Dynamic Shrinkage Process and Change Point Detection


[Up] [Top]

Documentation for package ‘dsp’ version 1.2.0

Help Pages

abco Adaptive Bayesian Changepoint with Outliers
btf MCMC Sampler for Bayesian Trend Filtering
btf0 MCMC Sampler for Bayesian Trend Filtering: D = 0
btf_bspline MCMC Sampler for B-spline Bayesian Trend Filtering
btf_bspline0 MCMC Sampler for B-spline Bayesian Trend Filtering: D = 0
btf_reg MCMC Sampler for Bayesian Trend Filtering: Regression
btf_sparse Run the MCMC for sparse Bayesian trend filtering
build_Q Compute the quadratic term in Bayesian trend filtering
build_XtX Compute X'X
computeDIC_ASV Function for calculating DIC and Pb (Bayesian measures of model complexity and fit by Spiegelhalter et al. 2002)
credBands Compute Simultaneous Credible Bands
dsp_fit MCMC Sampler for Models with Dynamic Shrinkage Processes
dsp_spec Model Specification
ergMean Compute the ergodic (running) mean.
fit_ASV MCMC Sampler for Adaptive Stchoastic Volatility (ASV) model
fit_paramsASV Helper function for Sampling parameters for ASV model
fit_paramsASV_n Helper function for Sampling parameters for ASV model with a nugget Effect
generate_ly2hat Posterior predictive sampler on the transformed y (log(y^2))
getARpXmat Compute the design matrix X for AR(p) model
getEffSize Summarize of effective sample size
getNonZeros Compute Non-Zeros (Signals)
initCholReg_spam Compute initial Cholesky decomposition for TVP Regression
initChol_spam Compute initial Cholesky decomposition for Bayesian Trend Filtering
initDHS Initialize the evolution error variance parameters
initEvol0 Initialize the parameters for the initial state variance
initEvolParams Initialize the evolution error variance parameters
initSV Initialize the stochastic volatility parameters
init_paramsASV Helper function for initializing parameters for ASV model
init_paramsASV_n Helper function for initializing parameters for ASV model with a nugget effect
invlogit Compute the inverse log-odds
logit Compute the log-odds
ncind Sample components from a discrete mixture of normals
plot.dsp Plot the Bayesian trend filtering fitted values
predict.dsp Predict changepoints from the output of ABCO
print.dsp MCMC Sampler for Models with Dynamic Shrinkage Processes
print.dsp_spec Model Specification
sampleAR1 Sample the AR(1) coefficient(s)
sampleBTF Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM)
sampleBTF_bspline Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM)
sampleBTF_reg Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM)
sampleBTF_reg_backfit (Backfitting) Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM)
sampleBTF_sparse Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM) with additional shrinkage to zero
sampleDSP Sample the dynamic shrinkage process parameters
sampleEvol0 Sample the parameters for the initial state variance
sampleEvolParams Sampler evolution error variance parameters
sampleFastGaussian Sample a Gaussian vector using the fast sampler of BHATTACHARYA et al.
sampleLogVolMu Sample the AR(1) unconditional means
sampleLogVolMu0 Sample the mean of AR(1) unconditional means
sampleLogVols Sample the latent log-volatilities
sampleSVparams Sampler for the stochastic volatility parameters
sampleSVparams0 Sampler for the stochastic volatility parameters using same functions as DHS prior
sample_j_wrap Sampling from 10-component Gaussian Mixture component described in Omori et al. 2007
sample_mat_c Wrapper function for C++ call for sample mat, check pre-conditions to prevent crash
simBaS Compute Simultaneous Band Scores (SimBaS)
simRegression Simulate noisy observations from a dynamic regression model
simRegression0 Simulate noisy observations from a dynamic regression model
simUnivariate Generate univariate signals of different type
spec_dsp Compute the spectrum of an AR(p) model
summary.dsp Summarize DSP MCMC chains
t_create_loc Initializer for location indices for filling in band-sparse matrix
t_initEvolParams_no Initialize the evolution error variance parameters
t_initEvolZeta_ps Initialize the anomaly component parameters
t_initSV Initialize the stochastic volatility parameters
t_sampleAR1 Sample the TAR(1) coefficients
t_sampleBTF Sampler for first or second order random walk (RW) Gaussian dynamic linear model (DLM)
t_sampleEvolParams Sample the thresholded dynamic shrinkage process parameters
t_sampleEvolZeta_ps Sampler for the anomaly component parameters
t_sampleLogVolMu Sample the TAR(1) unconditional means
t_sampleLogVols Sample the latent log-volatilities
t_sampleR_mh Sample the threshold parameter
t_sampleSVparams Sampler for the stochastic volatility parameters
uni.slice Univariate Slice Sampler from Neal (2008)