Databrary is a powerful tool for storing and sharing video data and
documentation with other researchers. With the databraryr
package, it becomes even more powerful. Rather than interact with
Databrary through a web browser, users can write their own code to
download participant data or even specific files.
I wrote the Databrary API so I could better understand how the site works under the hood, so that I could streamline my own analysis and data sharing workflows. Let’s get started.
Access to most of the material on Databrary requires prior registration and authorization from an institution. The authorization process requires formal agreement by an institution. But you’ll create an account ID (email) and secure password when you register. Then, when you log in with your new credentials, you’ll select an existing institution (if yours is on the list), a new institution (if yours isn’t), or an existing authorized investigator (if you are a student, postdoc, or collaborator) to request authorization from.
Databrary is a data library, one specialized for storing and sharing video. Let’s see how to use databraryr to access data.
We’ll start simply. Let’s download a test video from volume 1 on Databrary.
The download_video()
function handles this for us.
Running it with the default parameters downloads a simple test video
with numbers than increment. The file is stored in a temporary directory
created by the file system using the function tempdir()
.
The download_asset()
function returns a character string
with the full file name.
Depending on your operating system, the following commands may open the file so that you can play it with your default video player.
Or, you can navigate to the temporary directory to open and play the
video manually. Use tempdir()
to find the directory where
test.mp4
is stored.
Now, let’s see what other files are shared in volume 1. This takes a moment to run because there are many files in this volume.
vol1_df <- list_assets_in_volume()
#>
Downloading: 990 B
Downloading: 990 B
Downloading: 990 B
Downloading: 990 B
Downloading: 810 B
Downloading: 810 B
Downloading: 810 B
Downloading: 810 B
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 800 B
Downloading: 800 B
Downloading: 800 B
Downloading: 800 B
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 290 B
Downloading: 290 B
Downloading: 290 B
Downloading: 290 B
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 240 B
Downloading: 240 B
Downloading: 240 B
Downloading: 240 B
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
The command returns a data frame we can manipulate using standard R commands. Here are the variables in the data frame.
names(vol1_df)
#> [1] "asset_id" "asset_type_id" "duration" "segment"
#> [5] "name" "permission" "size" "mimetype"
#> [9] "extension" "asset_type" "transcodable" "classification"
The asset_type
variable tells us the type of the data
file.
We can summarize the number of files using the
stats::xtabs()
function:
stats::xtabs(~ asset_type, data = vol1_df)
#> asset_type
#> Comma-separated values MPEG-4 video Portable document
#> 1 14 1
So, there are lots of videos and PDFs to examine. Here is a table of the ten longest videos.
vol1_df |>
dplyr::filter(asset_type == "MPEG-4 video") |>
dplyr::select(name, duration) |>
dplyr::mutate(hrs = duration/(60*60*1000)) |>
dplyr::select(name, hrs) |>
dplyr::arrange(desc(hrs)) |>
head() |>
knitr::kable(format = 'html')
name | hrs |
---|---|
Florian | 0.1839478 |
Rick | 0.1839172 |
Florian part 1 | 0.1762317 |
Rick part 1 | 0.1760950 |
Florian part 2 | 0.1055644 |
Rick part 2 | 0.1052267 |
Imagine you are interested in knowing more about this volume, the people who created it, or the agencies that funded it.
The list_volume_owners()
function returns a data frame
with information about the people who created and “own” this particular
dataset. The function has a parameter this_vol_id
which is
an integer, unique across Databrary, that refers to the specific
dataset. The list_volume_owners()
function uses volume 1 as
the default.
list_volume_owners()
#>
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 74 B
Downloading: 74 B
Downloading: 74 B
Downloading: 74 B
Downloading: 72 B
Downloading: 72 B
Downloading: 72 B
Downloading: 72 B
#> vol_id person_id sortname prename
#> 1 1 5 Adolph Karen
#> 2 1 6 Gilmore Rick O.
The command (and many like it) can be “vectorized” using the
purrr
package.
purrr::map(1:15, list_volume_owners) |>
purrr::list_rbind()
#>
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 74 B
Downloading: 74 B
Downloading: 74 B
Downloading: 74 B
Downloading: 72 B
Downloading: 72 B
Downloading: 72 B
Downloading: 72 B
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 170 B
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 16 kB
Downloading: 16 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 94 B
Downloading: 94 B
Downloading: 94 B
Downloading: 94 B
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 100 B
Downloading: 100 B
Downloading: 100 B
Downloading: 100 B
Downloading: 16 kB
Downloading: 16 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 68 B
Downloading: 68 B
Downloading: 68 B
Downloading: 68 B
Downloading: 94 B
Downloading: 94 B
Downloading: 94 B
Downloading: 94 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 120 B
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 140 B
Downloading: 140 B
Downloading: 140 B
Downloading: 140 B
#> vol_id person_id sortname prename
#> 1 1 5 Adolph Karen
#> 2 1 6 Gilmore Rick O.
#> 3 2 6 Gilmore Rick O.
#> 4 4 5 Adolph Karen
#> 5 5 5 Adolph Karen
#> 6 7 5 Adolph Karen
#> 7 8 11 Tamis-LeMonda Catherine
#> 8 9 5 Adolph Karen
#> 9 10 20 Gordon Peter
#> 10 11 5 Adolph Karen
#> 11 11 11 Tamis-LeMonda Catherine
#> 12 11 32 Karasik Lana
#> 13 15 70 Messinger Daniel
The list_volume_metadata()
command gives slightly more
information.
list_volume_metadata()
#>
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
#> vol_id name
#> 1 1 Databrary sponsored workshops and events
#> owners permission
#> 1 Adolph, Karen; Gilmore, Rick O.; Staff; Admin, Databrary 1
#> doi
#> 1 https://doi.org/10.17910/B7159Q
This command can also be “vectorized.”
purrr::map(c(1:50), list_volume_metadata) |>
purrr::list_rbind()
#>
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 4.1 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 9.1 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 65 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 40 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 2.7 kB
Downloading: 2.6 kB
Downloading: 2.6 kB
Downloading: 2.6 kB
Downloading: 2.6 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 16 kB
Downloading: 16 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 23 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.7 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 1.5 kB
Downloading: 650 B
Downloading: 650 B
Downloading: 650 B
Downloading: 650 B
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1 kB
Downloading: 1 kB
Downloading: 1 kB
Downloading: 1 kB
#> vol_id
#> 1 1
#> 2 2
#> 3 4
#> 4 5
#> 5 7
#> 6 8
#> 7 9
#> 8 10
#> 9 11
#> 10 15
#> 11 16
#> 12 23
#> 13 24
#> 14 27
#> 15 28
#> 16 29
#> 17 30
#> 18 31
#> 19 32
#> 20 33
#> 21 34
#> 22 35
#> 23 36
#> 24 37
#> 25 38
#> 26 42
#> 27 43
#> 28 44
#> 29 45
#> 30 46
#> 31 47
#> 32 49
#> 33 50
#> name
#> 1 Databrary sponsored workshops and events
#> 2 Head-mounted camera views of adults in natural environments
#> 3 Crawling and walking infants see the world differently
#> 4 No bridge too high: Infants decide whether to cross based on the probability of falling not the severity of the potential fall
#> 5 Ledge and wedge: Younger and older adults' perception of action possibilities
#> 6 Language, cognitive, and socio-emotional skills from 9 months until their transition to first grade in U.S. children from African-American, Dominican, Mexican, and Chinese backgrounds
#> 7 Children's social and motor play on a playground
#> 8 Numerical Cognition Without Words: Evidence from Amazonia
#> 9 The Ties That Bind: Cradling in Tajikistan
#> 10 Facial expressions in 6-month old infants and their parents in the still face paradigm and attachment at 15 months in the Strange Situation
#> 11 Excerpt volume: Human quadrupeds, primate quadrupedalism, and Uner Tan Syndrome
#> 12 An analysis of optic flow observed by infants during natural activities
#> 13 Excerpt volume: Specificity of learning: Why infants fall over a veritable cliff
#> 14 Preliminary investigation of visual attention to human figures in photographs: Potential considerations for the design of aided AAC visual scene displays
#> 15 Excerpt volume: Learning in the development of infant locomotion
#> 16 Where infants look determines how they see: eye movements and object perception performance in 3-month-olds
#> 17 The Child Affective Facial Expression (CAFE) set
#> 18 Four-month-olds' discrimination of optic flow patterns depicting different directions of observer motion
#> 19 Spatio-temporal tuning of coherent motion evoked responses in 4–6 month old infants and adults
#> 20 Representing exact number visually using mental abacus
#> 21 Development of infants’ attention to faces during the first year (eye-tracking)
#> 22 Number as a cognitive technology: Evidence from Pirahã language and cognition
#> 23 Measuring the development of social attention using free-viewing
#> 24 Visual search and attention to faces during early infancy
#> 25 The development of predictive processes in children’s discourse understanding
#> 26 Head camera clips: parent infant object play at 36 to 57 weeks of age
#> 27 Statistical learning by 8-month-old infants
#> 28 Children use syntax to learn verb meanings
#> 29 Cultural transmission of social essentialism
#> 30 Different Gestalt processing for different actions? Comparing object-directed reaching and looking time measures
#> 31 Examples of rhythmical stereotypical behaviors at 4 and 7 months
#> 32 Cortical responses to optic flow and motion contrast across patterns and speeds
#> 33 Biological Motions
#> owners permission
#> 1 Adolph, Karen; Gilmore, Rick O.; Staff; Admin, Databrary 1
#> 2 Gilmore, Rick O. 1
#> 3 Adolph, Karen 1
#> 4 Adolph, Karen 1
#> 5 Adolph, Karen 1
#> 6 Tamis-LeMonda, Catherine 1
#> 7 Adolph, Karen 1
#> 8 Gordon, Peter 1
#> 9 Karasik, Lana; Tamis-LeMonda, Catherine; Adolph, Karen 1
#> 10 Messinger, Daniel 1
#> 11 Adolph, Karen; Shapiro, Liza 1
#> 12 Gilmore, Rick O. 1
#> 13 Adolph, Karen 1
#> 14 Wilkinson, Krista 1
#> 15 Adolph, Karen 1
#> 16 Johnson, Scott 1
#> 17 LoBue, Vanessa; Thrasher, Cat 1
#> 18 Gilmore, Rick O. 1
#> 19 Gilmore, Rick O. 1
#> 20 Frank, Michael C. 1
#> 21 Frank, Michael C. 1
#> 22 Frank, Michael C. 1
#> 23 Frank, Michael C. 1
#> 24 Frank, Michael C. 1
#> 25 Frank, Michael C. 1
#> 26 Smith, Linda B. 1
#> 27 Saffran, Jenny 1
#> 28 Naigles, Letitia 1
#> 29 Rhodes, Marjorie 1
#> 30 Vishton, Peter 1
#> 31 Fabricius, William 1
#> 32 Gilmore, Rick O. 1
#> 33 Bertenthal, Bennett I. 1
#> doi
#> 1 https://doi.org/10.17910/B7159Q
#> 2 https://doi.org/10.17910/B7WC7S
#> 3 https://doi.org/10.17910/B7RP4H
#> 4 https://doi.org/10.17910/B7MW2K
#> 5 https://doi.org/10.17910/B7H592
#> 6 https://doi.org/10.17910/B7CC74
#> 7 https://doi.org/10.17910/B77P4V
#> 8 https://doi.org/10.17910/B73W2X
#> 9 https://doi.org/10.17910/b7.11
#> 10 https://doi.org/10.17910/B7059D
#> 11 https://doi.org/10.17910/B7VC7G
#> 12 https://doi.org/10.17910/B7QP46
#> 13 https://doi.org/10.17910/B7KW28
#> 14 https://doi.org/10.17910/B7G59R
#> 15 https://doi.org/10.17910/B7BC7T
#> 16 https://doi.org/10.17910/B76P4J
#> 17 https://doi.org/10.17910/B7301K
#> 18 https://doi.org/10.17910/B7Z593
#> 19 https://doi.org/10.17910/B7TG6T
#> 20 https://doi.org/10.17910/B7PP4W
#> 21 https://doi.org/10.17910/B7K01X
#> 22 https://doi.org/10.17910/B7F59F
#> 23 https://doi.org/10.17910/B79G65
#> 24 https://doi.org/10.17910/B75P47
#> 25 https://doi.org/10.17910/B72018
#> 26 https://doi.org/10.17910/B7SG6H
#> 27 https://doi.org/10.17910/B7NP4K
#> 28 https://doi.org/10.17910/B7J01M
#> 29 https://doi.org/10.17910/B7D594
#> 30 https://doi.org/10.17910/B78G6V
#> 31 https://doi.org/10.17910/B74S3K
#> 32 https://doi.org/10.17910/B7101Z
#> 33 https://doi.org/10.17910/B7W884
The permission
variable indicates whether a volume is
visible by others by a user.
So, if you are not logged-in to Databrary, only data that are visible
to the public will be returned. Assuming you are not logged-in,
the above commands will show volumes with permission
equal
to 1. The permission
field derives from a set of constants
the system uses.
db_constants <- assign_constants()
#>
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 12 kB
db_constants$permission
#> [1] "NONE" "PUBLIC" "SHARED" "READ" "EDIT" "ADMIN"
The permission
array is indexed beginning with 0. So the
1th value is “PUBLIC”. So, the 1
means that the volumes
shown above are all visible to the public, and to you.
Volumes that you have not shared and are not visible to the public,
will have permission
equal to 5, or “ADMIN”. We can’t
demonstrate this to you because we don’t have privileges on the same
unshared volume, but you can try it on a volume you’ve created but not
yet shared.
The list_volume()
command returns even more extensive
information about volume 1. The list_volume_funding()
command returns information about any funders listed for the project.
Again, the default volume is 1.
list_volume_funding()
#>
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
#> # A tibble: 2 × 4
#> vol_id funder_id funder_name award
#> <dbl> <int> <chr> <chr>
#> 1 1 100000001 National Science Foundation (NSF) BCS-…
#> 2 1 100000071 National Institute of Child Health and Human Developme… U01-…
This can also be “vectorized.”
purrr::map(c(1:20), list_volume_funding) |>
purrr::list_rbind()
#>
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 800 B
Downloading: 800 B
Downloading: 800 B
Downloading: 800 B
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 1 kB
Downloading: 1 kB
Downloading: 1 kB
Downloading: 1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 1.1 kB
Downloading: 830 B
Downloading: 830 B
Downloading: 830 B
Downloading: 830 B
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 1.4 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 1.3 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
Downloading: 3.7 kB
#> # A tibble: 15 × 4
#> vol_id funder_id funder_name award
#> <int> <int> <chr> <chr>
#> 1 1 100000001 National Science Foundation (NSF) BCS-…
#> 2 1 100000071 National Institute of Child Health and Human Developm… U01-…
#> 3 2 100000001 National Science Foundation (NSF) BCS-…
#> 4 4 100000071 National Institute of Child Health and Human Developm… R37-…
#> 5 5 100000071 National Institute of Child Health and Human Developm… R37-…
#> 6 7 100000071 National Institute of Child Health and Human Developm… R37-…
#> 7 8 100000001 National Science Foundation (NSF) 0721…
#> 8 9 100000071 National Institute of Child Health and Human Developm… R37-…
#> 9 11 100000001 National Science Foundation (NSF) BCS-…
#> 10 15 100000002 National Institutes of Health (NIH) R01H…
#> 11 15 100000002 National Institutes of Health (NIH) R01M…
#> 12 15 100000001 National Science Foundation (NSF) INT-…
#> 13 15 100000001 National Science Foundation (NSF) 1052…
#> 14 15 100000073 Autism Speaks <NA>
#> 15 16 100000071 National Institute of Child Health and Human Developm… R37-…
The list_volume_links()
command returns information
about any external (web) links that have been added to a volume, such as
to related publications or a GitHub repo.
list_volume_links()
#>
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
#> # A tibble: 2 × 3
#> vol_id link_name url
#> <dbl> <chr> <chr>
#> 1 1 Video as data (Invited article in APS Observer) http://www.psychologic…
#> 2 1 2016-12-16 NIH PLAY workshop videocast https://videocast.nih.…