CRAN Package Check Results for Package CFC

Last updated on 2024-12-22 13:48:19 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.2.0 29.93 62.07 92.00 NOTE
r-devel-linux-x86_64-debian-gcc 1.2.0 19.23 46.20 65.43 NOTE
r-devel-linux-x86_64-fedora-clang 1.2.0 163.18 NOTE
r-devel-linux-x86_64-fedora-gcc 1.2.0 152.88 NOTE
r-devel-windows-x86_64 1.2.0 31.00 99.00 130.00 NOTE
r-patched-linux-x86_64 1.2.0 28.41 58.86 87.27 NOTE
r-release-linux-x86_64 1.2.0 25.88 58.74 84.62 NOTE
r-release-macos-arm64 1.2.0 42.00 NOTE
r-release-macos-x86_64 1.2.0 62.00 NOTE
r-release-windows-x86_64 1.2.0 32.00 96.00 128.00 NOTE
r-oldrel-macos-arm64 1.2.0 46.00 OK
r-oldrel-macos-x86_64 1.2.0 84.00 OK
r-oldrel-windows-x86_64 1.2.0 38.00 120.00 158.00 OK

Check Details

Version: 1.2.0
Check: Rd files
Result: NOTE checkRd: (-1) cfc.tbasis.Rd:23: Lost braces 23 | Assuming one-dimensional \code{p1} and \code{p2} for clarity, the algorithm calculates cumulative incidence function for cuase 1 using a recursive formula: \code{ci1[n+1] = ci1[n] + dci1[n]}, where \code{dci1[n] = 0.5*(p2[n] + p2[n+1])*(p1[n] - p1[n+1])}. The increment in cumulative incidence function for cause 2 is similarly calculated, \code{dci2[n] = 0.5*(p1[n] + p1[n+1])*(p2[n] - p2[n+1])}. These equations guarantee that \code{dci1[n] + dci2[n] = p1[n]*p2[n] - p1[n+1]*p2[n+1]}. Event-free probability is simply calculated as code{efp[n] = p1[n]*p2[n]}. Taken together, this numerical integration ensures that \code{efp[n+1] - efp[n] + dci1[n] + dci2[n] = 0}. | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.