CRAN Package Check Results for Package mlr3benchmark

Last updated on 2025-12-25 03:51:22 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.7 6.37 72.79 79.16 ERROR
r-devel-linux-x86_64-debian-gcc 0.1.7 4.96 52.06 57.02 ERROR
r-devel-linux-x86_64-fedora-clang 0.1.7 11.00 125.67 136.67 OK
r-devel-linux-x86_64-fedora-gcc 0.1.7 11.00 128.45 139.45 OK
r-devel-windows-x86_64 0.1.7 7.00 84.00 91.00 OK
r-patched-linux-x86_64 0.1.7 6.03 74.48 80.51 OK
r-release-linux-x86_64 0.1.7 6.53 75.26 81.79 ERROR
r-release-macos-arm64 0.1.7 OK
r-release-macos-x86_64 0.1.7 4.00 59.00 63.00 OK
r-release-windows-x86_64 0.1.7 9.00 85.00 94.00 OK
r-oldrel-macos-arm64 0.1.7 OK
r-oldrel-macos-x86_64 0.1.7 4.00 71.00 75.00 OK
r-oldrel-windows-x86_64 0.1.7 11.00 112.00 123.00 OK

Check Details

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [04:33:26.031] [mlr3] Running benchmark with 8 resampling iterations INFO [04:33:26.240] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [04:33:26.309] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [04:33:26.344] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [04:33:26.398] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [04:33:26.439] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [04:33:26.474] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [04:33:26.515] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [04:33:26.706] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [04:33:26.867] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [9s/11s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [04:33:33.861] [mlr3] Running benchmark with 4 resampling iterations INFO [04:33:34.174] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [04:33:34.268] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:33:34.313] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [04:33:34.353] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [04:33:34.466] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [04:33:37.162] [mlr3] Running benchmark with 18 resampling iterations INFO [04:33:37.290] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [04:33:37.324] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [04:33:37.360] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [04:33:37.394] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [04:33:37.442] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [04:33:37.536] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [04:33:37.616] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [04:33:37.655] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [04:33:37.700] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [04:33:37.802] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [04:33:37.846] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [04:33:37.876] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [04:33:37.923] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [04:33:37.987] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [04:33:38.050] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [04:33:38.109] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [04:33:38.177] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [04:33:38.235] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [04:33:38.335] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [17:15:25.347] [mlr3] Running benchmark with 8 resampling iterations INFO [17:15:25.473] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [17:15:25.572] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [17:15:25.648] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [17:15:25.689] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [17:15:25.717] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [17:15:25.868] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [17:15:25.990] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [17:15:26.328] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [17:15:26.485] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [6s/7s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [17:15:30.682] [mlr3] Running benchmark with 4 resampling iterations INFO [17:15:30.868] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [17:15:30.958] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:15:30.989] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [17:15:31.116] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [17:15:31.429] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [17:15:32.765] [mlr3] Running benchmark with 18 resampling iterations INFO [17:15:32.970] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [17:15:33.067] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [17:15:33.144] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [17:15:33.207] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [17:15:33.277] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [17:15:33.305] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [17:15:33.339] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [17:15:33.365] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [17:15:33.390] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [17:15:33.424] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:15:33.444] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:15:33.520] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:15:33.597] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:15:33.646] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:15:33.726] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:15:33.818] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [17:15:33.919] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [17:15:33.972] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [17:15:34.015] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkAggr > ### Title: Plots for BenchmarkAggr > ### Aliases: autoplot.BenchmarkAggr > > ### ** Examples > > if (requireNamespaces(c("mlr3learners", "mlr3", "rpart", "xgboost"))) { + library(mlr3) + library(mlr3learners) + library(ggplot2) + + set.seed(1) + task = tsks(c("iris", "sonar", "wine", "zoo")) + learns = lrns(c("classif.featureless", "classif.rpart", "classif.xgboost")) + learns$classif.xgboost$param_set$values$nrounds = 50 + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) + obj = as_benchmark_aggr(bm) + + # mean and error bars + autoplot(obj, type = "mean", level = 0.95) + + if (requireNamespace("PMCMRplus", quietly = TRUE)) { + # critical differences + autoplot(obj, type = "cd",style = 1) + autoplot(obj, type = "cd",style = 2) + + # post-hoc friedman-nemenyi + autoplot(obj, type = "fn") + } + + } INFO [16:03:29.849] [mlr3] Running benchmark with 36 resampling iterations INFO [16:03:29.906] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [16:03:29.974] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [16:03:30.046] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [16:03:30.122] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [16:03:30.168] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [16:03:30.205] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [16:03:30.247] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 1/3) INFO [16:03:30.330] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 2/3) INFO [16:03:30.408] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 3/3) INFO [16:03:30.481] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [16:03:30.529] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [16:03:30.561] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [16:03:30.591] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [16:03:30.657] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [16:03:30.707] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [16:03:30.759] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 1/3) INFO [16:03:30.948] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 2/3) INFO [16:03:31.069] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 3/3) INFO [16:03:31.180] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 1/3) INFO [16:03:31.214] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 2/3) INFO [16:03:31.242] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 3/3) INFO [16:03:31.295] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 1/3) INFO [16:03:31.331] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 2/3) INFO [16:03:31.367] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 3/3) INFO [16:03:31.402] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 1/3) INFO [16:03:31.511] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 2/3) INFO [16:03:31.591] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 3/3) INFO [16:03:31.674] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 1/3) INFO [16:03:31.707] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 2/3) INFO [16:03:31.755] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 3/3) INFO [16:03:31.807] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 1/3) INFO [16:03:31.844] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 2/3) INFO [16:03:31.909] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 3/3) INFO [16:03:31.947] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 1/3) INFO [16:03:32.037] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 2/3) INFO [16:03:32.138] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 3/3) Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. INFO [16:03:32.248] [mlr3] Finished benchmark Error: Global Friedman test non-significant (p > 0.05), try type = 'mean' instead. Execution halted Flavor: r-release-linux-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.