
D
B

C

A

L

1

0

1

0
0

1
1

0

power
source

lamp

+

-

(a)

A B C D L

A 1.00 0.00 0.00 0.00 0.00
B 0.00 1.00 0.00 0.00 0.00
C 0.00 0.00 1.00 0.00 0.00
D 0.00 0.00 0.00 1.00 0.26
L 0.00 0.00 0.00 0.26 1.00

(b)

A B D C L
c1 0 1 1 1 1
c2 1 0 1 1 1
c3 0 0 1 1 1
c4 0 1 1 0 1
c5 1 1 0 0 1
c6 1 0 0 0 1
c7 1 1 1 1 0
c8 1 1 0 1 0
c9 0 1 0 1 0
c10 1 0 0 1 0
c11 0 0 0 1 0
c12 1 1 1 0 0
c13 1 0 1 0 0
c14 0 0 1 0 0
c15 0 1 0 0 0
c16 0 0 0 0 0

(c)

Figure/Table 1: Diagram (a) depicts a simple electrical circuit with three single-pole switches D, B, A, one double-pole switch C,
and one lamp L. Table (c) comprises ideal data on that circuit and Table (b) the correlation matrix corresponding to that data.

Table 1c lists whether the lamp is on (L=1) or off (L=0). That table thus contains all and only the empirically
possible configurations of the five binary factors representing the switches and the lamp. These are exhaustive
and noise-free data for the circuit in Figure 1a. Yet, even though all of the switch positions are causes of the
lamp being on in some combination or other, A, B, and C are pairwise independent of L; only D is weakly
correlated with L, as can be seen from the correlation matrix in Table 1b, which corresponds to Table 1c.

Structures with individual causes and outcomes that are not, or merely weakly, dependent are of course not
restricted to engineered systems. For example, the phenotypic expression of genes often involves interactions
between genes at different loci such that only the presence of particular configurations of alleles across different
loci allow the phenotype to be displayed. Due to such regulatory interactions, alleles at different loci may not
be correlated with the phenotype when studied separately (Cordell 2009, Culverhouse et al. 2002). Bayesian
network methods and standard regression methods struggle to find such structures, even when processing ideal,
noise-free data. Although there exist various protocols for tracing interaction effects involving two or three
exogenous factors, these interaction calculations face tight computational complexity restrictions and quickly
run into multicollinearity issues (Brambor et al. 2006). Standard methods of causal data analysis are simply
not designed to group causes conjunctively and disjunctively (rather their main aim is to quantify effect sizes).

In the example of Figure 1a, a switch position as A=0 can only be identified as cause of L=1 by finding
the whole conjunction of switch positions in which A=0 is indispensable for closing the circuit. More gen-
erally, discovering causal structures exhibiting conjunctivity and disjunctivity calls for a method that tracks
causation as defined by a theory not treating a dependence between individual causes and effects as necessary
for causation and that embeds individual causes in complex Boolean AND- and OR-functions over many other
causes, fitting those functions as a whole to the data. But—and this is a crucial problem—the space of Boolean
functions over even a handful of factors is vast. For n binary factors there exist 22

n
Boolean functions. For the

switch positions in our simple circuit there exist 65536 Boolean functions; if we add only one additional binary
switch that number jumps to 4.3 billion and if we also consider factors with more than two values that number
explodes beyond controllability. That means a method capable of correctly discovering causal structures with
conjunctivity and disjunctivity must find ways to efficiently navigate in that vast space of possibilities.

This is the purpose of CNA. CNA takes data on binary, multi-value or continuous (fuzzy-set) factors as input
and infers causal structures as defined by the so-called INUS theory from it. The INUS theory is a regularity
theory of causation first developed by Mackie (1974) that does not require causes and their outcomes to be
pairwise dependent and is custom-built to account for structures featuring conjunctivity and disjunctivity. CNA
is not the only method for the discovery of INUS structures. Other methods are Logic Regression (Ruczinski et
al. 2003) and Qualitative Comparative Analysis (Ragin 2008).2 But CNA is the only method of its kind that can
process data generated by causal structures with more than one outcome and, hence, can analyze common-cause

2In epidemiology, Rothman’s (Rothman 1976; Rothman and Greenland 2005) sufficient-component cause model also traces INUS
causation, but a proper software implementation is currently still lacking.
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