Multi-Response (Multivariate) Interpretable Machine Learning


[Up] [Top]

Documentation for package ‘mrIML’ version 2.1.0

Help Pages

filterRareCommon Filter rare response variables from the data
mrBootstrap Bootstrap mrIML model predictions
mrCoOccurNet Generate a MrIML co-occurrence network
mrCovar Investigate partial dependencies of a covariate for mrIML JSDMs (Joint Species Distribution Models)
mrFlashlight Convert mrIML object into a 'flashlight' object
mrIMLperformance Calculate general performance metrics of a mrIML model
mrIMLpredicts Generates a multi-response predictive model
mrIML_bird_parasites_LM An example mrIML model fit to MRFcov::Bird.parasites
mrIML_bird_parasites_RF An example mrIML model fit to MRFcov::Bird.parasites
mrInteractions Calculate and visualize feature interactions
mrPdPlotBootstrap Bootstrap Partial Dependence Plots
mrPerformancePlot Plot Model Performance Comparison
mrShapely Generate SHAP (SHapley Additive exPlanations) Plots for Multiple Models and Responses
mrVip Calculates and helps interpret variable importance for 'mrIML' models.
mrVipPCA Principal Component Analysis of mrIML variable importance
readSnpsPed Conversion to single column per locus from plink file via LEA functionality
resist_components Calculates resistance components from a list of pairwise resistance surfaces