Fitting Hidden Markov Models to Financial Data


[Up] [Top]

Documentation for package ‘fHMM’ version 1.1.0

Help Pages

coef.fHMM_model Model coefficients
compare_models Compare multiple models
compute_residuals Compute (pseudo-) residuals
dax Deutscher Aktienindex (DAX) index data
dax_model_2n DAX 2-state HMM with normal distributions
dax_model_3t DAX 3-state HMM with t-distributions
dax_vw_model DAX/VW hierarchical HMM with t-distributions
decode_states Decode the underlying hidden state sequence
download_data Download financial data from Yahoo Finance
fHMM_data Constructor of an 'fHMM_data' object
fHMM_events Checking events
fHMM_model Constructor of a model object
fHMM_parameters Set and check model parameters
fit_model Model fitting
npar Number of model parameters
npar.fHMM_model Number of model parameters
plot.fHMM_data Plot method for an object of class 'fHMM_data'
plot.fHMM_model Plot method for an object of class 'fHMM_model'
predict.fHMM_model Prediction
prepare_data Prepare data
print.fHMM_controls Set and validate controls
print.fHMM_data Constructor of an 'fHMM_data' object
print.fHMM_events Checking events
print.fHMM_model Model fitting
print.fHMM_parameters Set and check model parameters
reorder_states Reorder estimated states
residuals.fHMM_model Residuals
set_controls Set and validate controls
sim_model_2gamma Simulated 2-state HMM with gamma distributions
sim_model_4lnorm Simulated 4-state HMM with log-normal distributions
spx Standard & Poor’s 500 (S&P 500) index data
summary.fHMM_data Constructor of an 'fHMM_data' object
unemp Unemployment rate data USA
unemp_spx_model_3_2 Unemployment rate and S&P 500 hierarchical HMM
vw Volkswagen AG (VW) stock data