Self-Validated Ensemble Models with Lasso and Relaxed Elastic Net Regression


[Up] [Top]

Documentation for package ‘SVEMnet’ version 2.5.4

Help Pages

SVEMnet-package SVEMnet: Self-Validated Ensemble Models with Relaxed Lasso and Elastic-Net Regression
bigexp_formula Construct a formula for a new response using a bigexp_spec
bigexp_model_matrix Build a model matrix using the spec's stored contrasts
bigexp_prepare Prepare data to match a 'bigexp_spec'
bigexp_terms Create a deterministic expansion spec for wide polynomial and interaction models
bigexp_train Build a spec and prepare training data in one call
coef.svem_model Coefficients for SVEM Models
glmnet_with_cv Fit a glmnet Model with Repeated Cross-Validation
lipid_screen Lipid formulation screening data
plot.svem_binomial Plot Method for SVEM Binomial Models
plot.svem_model Plot Method for SVEM Models (Gaussian / Generic)
plot.svem_significance_test Plot SVEM significance test results for one or more responses
predict.svem_cv Predict for 'svem_cv' objects (and convenience wrapper)
predict.svem_model Predict Method for SVEM Models (Gaussian and Binomial)
predict_cv Predict for 'svem_cv' objects (and convenience wrapper)
print.bigexp_spec Print method for bigexp_spec objects
print.svem_significance_test Print Method for SVEM Significance Test
SVEMnet Fit an SVEMnet Model (with optional relaxed elastic net)
svem_nonzero Coefficient Nonzero Percentages (SVEM)
svem_optimize_random Random-search optimizer with desirabilities, WMT reweighting, CIs, optimal + exploration candidates, and scored originals
svem_random_table_multi Generate a Random Prediction Table from Multiple SVEMnet Models (no refit)
svem_significance_test_parallel SVEM Significance Test with Mixture Support (Parallel Version)
with_bigexp_contrasts Evaluate code with the spec's recorded contrast options