Ensemble Learning Framework for Diagnostic and Prognostic Modeling


[Up] [Top]

Documentation for package ‘E2E’ version 0.0.3

Help Pages

apply_dia Apply a Trained Diagnostic Model to New Data
apply_pro Apply a Trained Prognostic Model to New Data
bagging_dia Train a Bagging Diagnostic Model
bagging_pro Train a Bagging Prognostic Model
calculate_metrics_at_threshold_dia Calculate Classification Metrics at a Specific Threshold
dt_dia Train a Decision Tree Model for Classification
en_dia Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification
en_pro Train an Elastic Net Cox Proportional Hazards Model
evaluate_model_dia Evaluate Diagnostic Model Performance
evaluate_model_pro Evaluate Prognostic Model Performance
evaluate_predictions_pro Evaluate Prognostic Predictions
figure_dia Plot Diagnostic Model Evaluation Figures
figure_pro Plot Prognostic Model Evaluation Figures
figure_shap Generate and Plot SHAP Explanation Figures
find_optimal_threshold_dia Find Optimal Probability Threshold
gbm_dia Train a Gradient Boosting Machine (GBM) Model for Classification
gbm_pro Train a Gradient Boosting Machine (GBM) for Survival Data
get_registered_models_dia Get Registered Diagnostic Models
get_registered_models_pro Get Registered Prognostic Models
imbalance_dia Train an EasyEnsemble Model for Imbalanced Classification
initialize_modeling_system_dia Initialize Diagnostic Modeling System
initialize_modeling_system_pro Initialize Prognostic Modeling System
lasso_dia Train a Lasso (L1 Regularized Logistic Regression) Model for Classification
lasso_pro Train a Lasso Cox Proportional Hazards Model
lda_dia Train a Linear Discriminant Analysis (LDA) Model for Classification
load_and_prepare_data_dia Load and Prepare Data for Diagnostic Models
load_and_prepare_data_pro Load and Prepare Data for Prognostic Models
min_max_normalize Min-Max Normalization
mlp_dia Train a Multi-Layer Perceptron (Neural Network) Model for Classification
models_dia Run Multiple Diagnostic Models
models_pro Run Multiple Prognostic Models
nb_dia Train a Naive Bayes Model for Classification
print_model_summary_dia Print Diagnostic Model Summary
print_model_summary_pro Print Prognostic Model Summary
qda_dia Train a Quadratic Discriminant Analysis (QDA) Model for Classification
register_model_dia Register a Diagnostic Model Function
register_model_pro Register a Prognostic Model Function
rf_dia Train a Random Forest Model for Classification
ridge_dia Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
ridge_pro Train a Ridge Cox Proportional Hazards Model
rsf_pro Train a Random Survival Forest Model
stacking_dia Train a Stacking Diagnostic Model
stacking_pro Train a Stacking Prognostic Model
stepcox_pro Train a Stepwise Cox Proportional Hazards Model
Surv re-export Surv from survival
svm_dia Train a Support Vector Machine (Linear Kernel) Model for Classification
test_dia Test Data for Diagnostic Models
test_pro Test Data for Prognostic (Survival) Models
train_dia Training Data for Diagnostic Models
train_pro Training Data for Prognostic (Survival) Models
voting_dia Train a Voting Ensemble Diagnostic Model
xb_dia Train an XGBoost Tree Model for Classification