweek

With \tcccalendarevent one defines the many calendar events. (week) de-
fines the event’s week, and (description) the associated text. Furthermore
\tcccalendareventdate defines the associated (date). \tcccalendarevent is,
normally, pre-set in the ufrgscca-ptBR-coord.def file, but can be redefined using
first \tcccalendarreset.

\tcceventAweek {(week num.)}
\tcceventBweek {(week num.)}

\tcceventJweek {(week num.)}

Those macros allow to change the default week value for the calendar’s events.

Internship Specific

\intershipcommitdates \intershipcommitdates {(date I)}date II

\NewStudent

Use \intershipcommitdates to set the semester deadlines. Both dates must be
given in the dd/mm/yyyy format. (date I) is the deadline for a given report
still be fully evaluated. After (date I) the given internship will be in “exam”.
If the student report isn’t submitted until (date II) the student will fail with
an “FF7” grade.

9.2.2 Global Commands !

\NewStudent {(studentname)} {(code)?}

This is the main command describing each (student) associated work, advisor
and exam board. In (code) one should use the commands defined in subsec-
tion 4.3, Core Specific Commands , and subsubsection 9.2.3, Student Specific
Commands (although one can use any valid ¥TEX 2z preamble code, keep
in mind those will be executed BEFORE \begin{document}), to describe a
student work.

So, for instance:

ETEX Code:

\NewStudent{Artur}{
\student{last}{first} [m]

\studentinfo[]{243716}{email@somewhere}
\TCCtitle{work title}

\advisor{de Amorin}{Heraldo José}[m]
\coadvisor{Camargo Nardelli}{Vitor} [m]
\examinergrades{9.2}{8.5}{9.2}
\examiner{Gétz}{Marcelo} [m]
\examinergrades{10}{9.5}{9.5}
\examiner{Comparsi Laranja}{Rafael Antdnio}
\examinergrades{8.5}{8.5}{8}
\altexaminer{Ventura Bayan Henriques}{Renato}
hle

hle

\timeslot [Teams]{12/11}{15:30}

\studentFate[Dismiss] %% FF or Dismiss 77

N.B.: Internally, \NewStudent will create a command named
\studentname, with a hook named \studentname.hook (the dot
is part of the hook’s name).

\NewInternshipStudent \NewInternshipStudent {(studentname)}{(code)}

This is the main command describing each (student) associated internship, tutor
and advisor. In (code) one should use the commands defined in subsection 4.3,
Core Specific Commands , and subsubsection 9.2.3, Student Specific Commands
(although one can use any valid KTEX 2 preamble code, keep in mind those
will be executed BEFORE \begin{document}), to describe a student internship.

So, for instance:

\studentFate

\checklist

\studenttimeslot
\timeslot

ETEX Code:

\NewStudent{Artur}{
\student{last}{first} [m]
\studentinfo[]{243716}{email@somewhere}
\internship{Empresa I}{P\&D}{10/10/22}{20/12/22}{2 Meses}

\supervisor [Eng. I]{do Supervisor}{Nome} [m]
\supervisorinfo{crea I}{posig&o/cargo}{email}{ramal}

\internshipsupervisorgrades{4}{4}{4}{4}{5}
\internshipsupervisorgrades{4}{4}{4}{4}{52}
\internshiptutorgrades{90}
\internshipcoordgrades{90}

\tutor [Prof.~Dr.]{do Tutor I}{Nome} [m]
\tutorinfo{UFRGS}{Instituigdo I-- Cidade, Pais}{email}{ramal}

\studentFate[Dismiss] %% FF or Dismiss 77

N.B.: Internally, \NewInternshipStudent will create a command
named \studentname, with a hook named \studentname.hook
(the dot is part of the hook’s name).

9.2.3 Student Specific Commands

\studentFate [(fate)]

This assigns the (fate) of a student, for those cases that one cannot rely on the
‘calculated one’ (from examiners individual grades). (fate) can be either C or
D (in case a student got in exam), FF for those that haven’t finished the work
or 'Dismiss’ for those that, for whatever reason, got dismissed. The default is
’do nothing’ (no (fate) assigned)

\checklist {(csv-checkitems)}

(csv-checkitems) is a csv list of valid ’items’ (the ones defined by \checkdef)
and it will 'mark’ (check) the corresponding items for a given student.

Final Student Work Specific ones

\studenttimeslot [(local)] {(date)} {(time)}

\timeslot [(local)] {(date)} {(time)}

\timeslot is just an alias of \studenttimeslot. They set, for the Boards
Report, the (local), (date) and (time) in which a student will have its work
presented. Those commands are meant to be used ’inside’ a \NewStudent
command.

\studentTCCtitle \studentTCCtitle {(title)}
\TCCtitle \TCCtitle {(title)}
\studentremark \studentremark {(remark)}

\TCCtitle is also just an alias to \studentTCCtitle which just 'defines’ the
current student “work’s title”. \studentremark just inserts a (remark), which
will appear in the report’s report (...report option).

\DistinctBoard \DistinctBoard

\DefaultBoard \DefaultBoard
Normally, the default, it’s assumed that the student’s advisor will also be a
member of the student’s exam board. For the ones in which this doesn’t holds
true, one should use the \DistinctBoard after informing a student’s name (via
\student) and before informing its advisor name (via \advisor).

For example:

ETEX Code:

\NewStudent{Artur}{
\student{last}{first} [m]

\studentinfo[]{243716}{email@somewhere}

\TCCtitle{work title}

\DistinctBoard

\advisor{de Amorin}{Heraldo José}[m]

\examiner{Gétz}{Marcelo} [m] % He will be the 1st
examiner

\examiner{Comparsi Laranja}{Rafael Anténio} 7 the 2nd

\examiner{Ventura Bayan Henriques}{Renato} 7 the 3rd

}

\examinergrades \examinersgrades {(N1)}{(N2)}{(N3)}

Quite obvious, this set the grades given by an examiner (the one defined by
the "last’ \examiner before this.).

Internship Specific Ones

\studentturnindate \studentturnindate {(date)}

The date, in which, the student submitted the Internship Report. Beware, the
date must be in the day/month/year format.

\internshipsupervisorgrades \internshipsupervisor {(N1)} {(N2)} {(N3)} {(N4)} {(N5)}

Quite obvious, this set the grades given by the supervisor, it’s meant to be
used twice for the two 'grades blocks’.

\internshiptutorgrades \internshipgrades {(N1)}

Quite obvious, this set the grade given by the student tutor.

\internshipcoordgrades \internshipcoordgrades {(N1)}

Quite obvious, this set the grade given by the Internship Coordinator.

Setting Commands

\addtostudent \addtostudent {(student)}{(code)}

(code) will be appended to the command created with \NewStudent . (student)
must be an already defined one, whilst (code) can be anything valid in the
context of a \NewStudent as described in subsubsection 9.2.2, Global Commands
IT .

\setreports \setreports {(rep-list)}

(rep-list) is a csv list of keys as defined at subsection 9.1, Package/Report
Options .

\setstudentlist \setstudentlist {(listID)}{(list)}

This command will define/create a list named (1istID) composed of a csv
(1ist) of student names (as defined by \Newstudent).

\tcreports \tcreports [(rep-list)] {(1istID)}

This is the main command (final work reports), to be used only once, at the
end of the file. It will typeset the reports, as set by \setreports, using the
student list identified by (1istID). (rep-list) is a csv list of keys as defined at
subsection 9.1, Package/Report Options .

\internshipreports \internshipreports [(rep-list)] {(1istID)}

This is the main command (internship reports), to be used only once, at the
end of the file. It will typeset the reports, as set by \setreports, using the
student list identified by (1istID). (rep-list) is a csv list of keys as defined at
subsection 9.1, Package/Report Options .

10 UFRGSCCA-PPC PACKAGE (BETA) (EXTENDED DOC-
UMENTATION)

This contains a set of auxiliary commands to keep track of many indi-
cators whilst writing a PPC' document (which is going to be evaluated based
on said indicators, though the track of those indicators themselves shall not
appear in the final version of it). Keep in mind, when considering the use of it:

showind

indlong
nocomments

\maketitle

\declareindicator
\indicatorDesc
\indicatorText

“it works as is” but it hasn’t being properly debugged, and it might change “as
needed locally”.

The packages longtable, pdfcomment, mdframed and ufrgscca-curr will
always be pre-loaded.

10.1 Package Options

(for drafts) it will display the report indicators, of those indicators whose family

wasn’t set to hide.
(for drafts) when displaying an indicator, the long version of them will be used.

(for drafts) comments (created with the command \comment {())} will be sup-
pressed.

10.2 Defined Commands

\maketitle
The command \maketitle is redefined for the specifics of a PPC document.

The next few commands use a finite set of (status) which are a pre-
defined list of:

tbd “To Be Done”

done “Done”

review “to be reviewed”

attention Needs Attention

NSA NSA (portuguese for “do not apply”)

noref no references

EAD EAD (portuguese for “distance learning”)

MD1 course ware (portuguese for “didactic material”)
DOCs other DOCs

default everything else

\declareindicator {(<)}*+>[status]fam,ID,text
\indicatorDesc {(longdesc)} {(extra)}
\indicatorText {(text)}

\declareindicator is the command to create/define a given “indicator”. (fam)
set’s its family group, (ID) is the particular ID/term used to reference it (in a
family of indicators), (text) is a short text describing it (it is the text displayed
when using the \indref below.). \indicatorDesc adds a (longdesc) (long de-
scription) and (extra) (extra long description) to a defined \declareindicator
(it will add those text fields to the “last declared one”). (longdesc) will also be
displayed when using the \indref commands, but only if the indlong option
was used. The (extra) will only be used/displayed with the \PrintIndicators
command. Finally, indicatorText adds a remark (text), which will be also
printed out when using \1stind (akin of an explanation/remark field.)

\indsetstatus
\indsetview
\indsethide

\1lstind

\PrintIndicators

\helpindicators

\ifshowind

\textmark
\comment

\indsetstatus [(status)] {(fam)} {(ID)}

\indsetview {(fam)}

\indsethide {(fam)}

indsetstatus sets the (status) of a given indicator defined by (fam) and (ID).
\indsetview and indsethide {(s)}et the visibility (or not) of a given “family” of
indicators, meaning, if those indicators are going to be visible or not (command
\indref , for instance) if the option showind is in use.

\1stind [(seclvl1)] [(seclvl2)] {(fam)}

\1lstind will produce a sectioning like list, (sec1lvl1) defaults to \section and
(sec1vl12) defaults to \subsection, those indicators marked with an * (when
creating them) will be issued with (seclvli), those marked with an + will be
issued with (seclvl2). The indicator’s short text will be the sectioning title,
whilst the indicator’s 'text’ (the one assigned with indicatorText will be the
sectioning body.)

\PrintIndicators [(fam)]

\PrintIndicators will produce a “list of contents” like list (with cross reference
to all used \indref pages). It will either issue a list of all \declareindicator
or just the ones belonging to (fam). (fam) can be a csv list of families. Each
entry will be composed by indicator’s “family”, “ID”, “short text”, “long text”
and “extra description” but not the text issued with \indicatorText .

\helpindicators

This will just prints, middle text, a quick “help text” listing the few main
“indicators related command” (to help out those less WTEX 2 savvy writers.)

\ifshowind {(code-ifshow)} {(code-ifnot)}

Just a helping command, based on the package options. If the option showind
was used, (code-ifshow) is executed, otherwise (code-ifnot).

\textmark [(status)] {(text)}
\comment [(status)] {(title)} {(text)}
Those are annotation, remark commands. The difference being that \textmark
will just highlight the (text) (using (status) “format”), whilst comment will
create a “remark box” (the same used when inserting an indicator’s reference,
commands below).
N.B.: The command \comment is suppressed unless the option
showind is used.

\indref
\indreflst

\fancyquote

\labelhack

\acrodef

\acro

\acrol

\acrols
\acrosl
\acrofoot
\printacrolist

\indref {(<)}*>[status]fam,ID,comment
\indreflst {(<)}*>[status]fam,IDlist,comment

\indref creates a box (TikZ based mdframed) of the indicator denoted by (fam)
and (ID). The family and IDs will be issued as the “frame title”, the current
indicator’s (status) will be printed out (the whole box will be highlighted
accordly), the short version of the indicator will be used (the long version
will “appear” as a pdfcomment), finally any (comment) will be added to the text
box. Each \indref box will have a link to the indicator’s list (issued with
\PrintIndicators). If the optional argument (status) is used, the indicator’s
status will be updated accordly. The star version also prints the indicator’s
long text.

\indreflst behaves similarly, with the difference that (ID1ist) is a csv list of
IDs (same family), moreover, each item of said list can have the form either
just (ID) or (status:ID), in the last form, that ID will have its status updated,
as well.

\fancyquote [(vspc)] {(text)} {(author)} {(dateref)’

As quick “quote” hack, \fancyquote will typesets a (text) (small size, italic
text, in a minipage environment) followed by (author) and (dateref). This is
meant to be used after a \chapter or \section commands. (vspc) is to be used
in case one has to adjust the vertical space between the sectioning command,
and the quote one.

\labelhack {(text)}

As the name implies, it is a hack. In some cases (which we haven’t manage to
found why /what), hyperref would fail miserably when using the \nameref (in
some cases getting the sectioning correct, but not the name!). This just assures
that \nameref will use the correct sectioning name in those cases.

For Example:
\section{this section}\labelhack{this section}\label{somelabel}

\acrodef {(acrolD)}acronymlong

\acro {(acroID)}

\acrol {(acroID)}

\acrols {(acroID)}

\acrosl {(acrolD)}

\acrofoot {(acroID)}

\printacrolist [(enumkeys)] {(widest)}

Those are yet another acronym hack. \acrodef “creates” an acronym, identified
by (acroID), whose short (acronym) version is (acronym) and the long version in
(long). \acro just typesets the (acronym), \acrol the (long) version. \acrols
typesets the the long version followed by the short (using a comma as separator).
\acrosl prints the short version first. Finally, \acrofoot typesets the short
version in text and the long as a footnote. \printacrolist creates a description
list based on the listofabbrv environment.

ppc.quote

\topicdef
\defaulttopic

\semdef

10.3 Environments

\begin{ppc.quote} ... \end{ppc.quote}

This is just a tailored “quote” environment, using almost all page width, just
in a smaller font size.

11 UFRGSCCA-CURR PACKAGE (BETA) (EXTENDED
DOCUMENTATION)

This package is mostly in beta state, some parts of it should be identified
as alpha state. Those are mostly rushed out adaptations of other “solutions at
hand”. Literally, try to use it at your own peril.

The background of it: To have the ability to “describe” (store the
information in a “structured way”) an University Course Curricula and have
the possibility, later, to presented that same information in many different
ways (including a dependence graph). To an extended, most of it is done (and
working), but hopeless lacking more testing and debugging.

Why is it included in the bundle? Well, it is needed, in part for com-
pleteness, by ufrgscca-ppc, which is “locally important”.

11.1 Commands Creating the many lists

The following commands “describe” a curricula, whereas one is a sequence
of semesters (semID), each semester is composed by a list of classes, (classID),
and each class has a list of dependencies, (classID) as \depdef . All those lists
are stored as csv lists, so “processing them” can be systematized.

\topicdef [(color)] {(topicID)}{(text)}

\defaulttopic {(topicID)}

\topicdef defines (topicID) (to be used when describing a class) and associates
a (text) description and a (color) (for topic highlight). \defaulttopic sets
the default one (if not explicitly given when describing a class).

\semdef (pos)(cod)(semID)

This “defines” a semester, (semID), and associates with it a (cod) (for reference)
and a (pos) (to be used by, for instance, ufrgscca-curr-graph.)

\classdef

\setclass

\classremark

\depdef
\altdef

\bibdef

\LstClass

\LstDep

\LstTopic

\classdef (topicID)(pos)(classID)(cred)(typ)(name)(desc)
\setclass {(classID)}
\classremark {(remark)}

\classdef defines a class, associating with a (topicID), (pos) (for
ufrgscca-curr-graph), (classID), number and type, (typ), of credits, (cred), a
long name, (name) and description, (desc). \classremark adds an extra remark
to it.

The following commands always refer to the “last defined” \classdef un-
less \setclass is used, which changes the “current class” for the following
commands.

\depdef (topicID)(pos)(classID)

\altdef

\depdef inserts/creates a “class dependency” list. The highlight color (if used)
is usually defined by the current class topic (informing (topicID) changes
the highlight color). (pos) is used by ufrgscca-curr-graph to determine the
incident line angle.

\altdef defines/start and alternate dependency list.

\bibdef [(type)] {(text)}
This is used to set a list of bibliographies, one per issued command. The default

(type) value is just bib, possible values (as understood by ufrgscca-curr-tab)
are bib, basic and comp.

11.2 List Processing Commands

Those are the main loop commands that go through the lists.
\LstClass [(cmd)] {(semID)}
\LstDep(cmd)(ang)(classID)
\LstTopic [{cmd)] {(topicID)}
(cmd) can be any command accepting a single argument. It will, in fact, be the
one defining the way the data will, effectively, be presented.
\LstClass will process (cmd) over all classes associated with (semID).
\LstDep will process (cmd) over all dependency classes associated with (classID).
\LstTopic will process (cmd) over all classes associated with (topicID).

12 UFRGSCCA-CURR-TAB PACKAGE (BETA) (EXTEND-
ED DOCUMENTATION)

This is truly a work in progress (based on some old ideas), not really
tested. It shall be revised and, mostly sure, it will be changed (no compatibility
guaranties). It always pre-load ufrgscca-curr and longtable.

\TabEtp
\TabTopic

\GraphSem

12.1 Tabular Presentation Commands

\TabEtp(type)(sectioning)c(semID)

\TabTopic [{type)] {(topicID)}

\TabEtp will construct a longtable with all classes associated with (semID)
(including it’s dependencies and bibliography).

\TabTopic will construct a longtable with all classes associated with (topicID).

13 UFRGSCCA-CURR-GRAPH PACKAGE (BETA) (EX-
TENDED DOCUMENTATION)

13.1 Graph Presentation Command

Ironically, this is the “oldest” of the -curr- packages, but it is the less
tested one, and the one whose code is more prone to fail in unexpected ways,
be advised: do not try to use it, unless you know the internal code well. It
always pre-load ufrgscca-curr (N.B. it also depends on tikz).

\GraphSem [(type)] {(semID)}

It will create a dependency graph for a given (semId). N.B. to start with, it is
highly dependent on the semester sequence, one shall start with first semester
and go from there.

	Introduction
	Current Version

	ufrgscca Class
	Class Options
	Class Declared Commands
	Class Known Hooks

	ufrgscca-abnt Package
	Package Options
	Commands
	Environments
	Tabular New Columns
	enumitem Extra Keys

	ufrgscca-core Package
	Core Forms Commands
	Core Global Commands
	Core Specific Commands

	ufrgscca-cover Package
	Package Options
	Defined Commands

	ufrgscca-forms Package
	Forms Defined Commands

	ufrgscca-lists Package
	Environment
	Declared Commands

	ufrgscca-gen Package (extended documentation)
	Package Options
	Defined Commands

	ufrgscca-coord Package (extended documentation)
	Package/Report Options
	Defined Commands
	Global Commands I
	Global Commands II
	Student Specific Commands

	ufrgscca-ppc Package (beta) (extended documentation)
	Package Options
	Defined Commands
	Environments

	ufrgscca-curr Package (beta) (extended documentation)
	Commands Creating the many lists
	List Processing Commands

	ufrgscca-curr-tab Package (beta) (extended documentation)
	Tabular Presentation Commands

	ufrgscca-curr-graph Package (beta) (extended documentation)
	Graph Presentation Command

