CRAN Package Check Results for Package epigrowthfit

Last updated on 2025-01-23 03:50:32 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.15.3 144.65 94.38 239.03 OK --no-tests
r-devel-linux-x86_64-debian-gcc 0.15.3 133.77 68.54 202.31 OK --no-tests
r-devel-linux-x86_64-fedora-clang 0.15.3 704.52 ERROR
r-devel-linux-x86_64-fedora-gcc 0.15.3 1085.60 ERROR
r-devel-windows-x86_64 0.15.3 143.00 412.00 555.00 ERROR
r-patched-linux-x86_64 0.15.3 187.78 92.47 280.25 OK --no-tests
r-release-linux-x86_64 0.15.3 181.06 94.30 275.36 OK --no-tests
r-release-macos-arm64 0.15.3 208.00 NOTE
r-release-macos-x86_64 0.15.3 685.00 NOTE
r-release-windows-x86_64 0.15.3 144.00 398.00 542.00 ERROR
r-oldrel-macos-arm64 0.15.3 253.00 NOTE
r-oldrel-macos-x86_64 0.15.3 533.00 NOTE
r-oldrel-windows-x86_64 0.15.3 183.00 553.00 736.00 ERROR

Check Details

Version: 0.15.3
Check: tests
Result: ERROR Running ‘coef.R’ Running ‘confint.R’ [48s/78s] Running ‘datetime.R’ Running ‘egf.R’ [7s/10s] Running ‘egf_enum.R’ Running ‘egf_eval.R’ Running ‘egf_examples_day_of_week.R’ Running ‘egf_examples_excess.R’ Running ‘egf_examples_fixed.R’ Running ‘egf_examples_random.R’ [14s/10s] Running ‘egf_link.R’ Running ‘egf_misc.R’ [8s/11s] Running ‘egf_options.R’ Running ‘egf_utils.R’ Running ‘epidemic.R’ Running ‘extract.R’ [7s/10s] Running ‘fitted.R’ Running ‘gi.R’ Running ‘include.R’ [144s/179s] Running ‘language.R’ Running ‘prior.R’ Running ‘profile.R’ [28s/50s] Running ‘summary.R’ Running ‘utils.R’ Running ‘validity.R’ Running ‘zzz.R’ Running the tests in ‘tests/egf_examples_random.R’ failed. Complete output: > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover, egf.cores = 2L) > > > ## exponential ######################################################### > > r <- log(2) / 20 > c0 <- 100 > s <- 0.2 > > mu <- log(c(r, c0)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "exponential", family = "pois"), + nsim = 20L, + seed = 775494L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-05 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 5e-02) + }) Error: max(abs(mm[["gradient"]])) < 5e-05 is not TRUE Execution halted Running the tests in ‘tests/egf_utils.R’ failed. Complete output: > attach(asNamespace("epigrowthfit")) > library(methods) > library(tools) > options(warn = 2L, error = if (interactive()) recover) > example("egf", package = "epigrowthfit"); o.1 <- m1; o.2 <- m2 egf> ## Simulate 'N' incidence time series exhibiting exponential growth egf> set.seed(180149L) egf> N <- 10L egf> f <- function(time, r, c0) { egf+ lambda <- diff(exp(log(c0) + r * time)) egf+ c(NA, rpois(lambda, lambda)) egf+ } egf> time <- seq.int(0, 40, 1) egf> r <- rlnorm(N, -3.2, 0.2) egf> c0 <- rlnorm(N, 6, 0.2) egf> data_ts <- egf+ data.frame(country = gl(N, length(time), labels = LETTERS[1:N]), egf+ time = rep.int(time, N), egf+ x = unlist(Map(f, time = list(time), r = r, c0 = c0))) egf> rm(f, time) egf> ## Define fitting windows (here, two per time series) egf> data_windows <- egf+ data.frame(country = gl(N, 1L, 2L * N, labels = LETTERS[1:N]), egf+ wave = gl(2L, 10L), egf+ start = c(sample(seq.int(0, 5, 1), N, TRUE), egf+ sample(seq.int(20, 25, 1), N, TRUE)), egf+ end = c(sample(seq.int(15, 20, 1), N, TRUE), egf+ sample(seq.int(35, 40, 1), N, TRUE))) egf> ## Estimate the generative model egf> m1 <- egf+ egf(model = egf_model(curve = "exponential", family = "pois"), egf+ formula_ts = cbind(time, x) ~ country, egf+ formula_windows = cbind(start, end) ~ country, egf+ formula_parameters = ~(1 | country:wave), egf+ data_ts = data_ts, egf+ data_windows = data_windows, egf+ se = TRUE) computing a Hessian matrix ... egf> ## Re-estimate the generative model with: egf> ## * Gaussian prior on beta[1L] egf> ## * LKJ prior on all random effect covariance matrices egf> ## (here there happens to be just one) egf> ## * initial value of 'theta' set explicitly egf> ## * theta[3L] fixed at initial value egf> m2 <- egf+ update(m1, egf+ formula_priors = list(beta[1L] ~ Normal(mu = -3, sigma = 1), egf+ Sigma ~ LKJ(eta = 2)), egf+ init = list(theta = c(log(0.5), log(0.5), 0)), egf+ map = list(theta = 3L)) computing a Hessian matrix ... > > > ## egf_sanitize_formula_ts ######################################## > ## egf_sanitize_formula_windows ######################################## > > l1 <- list(cbind(x, y) ~ 1, + cbind(x, y) ~ g, + cbind(x, y) ~ 1 + g, + cbind(x, y) ~ (g), + cbind(x, y) ~ g:h, + cbind(x, y) ~ I(g + h), + cbind(x, y) ~ I(g * h), + cbind(x - 1, cumsum(y)) ~ g) > l2 <- list(~g, + cbind(x, y) ~ g + h, + cbind(x, y) ~ g * h, + cbind(x, y) ~ 0 + g, + cbind(x, y) ~ g - 1, + cbind(x, y) ~ offset(h) + g, + (cbind(x, y)) ~ g, + cbind(x) ~ g, + cbind(x, y, z) ~ g, + rbind(x, y) ~ g) # i.e., anything other than 'cbind' > > stopifnot(identical(lapply(l1, egf_sanitize_formula_ts), + l1[c(1L, 2L, 2L, 2L, 5:8)])) > for (formula in l2) + assertError(egf_sanitize_formula_ts(formula)) > > > ## egf_sanitize_formula_parameters ##################################### > > model <- egf_model(curve = "exponential", family = "pois") > top <- egf_top(model) > > s <- + function(formula) + egf_sanitize_formula_parameters(formula, top, check = TRUE) > > fp1 <- ~x * y + (z | g) + (zz | g/h) > l1 <- rep.int(expr(simplify_terms(fp1)), 2L) > names(l1) <- c("log(r)", "log(c0)") > > fp2 <- expr(replace(fp1, 2:3, expr(quote(log(r)), fp1[[2L]]))) > l2 <- replace(l1, "log(c0)", expr(~1)) > > fp3 <- c(fp2, expr(log(c0) ~ x)) > l3 <- replace(l2, "log(c0)", expr(~x)) > > stopifnot(exprs = { + identical(s(fp1), l1) + identical(s(fp2), l2) + identical(s(fp3), l3) + }) > assertWarning(s(~0 + x)) > > > ## egf_sanitize_formula_priors ######################################### > > p1 <- Normal(mu = 0, sigma = 1) > p2 <- Normal(mu = 1, sigma = c(0.5, 1)) > p3 <- Normal(mu = -1, sigma = 2) > p4 <- LKJ(eta = 1) > > fp. <- list(foo(bar) ~ p1, + baz ~ p1, + beta ~ p1, + theta[[1L]] ~ p1, + theta[2:3] ~ p2, + theta[-(1:5)] ~ p3, + theta[replace(logical(6L), 4L, TRUE)] ~ p1, + Sigma ~ p4) > > ip. <- list( + top = list(names = c("foo(bar)", "baz"), family = "norm"), + bottom = list( + beta = list(length = 4L, family = "norm"), + theta = list(length = 6L, family = "norm"), + Sigma = list(length = 1L, family = c("lkj", "wishart", "invwishart"), + rows = 4L))) > > priors <- egf_sanitize_formula_priors(formula = fp., info = ip.) > > p2.elt <- + function(i) { + p2[["parameters"]][["sigma"]] <- p2[["parameters"]][["sigma"]][[i]] + p2 + } > > stopifnot(exprs = { + is.list(priors) + length(priors) == 2L + identical(names(priors), c("top", "bottom")) + + identical(priors[["top"]], + `names<-`(list(p1, p1), ip.[["top"]][["names"]])) + identical(priors[["bottom"]], + list(beta = list(p1, p1, p1, p1), + theta = list(p1, p2.elt(1L), p2.elt(2L), p1, NULL, p3), + Sigma = list(p4))) + }) > > > ## egf_make_frame ###################################################### > > model <- egf_model(curve = "exponential", family = "pois") > > formula_ts <- cbind(day, count) ~ country > formula_windows <- cbind(left, right) ~ country > formula_parameters <- list(`log(r)` = ~x1 + (1 | g1) + (1 | g1:g2), + `log(c0)` = ~(1 | g3)) > > data_ts <- data.frame(country = gl(6L, 11L), + day = seq.int(0, 10, by = 1), + count = rpois(11L, 100 * exp(0.04 * 0:10))) > data_windows <- data.frame(country = gl(3L, 2L), + left = rep.int(c(0, 5), 3L), + right = rep.int(c(5, 10), 3L), + x1 = c(5.00, 8.34, -0.57, -7.19, -9.71, 1.25), + x2 = rnorm(6L), + x3 = rnorm(6L), + g1 = c("a", "b", "b", "b", "b", "a"), + g2 = c("c", "d", "d", "d", "c", "c"), + g3 = c("f", "f", "e", "e", "e", "f")) > > subset_ts <- quote(day > 0) > subset_windows <- quote(x1 < 0) > select_windows <- quote(.) > > na_action_ts <- "pass" > na_action_windows <- "omit" > > frame <- egf_make_frame(model = model, + formula_ts = formula_ts, + formula_windows = formula_windows, + formula_parameters = formula_parameters, + data_ts = data_ts, + data_windows = data_windows, + subset_ts = subset_ts, + subset_windows = subset_windows, + select_windows = select_windows, + na_action_ts = na_action_ts, + na_action_windows = na_action_windows) > > stopifnot(exprs = { + is.list(frame) + length(frame) == 4L + identical(names(frame), c("ts", "windows", "parameters", "extra")) + }) > > l1 <- frame[["ts"]] > l1.e <- data.frame(ts = gl(2L, 10L, labels = 2:3), + window = factor(rep.int(c(NA, 1, 2, NA, 3, NA), + c(1L, 4L, 5L, 1L, 4L, 5L)), + labels = sprintf("window_%d", 1:3)), + time = rep.int(seq.int(1, 10, by = 1), 2L), + x = data_ts[["count"]][c(NA, 14:22, NA, 25:33)]) > attr(l1.e, "first") <- c(1L, 5L, 11L) > attr(l1.e, "last") <- c(5L, 10L, 15L) > stopifnot(identical(l1, l1.e)) > > l2 <- frame[["windows"]] > l2.e <- data.frame(ts = factor(c(2, 2, 3)), + window = gl(3L, 1L, labels = sprintf("window_%d", 1:3)), + start = c(1, 5, 1), + end = c(5, 10, 5)) > stopifnot(identical(l2, l2.e)) Error: identical(l2, l2.e) is not TRUE Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.15.3
Check: tests
Result: ERROR Running ‘coef.R’ [7s/11s] Running ‘confint.R’ [52s/95s] Running ‘datetime.R’ Running ‘egf.R’ Running ‘egf_enum.R’ Running ‘egf_eval.R’ Running ‘egf_examples_day_of_week.R’ Running ‘egf_examples_excess.R’ Running ‘egf_examples_fixed.R’ Running ‘egf_examples_random.R’ [109s/96s] Running ‘egf_link.R’ Running ‘egf_misc.R’ Running ‘egf_options.R’ Running ‘egf_utils.R’ Running ‘epidemic.R’ Running ‘extract.R’ Running ‘fitted.R’ Running ‘gi.R’ Running ‘include.R’ [274s/327s] Running ‘language.R’ Running ‘prior.R’ Running ‘profile.R’ [32s/62s] Running ‘summary.R’ [8s/10s] Running ‘utils.R’ Running ‘validity.R’ Running ‘zzz.R’ Running the tests in ‘tests/egf_examples_random.R’ failed. Complete output: > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover, egf.cores = 2L) > > > ## exponential ######################################################### > > r <- log(2) / 20 > c0 <- 100 > s <- 0.2 > > mu <- log(c(r, c0)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "exponential", family = "pois"), + nsim = 20L, + seed = 775494L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-05 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 5e-02) + }) > > > ## subexponential ###################################################### > > alpha <- log(2) / 20 > c0 <- 100 > p <- 0.95 > s <- 0.2 > > mu <- c(log(alpha), log(c0), qlogis(p)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "subexponential", family = "pois"), + nsim = 20L, + seed = 653927L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(beta[3L] ~ Normal(mu = qlogis(p), sigma = 0.05), + theta[3L] ~ Normal(mu = log(s), sigma = 0.25), + Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-04 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) > > > ## gompertz ############################################################ > > alpha <- log(2) / 20 > tinfl <- 100 > K <- 25000 > s <- 0.2 > > mu <- log(c(alpha, tinfl, K)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "gompertz", family = "pois"), + nsim = 20L, + seed = 685399L, + mu = mu, + Sigma = Sigma, + cstart = 10) > oo <- options(warn = 1L) # FIXME: diagnose NA/NaN function evaluation > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) Warning in nlminb(start = par, objective = fn, gradient = gr, control = control, : NA/NaN function evaluation > options(oo) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-04 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) > > > ## logistic ############################################################ > > r <- log(2) / 20 > tinfl <- 100 > K <- 25000 > s <- 0.2 > > mu <- log(c(r, tinfl, K)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "logistic", family = "pois"), + nsim = 20L, + seed = 397981L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 1e-02 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 1e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) Error: max(abs(mm[["gradient"]])) < 0.01 is not TRUE Execution halted Running the tests in ‘tests/egf_utils.R’ failed. Complete output: > attach(asNamespace("epigrowthfit")) > library(methods) > library(tools) > options(warn = 2L, error = if (interactive()) recover) > example("egf", package = "epigrowthfit"); o.1 <- m1; o.2 <- m2 egf> ## Simulate 'N' incidence time series exhibiting exponential growth egf> set.seed(180149L) egf> N <- 10L egf> f <- function(time, r, c0) { egf+ lambda <- diff(exp(log(c0) + r * time)) egf+ c(NA, rpois(lambda, lambda)) egf+ } egf> time <- seq.int(0, 40, 1) egf> r <- rlnorm(N, -3.2, 0.2) egf> c0 <- rlnorm(N, 6, 0.2) egf> data_ts <- egf+ data.frame(country = gl(N, length(time), labels = LETTERS[1:N]), egf+ time = rep.int(time, N), egf+ x = unlist(Map(f, time = list(time), r = r, c0 = c0))) egf> rm(f, time) egf> ## Define fitting windows (here, two per time series) egf> data_windows <- egf+ data.frame(country = gl(N, 1L, 2L * N, labels = LETTERS[1:N]), egf+ wave = gl(2L, 10L), egf+ start = c(sample(seq.int(0, 5, 1), N, TRUE), egf+ sample(seq.int(20, 25, 1), N, TRUE)), egf+ end = c(sample(seq.int(15, 20, 1), N, TRUE), egf+ sample(seq.int(35, 40, 1), N, TRUE))) egf> ## Estimate the generative model egf> m1 <- egf+ egf(model = egf_model(curve = "exponential", family = "pois"), egf+ formula_ts = cbind(time, x) ~ country, egf+ formula_windows = cbind(start, end) ~ country, egf+ formula_parameters = ~(1 | country:wave), egf+ data_ts = data_ts, egf+ data_windows = data_windows, egf+ se = TRUE) computing a Hessian matrix ... egf> ## Re-estimate the generative model with: egf> ## * Gaussian prior on beta[1L] egf> ## * LKJ prior on all random effect covariance matrices egf> ## (here there happens to be just one) egf> ## * initial value of 'theta' set explicitly egf> ## * theta[3L] fixed at initial value egf> m2 <- egf+ update(m1, egf+ formula_priors = list(beta[1L] ~ Normal(mu = -3, sigma = 1), egf+ Sigma ~ LKJ(eta = 2)), egf+ init = list(theta = c(log(0.5), log(0.5), 0)), egf+ map = list(theta = 3L)) computing a Hessian matrix ... > > > ## egf_sanitize_formula_ts ######################################## > ## egf_sanitize_formula_windows ######################################## > > l1 <- list(cbind(x, y) ~ 1, + cbind(x, y) ~ g, + cbind(x, y) ~ 1 + g, + cbind(x, y) ~ (g), + cbind(x, y) ~ g:h, + cbind(x, y) ~ I(g + h), + cbind(x, y) ~ I(g * h), + cbind(x - 1, cumsum(y)) ~ g) > l2 <- list(~g, + cbind(x, y) ~ g + h, + cbind(x, y) ~ g * h, + cbind(x, y) ~ 0 + g, + cbind(x, y) ~ g - 1, + cbind(x, y) ~ offset(h) + g, + (cbind(x, y)) ~ g, + cbind(x) ~ g, + cbind(x, y, z) ~ g, + rbind(x, y) ~ g) # i.e., anything other than 'cbind' > > stopifnot(identical(lapply(l1, egf_sanitize_formula_ts), + l1[c(1L, 2L, 2L, 2L, 5:8)])) > for (formula in l2) + assertError(egf_sanitize_formula_ts(formula)) > > > ## egf_sanitize_formula_parameters ##################################### > > model <- egf_model(curve = "exponential", family = "pois") > top <- egf_top(model) > > s <- + function(formula) + egf_sanitize_formula_parameters(formula, top, check = TRUE) > > fp1 <- ~x * y + (z | g) + (zz | g/h) > l1 <- rep.int(expr(simplify_terms(fp1)), 2L) > names(l1) <- c("log(r)", "log(c0)") > > fp2 <- expr(replace(fp1, 2:3, expr(quote(log(r)), fp1[[2L]]))) > l2 <- replace(l1, "log(c0)", expr(~1)) > > fp3 <- c(fp2, expr(log(c0) ~ x)) > l3 <- replace(l2, "log(c0)", expr(~x)) > > stopifnot(exprs = { + identical(s(fp1), l1) + identical(s(fp2), l2) + identical(s(fp3), l3) + }) > assertWarning(s(~0 + x)) > > > ## egf_sanitize_formula_priors ######################################### > > p1 <- Normal(mu = 0, sigma = 1) > p2 <- Normal(mu = 1, sigma = c(0.5, 1)) > p3 <- Normal(mu = -1, sigma = 2) > p4 <- LKJ(eta = 1) > > fp. <- list(foo(bar) ~ p1, + baz ~ p1, + beta ~ p1, + theta[[1L]] ~ p1, + theta[2:3] ~ p2, + theta[-(1:5)] ~ p3, + theta[replace(logical(6L), 4L, TRUE)] ~ p1, + Sigma ~ p4) > > ip. <- list( + top = list(names = c("foo(bar)", "baz"), family = "norm"), + bottom = list( + beta = list(length = 4L, family = "norm"), + theta = list(length = 6L, family = "norm"), + Sigma = list(length = 1L, family = c("lkj", "wishart", "invwishart"), + rows = 4L))) > > priors <- egf_sanitize_formula_priors(formula = fp., info = ip.) > > p2.elt <- + function(i) { + p2[["parameters"]][["sigma"]] <- p2[["parameters"]][["sigma"]][[i]] + p2 + } > > stopifnot(exprs = { + is.list(priors) + length(priors) == 2L + identical(names(priors), c("top", "bottom")) + + identical(priors[["top"]], + `names<-`(list(p1, p1), ip.[["top"]][["names"]])) + identical(priors[["bottom"]], + list(beta = list(p1, p1, p1, p1), + theta = list(p1, p2.elt(1L), p2.elt(2L), p1, NULL, p3), + Sigma = list(p4))) + }) > > > ## egf_make_frame ###################################################### > > model <- egf_model(curve = "exponential", family = "pois") > > formula_ts <- cbind(day, count) ~ country > formula_windows <- cbind(left, right) ~ country > formula_parameters <- list(`log(r)` = ~x1 + (1 | g1) + (1 | g1:g2), + `log(c0)` = ~(1 | g3)) > > data_ts <- data.frame(country = gl(6L, 11L), + day = seq.int(0, 10, by = 1), + count = rpois(11L, 100 * exp(0.04 * 0:10))) > data_windows <- data.frame(country = gl(3L, 2L), + left = rep.int(c(0, 5), 3L), + right = rep.int(c(5, 10), 3L), + x1 = c(5.00, 8.34, -0.57, -7.19, -9.71, 1.25), + x2 = rnorm(6L), + x3 = rnorm(6L), + g1 = c("a", "b", "b", "b", "b", "a"), + g2 = c("c", "d", "d", "d", "c", "c"), + g3 = c("f", "f", "e", "e", "e", "f")) > > subset_ts <- quote(day > 0) > subset_windows <- quote(x1 < 0) > select_windows <- quote(.) > > na_action_ts <- "pass" > na_action_windows <- "omit" > > frame <- egf_make_frame(model = model, + formula_ts = formula_ts, + formula_windows = formula_windows, + formula_parameters = formula_parameters, + data_ts = data_ts, + data_windows = data_windows, + subset_ts = subset_ts, + subset_windows = subset_windows, + select_windows = select_windows, + na_action_ts = na_action_ts, + na_action_windows = na_action_windows) > > stopifnot(exprs = { + is.list(frame) + length(frame) == 4L + identical(names(frame), c("ts", "windows", "parameters", "extra")) + }) > > l1 <- frame[["ts"]] > l1.e <- data.frame(ts = gl(2L, 10L, labels = 2:3), + window = factor(rep.int(c(NA, 1, 2, NA, 3, NA), + c(1L, 4L, 5L, 1L, 4L, 5L)), + labels = sprintf("window_%d", 1:3)), + time = rep.int(seq.int(1, 10, by = 1), 2L), + x = data_ts[["count"]][c(NA, 14:22, NA, 25:33)]) > attr(l1.e, "first") <- c(1L, 5L, 11L) > attr(l1.e, "last") <- c(5L, 10L, 15L) > stopifnot(identical(l1, l1.e)) > > l2 <- frame[["windows"]] > l2.e <- data.frame(ts = factor(c(2, 2, 3)), + window = gl(3L, 1L, labels = sprintf("window_%d", 1:3)), + start = c(1, 5, 1), + end = c(5, 10, 5)) > stopifnot(identical(l2, l2.e)) Error: identical(l2, l2.e) is not TRUE Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.15.3
Check: tests
Result: ERROR Running 'coef.R' [5s] Running 'confint.R' [53s] Running 'datetime.R' [1s] Running 'egf.R' [5s] Running 'egf_enum.R' [2s] Running 'egf_eval.R' [2s] Running 'egf_examples_day_of_week.R' [2s] Running 'egf_examples_excess.R' [2s] Running 'egf_examples_fixed.R' [2s] Running 'egf_examples_random.R' [4s] Running 'egf_link.R' [2s] Running 'egf_misc.R' [6s] Running 'egf_options.R' [2s] Running 'egf_utils.R' [6s] Running 'epidemic.R' [2s] Running 'extract.R' [5s] Running 'fitted.R' [5s] Running 'gi.R' [2s] Running 'include.R' [93s] Running 'language.R' [2s] Running 'prior.R' [2s] Running 'profile.R' [38s] Running 'summary.R' [5s] Running 'utils.R' [2s] Running 'validity.R' [1s] Running 'zzz.R' [2s] Running the tests in 'tests/egf_examples_random.R' failed. Complete output: > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover, egf.cores = 2L) > > > ## exponential ######################################################### > > r <- log(2) / 20 > c0 <- 100 > s <- 0.2 > > mu <- log(c(r, c0)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "exponential", family = "pois"), + nsim = 20L, + seed = 775494L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-05 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 5e-02) + }) Error: max(abs(mm[["gradient"]])) < 5e-05 is not TRUE Execution halted Running the tests in 'tests/egf_utils.R' failed. Complete output: > attach(asNamespace("epigrowthfit")) > library(methods) > library(tools) > options(warn = 2L, error = if (interactive()) recover) > example("egf", package = "epigrowthfit"); o.1 <- m1; o.2 <- m2 egf> ## Simulate 'N' incidence time series exhibiting exponential growth egf> set.seed(180149L) egf> N <- 10L egf> f <- function(time, r, c0) { egf+ lambda <- diff(exp(log(c0) + r * time)) egf+ c(NA, rpois(lambda, lambda)) egf+ } egf> time <- seq.int(0, 40, 1) egf> r <- rlnorm(N, -3.2, 0.2) egf> c0 <- rlnorm(N, 6, 0.2) egf> data_ts <- egf+ data.frame(country = gl(N, length(time), labels = LETTERS[1:N]), egf+ time = rep.int(time, N), egf+ x = unlist(Map(f, time = list(time), r = r, c0 = c0))) egf> rm(f, time) egf> ## Define fitting windows (here, two per time series) egf> data_windows <- egf+ data.frame(country = gl(N, 1L, 2L * N, labels = LETTERS[1:N]), egf+ wave = gl(2L, 10L), egf+ start = c(sample(seq.int(0, 5, 1), N, TRUE), egf+ sample(seq.int(20, 25, 1), N, TRUE)), egf+ end = c(sample(seq.int(15, 20, 1), N, TRUE), egf+ sample(seq.int(35, 40, 1), N, TRUE))) egf> ## Estimate the generative model egf> m1 <- egf+ egf(model = egf_model(curve = "exponential", family = "pois"), egf+ formula_ts = cbind(time, x) ~ country, egf+ formula_windows = cbind(start, end) ~ country, egf+ formula_parameters = ~(1 | country:wave), egf+ data_ts = data_ts, egf+ data_windows = data_windows, egf+ se = TRUE) computing a Hessian matrix ... egf> ## Re-estimate the generative model with: egf> ## * Gaussian prior on beta[1L] egf> ## * LKJ prior on all random effect covariance matrices egf> ## (here there happens to be just one) egf> ## * initial value of 'theta' set explicitly egf> ## * theta[3L] fixed at initial value egf> m2 <- egf+ update(m1, egf+ formula_priors = list(beta[1L] ~ Normal(mu = -3, sigma = 1), egf+ Sigma ~ LKJ(eta = 2)), egf+ init = list(theta = c(log(0.5), log(0.5), 0)), egf+ map = list(theta = 3L)) computing a Hessian matrix ... > > > ## egf_sanitize_formula_ts ######################################## > ## egf_sanitize_formula_windows ######################################## > > l1 <- list(cbind(x, y) ~ 1, + cbind(x, y) ~ g, + cbind(x, y) ~ 1 + g, + cbind(x, y) ~ (g), + cbind(x, y) ~ g:h, + cbind(x, y) ~ I(g + h), + cbind(x, y) ~ I(g * h), + cbind(x - 1, cumsum(y)) ~ g) > l2 <- list(~g, + cbind(x, y) ~ g + h, + cbind(x, y) ~ g * h, + cbind(x, y) ~ 0 + g, + cbind(x, y) ~ g - 1, + cbind(x, y) ~ offset(h) + g, + (cbind(x, y)) ~ g, + cbind(x) ~ g, + cbind(x, y, z) ~ g, + rbind(x, y) ~ g) # i.e., anything other than 'cbind' > > stopifnot(identical(lapply(l1, egf_sanitize_formula_ts), + l1[c(1L, 2L, 2L, 2L, 5:8)])) > for (formula in l2) + assertError(egf_sanitize_formula_ts(formula)) > > > ## egf_sanitize_formula_parameters ##################################### > > model <- egf_model(curve = "exponential", family = "pois") > top <- egf_top(model) > > s <- + function(formula) + egf_sanitize_formula_parameters(formula, top, check = TRUE) > > fp1 <- ~x * y + (z | g) + (zz | g/h) > l1 <- rep.int(expr(simplify_terms(fp1)), 2L) > names(l1) <- c("log(r)", "log(c0)") > > fp2 <- expr(replace(fp1, 2:3, expr(quote(log(r)), fp1[[2L]]))) > l2 <- replace(l1, "log(c0)", expr(~1)) > > fp3 <- c(fp2, expr(log(c0) ~ x)) > l3 <- replace(l2, "log(c0)", expr(~x)) > > stopifnot(exprs = { + identical(s(fp1), l1) + identical(s(fp2), l2) + identical(s(fp3), l3) + }) > assertWarning(s(~0 + x)) > > > ## egf_sanitize_formula_priors ######################################### > > p1 <- Normal(mu = 0, sigma = 1) > p2 <- Normal(mu = 1, sigma = c(0.5, 1)) > p3 <- Normal(mu = -1, sigma = 2) > p4 <- LKJ(eta = 1) > > fp. <- list(foo(bar) ~ p1, + baz ~ p1, + beta ~ p1, + theta[[1L]] ~ p1, + theta[2:3] ~ p2, + theta[-(1:5)] ~ p3, + theta[replace(logical(6L), 4L, TRUE)] ~ p1, + Sigma ~ p4) > > ip. <- list( + top = list(names = c("foo(bar)", "baz"), family = "norm"), + bottom = list( + beta = list(length = 4L, family = "norm"), + theta = list(length = 6L, family = "norm"), + Sigma = list(length = 1L, family = c("lkj", "wishart", "invwishart"), + rows = 4L))) > > priors <- egf_sanitize_formula_priors(formula = fp., info = ip.) > > p2.elt <- + function(i) { + p2[["parameters"]][["sigma"]] <- p2[["parameters"]][["sigma"]][[i]] + p2 + } > > stopifnot(exprs = { + is.list(priors) + length(priors) == 2L + identical(names(priors), c("top", "bottom")) + + identical(priors[["top"]], + `names<-`(list(p1, p1), ip.[["top"]][["names"]])) + identical(priors[["bottom"]], + list(beta = list(p1, p1, p1, p1), + theta = list(p1, p2.elt(1L), p2.elt(2L), p1, NULL, p3), + Sigma = list(p4))) + }) > > > ## egf_make_frame ###################################################### > > model <- egf_model(curve = "exponential", family = "pois") > > formula_ts <- cbind(day, count) ~ country > formula_windows <- cbind(left, right) ~ country > formula_parameters <- list(`log(r)` = ~x1 + (1 | g1) + (1 | g1:g2), + `log(c0)` = ~(1 | g3)) > > data_ts <- data.frame(country = gl(6L, 11L), + day = seq.int(0, 10, by = 1), + count = rpois(11L, 100 * exp(0.04 * 0:10))) > data_windows <- data.frame(country = gl(3L, 2L), + left = rep.int(c(0, 5), 3L), + right = rep.int(c(5, 10), 3L), + x1 = c(5.00, 8.34, -0.57, -7.19, -9.71, 1.25), + x2 = rnorm(6L), + x3 = rnorm(6L), + g1 = c("a", "b", "b", "b", "b", "a"), + g2 = c("c", "d", "d", "d", "c", "c"), + g3 = c("f", "f", "e", "e", "e", "f")) > > subset_ts <- quote(day > 0) > subset_windows <- quote(x1 < 0) > select_windows <- quote(.) > > na_action_ts <- "pass" > na_action_windows <- "omit" > > frame <- egf_make_frame(model = model, + formula_ts = formula_ts, + formula_windows = formula_windows, + formula_parameters = formula_parameters, + data_ts = data_ts, + data_windows = data_windows, + subset_ts = subset_ts, + subset_windows = subset_windows, + select_windows = select_windows, + na_action_ts = na_action_ts, + na_action_windows = na_action_windows) > > stopifnot(exprs = { + is.list(frame) + length(frame) == 4L + identical(names(frame), c("ts", "windows", "parameters", "extra")) + }) > > l1 <- frame[["ts"]] > l1.e <- data.frame(ts = gl(2L, 10L, labels = 2:3), + window = factor(rep.int(c(NA, 1, 2, NA, 3, NA), + c(1L, 4L, 5L, 1L, 4L, 5L)), + labels = sprintf("window_%d", 1:3)), + time = rep.int(seq.int(1, 10, by = 1), 2L), + x = data_ts[["count"]][c(NA, 14:22, NA, 25:33)]) > attr(l1.e, "first") <- c(1L, 5L, 11L) > attr(l1.e, "last") <- c(5L, 10L, 15L) > stopifnot(identical(l1, l1.e)) > > l2 <- frame[["windows"]] > l2.e <- data.frame(ts = factor(c(2, 2, 3)), + window = gl(3L, 1L, labels = sprintf("window_%d", 1:3)), + start = c(1, 5, 1), + end = c(5, 10, 5)) > stopifnot(identical(l2, l2.e)) Error: identical(l2, l2.e) is not TRUE Execution halted Flavor: r-devel-windows-x86_64

Version: 0.15.3
Check: installed package size
Result: NOTE installed size is 94.3Mb sub-directories of 1Mb or more: libs 93.7Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.15.3
Check: tests
Result: ERROR Running 'coef.R' [5s] Running 'confint.R' [53s] Running 'datetime.R' [1s] Running 'egf.R' [5s] Running 'egf_enum.R' [2s] Running 'egf_eval.R' [2s] Running 'egf_examples_day_of_week.R' [2s] Running 'egf_examples_excess.R' [2s] Running 'egf_examples_fixed.R' [2s] Running 'egf_examples_random.R' [2s] Running 'egf_link.R' [2s] Running 'egf_misc.R' [5s] Running 'egf_options.R' [2s] Running 'egf_utils.R' [5s] Running 'epidemic.R' [2s] Running 'extract.R' [5s] Running 'fitted.R' [5s] Running 'gi.R' [2s] Running 'include.R' [91s] Running 'language.R' [1s] Running 'prior.R' [1s] Running 'profile.R' [37s] Running 'summary.R' [5s] Running 'utils.R' [2s] Running 'validity.R' [1s] Running 'zzz.R' [1s] Running the tests in 'tests/egf_examples_random.R' failed. Complete output: > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover, egf.cores = 2L) > > > ## exponential ######################################################### > > r <- log(2) / 20 > c0 <- 100 > s <- 0.2 > > mu <- log(c(r, c0)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "exponential", family = "pois"), + nsim = 20L, + seed = 775494L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) Flavor: r-release-windows-x86_64

Version: 0.15.3
Check: tests
Result: ERROR Running 'coef.R' [7s] Running 'confint.R' [65s] Running 'datetime.R' [2s] Running 'egf.R' [7s] Running 'egf_enum.R' [2s] Running 'egf_eval.R' [2s] Running 'egf_examples_day_of_week.R' [3s] Running 'egf_examples_excess.R' [2s] Running 'egf_examples_fixed.R' [3s] Running 'egf_examples_random.R' [49s] Running 'egf_link.R' [2s] Running 'egf_misc.R' [8s] Running 'egf_options.R' [2s] Running 'egf_utils.R' [8s] Running 'epidemic.R' [2s] Running 'extract.R' [7s] Running 'fitted.R' [6s] Running 'gi.R' [2s] Running 'include.R' [127s] Running 'language.R' [2s] Running 'prior.R' [2s] Running 'profile.R' [44s] Running 'summary.R' [7s] Running 'utils.R' [2s] Running 'validity.R' [2s] Running 'zzz.R' [2s] Running the tests in 'tests/egf_examples_random.R' failed. Complete output: > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover, egf.cores = 2L) > > > ## exponential ######################################################### > > r <- log(2) / 20 > c0 <- 100 > s <- 0.2 > > mu <- log(c(r, c0)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "exponential", family = "pois"), + nsim = 20L, + seed = 775494L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-05 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 5e-02) + }) > > > ## subexponential ###################################################### > > alpha <- log(2) / 20 > c0 <- 100 > p <- 0.95 > s <- 0.2 > > mu <- c(log(alpha), log(c0), qlogis(p)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "subexponential", family = "pois"), + nsim = 20L, + seed = 653927L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(beta[3L] ~ Normal(mu = qlogis(p), sigma = 0.05), + theta[3L] ~ Normal(mu = log(s), sigma = 0.25), + Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-04 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) > > > ## gompertz ############################################################ > > alpha <- log(2) / 20 > tinfl <- 100 > K <- 25000 > s <- 0.2 > > mu <- log(c(alpha, tinfl, K)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "gompertz", family = "pois"), + nsim = 20L, + seed = 685399L, + mu = mu, + Sigma = Sigma, + cstart = 10) > oo <- options(warn = 1L) # FIXME: diagnose NA/NaN function evaluation > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > options(oo) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 5e-04 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 5e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) > > > ## logistic ############################################################ > > r <- log(2) / 20 > tinfl <- 100 > K <- 25000 > s <- 0.2 > > mu <- log(c(r, tinfl, K)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "logistic", family = "pois"), + nsim = 20L, + seed = 397981L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(Sigma ~ LKJ(eta = 2))) > > p1 <- as.list(coef(zz)) > p2 <- as.list(coef(mm)) > > stopifnot(exprs = { + max(abs(mm[["gradient"]])) < 1e-02 + all.equal(p1[["beta"]], p2[["beta"]], tolerance = 1e-02) + all.equal(theta2cov(p1[["theta"]]), theta2cov(p2[["theta"]]), tolerance = 2e-02) + }) > > > ## richards ############################################################ > > r <- log(2) / 20 > tinfl <- 100 > K <- 25000 > a <- 1.005 > s <- 0.2 > > mu <- log(c(r, tinfl, K, a)) > Sigma <- diag(rep.int(s^2, length(mu))) > > zz <- simulate(egf_model(curve = "richards", family = "pois"), + nsim = 20L, + seed = 949642L, + mu = mu, + Sigma = Sigma, + cstart = 10) > mm <- egf(zz, + formula_priors = list(beta[4L] ~ Normal(mu = log(a), sigma = 0.005), + theta[4L] ~ Normal(mu = log(s), sigma = 0.25), + Sigma ~ LKJ(eta = 2))) Flavor: r-oldrel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.