CRAN Package Check Results for Package modeltime.ensemble

Last updated on 2025-09-04 05:50:59 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.5 22.00 348.51 370.51 OK
r-devel-linux-x86_64-debian-gcc 1.0.5 13.75 233.67 247.42 OK
r-devel-linux-x86_64-fedora-clang 1.0.5 592.69 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.5 583.69 ERROR
r-devel-windows-x86_64 1.0.5 21.00 261.00 282.00 OK
r-patched-linux-x86_64 1.0.5 21.39 316.00 337.39 OK
r-release-linux-x86_64 1.0.5 22.30 313.40 335.70 OK
r-release-macos-arm64 1.0.5 87.00 OK
r-release-macos-x86_64 1.0.5 195.00 OK
r-release-windows-x86_64 1.0.5 21.00 272.00 293.00 OK
r-oldrel-macos-arm64 1.0.5 98.00 OK
r-oldrel-macos-x86_64 1.0.5 196.00 OK
r-oldrel-windows-x86_64 1.0.5 29.00 371.00 400.00 OK

Check Details

Version: 1.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [164s/302s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > > # Machine Learning > library(tidymodels) ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ── ✔ broom 1.0.9 ✔ recipes 1.3.1 ✔ dials 1.4.1 ✔ rsample 1.3.1 ✔ dplyr 1.1.4 ✔ tibble 3.3.0 ✔ ggplot2 3.5.2 ✔ tidyr 1.3.1 ✔ infer 1.0.9 ✔ tune 2.0.0 ✔ modeldata 1.5.1 ✔ workflows 1.3.0 ✔ parsnip 1.3.3 ✔ workflowsets 1.1.1 ✔ purrr 1.1.0 ✔ yardstick 1.3.2 ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ── ✖ purrr::discard() masks scales::discard() ✖ dplyr::filter() masks stats::filter() ✖ purrr::is_null() masks testthat::is_null() ✖ dplyr::lag() masks stats::lag() ✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches() ✖ recipes::step() masks stats::step() > library(modeltime) > library(modeltime.ensemble) Loading required package: modeltime.resample > library(modeltime.resample) > > # Model dependencies > library(xgboost) Attaching package: 'xgboost' The following object is masked from 'package:dplyr': slice > library(glmnet) Loading required package: Matrix Attaching package: 'Matrix' The following objects are masked from 'package:tidyr': expand, pack, unpack Loaded glmnet 4.1-10 > > # Core Packages > library(timetk) > library(lubridate) Attaching package: 'lubridate' The following objects are masked from 'package:base': date, intersect, setdiff, union > > test_check("modeltime.ensemble") ── Modeltime Ensemble ─────────────────────────────────────────── Ensemble of 3 Models (WEIGHTED) # Modeltime Table # A tibble: 3 × 4 .model_id .model .model_desc .loadings <int> <list> <chr> <dbl> 1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12] 0.5 2 2 <workflow> PROPHET 0.333 3 3 <workflow> GLMNET 0.167 [ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test-conf_by_id.R:6:5', 'test-ensemble_average.R:57:5', 'test-ensemble_model_spec.R:55:5', 'test-nested-ensembles.R:189:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-panel-data.R:175:5'): ensemble_model_spec(): Forecast Jumbled ── Error in `model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)`: invalid type (list) for variable '.model_id_1' Backtrace: ▆ 1. ├─resample_tscv %>% ... at test-panel-data.R:175:5 2. ├─modeltime.ensemble::ensemble_model_spec(...) 3. ├─modeltime.ensemble:::ensemble_model_spec.mdl_time_tbl(...) 4. │ └─modeltime.ensemble:::generate_stacking_results(...) 5. │ └─wflw_spec %>% generics::fit(data_prepared_tbl) 6. ├─generics::fit(., data_prepared_tbl) 7. ├─workflows:::fit.workflow(., data_prepared_tbl) 8. │ └─workflows::.fit_model(workflow, control) 9. │ ├─generics::fit(action_model, workflow = workflow, control = control) 10. │ └─workflows:::fit.action_model(...) 11. │ └─workflows:::fit_from_xy(spec, mold, case_weights, control_parsnip) 12. │ ├─generics::fit_xy(...) 13. │ └─parsnip::fit_xy.model_spec(...) 14. │ └─parsnip:::xy_form(...) 15. │ └─parsnip:::form_form(...) 16. │ └─parsnip:::eval_mod(...) 17. │ └─rlang::eval_tidy(e, env = envir, ...) 18. └─stats::lm(formula = ..y ~ ., data = data) 19. └─base::eval(mf, parent.frame()) 20. └─base::eval(mf, parent.frame()) 21. ├─stats::model.frame(formula = ..y ~ ., data = data, drop.unused.levels = TRUE) 22. └─stats::model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE) [ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [154s/217s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > > # Machine Learning > library(tidymodels) ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ── ✔ broom 1.0.9 ✔ recipes 1.3.1 ✔ dials 1.4.1 ✔ rsample 1.3.1 ✔ dplyr 1.1.4 ✔ tibble 3.3.0 ✔ ggplot2 3.5.2 ✔ tidyr 1.3.1 ✔ infer 1.0.9 ✔ tune 2.0.0 ✔ modeldata 1.5.1 ✔ workflows 1.3.0 ✔ parsnip 1.3.3 ✔ workflowsets 1.1.1 ✔ purrr 1.1.0 ✔ yardstick 1.3.2 ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ── ✖ purrr::discard() masks scales::discard() ✖ dplyr::filter() masks stats::filter() ✖ purrr::is_null() masks testthat::is_null() ✖ dplyr::lag() masks stats::lag() ✖ tidyr::matches() masks rsample::matches(), dplyr::matches(), testthat::matches() ✖ recipes::step() masks stats::step() > library(modeltime) > library(modeltime.ensemble) Loading required package: modeltime.resample > library(modeltime.resample) > > # Model dependencies > library(xgboost) Attaching package: 'xgboost' The following object is masked from 'package:dplyr': slice > library(glmnet) Loading required package: Matrix Attaching package: 'Matrix' The following objects are masked from 'package:tidyr': expand, pack, unpack Loaded glmnet 4.1-10 > > # Core Packages > library(timetk) > library(lubridate) Attaching package: 'lubridate' The following objects are masked from 'package:base': date, intersect, setdiff, union > > test_check("modeltime.ensemble") ── Modeltime Ensemble ─────────────────────────────────────────── Ensemble of 3 Models (WEIGHTED) # Modeltime Table # A tibble: 3 × 4 .model_id .model .model_desc .loadings <int> <list> <chr> <dbl> 1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12] 0.5 2 2 <workflow> PROPHET 0.333 3 3 <workflow> GLMNET 0.167 [ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test-conf_by_id.R:6:5', 'test-ensemble_average.R:57:5', 'test-ensemble_model_spec.R:55:5', 'test-nested-ensembles.R:189:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-panel-data.R:175:5'): ensemble_model_spec(): Forecast Jumbled ── Error in `model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE)`: invalid type (list) for variable '.model_id_1' Backtrace: ▆ 1. ├─resample_tscv %>% ... at test-panel-data.R:175:5 2. ├─modeltime.ensemble::ensemble_model_spec(...) 3. ├─modeltime.ensemble:::ensemble_model_spec.mdl_time_tbl(...) 4. │ └─modeltime.ensemble:::generate_stacking_results(...) 5. │ └─wflw_spec %>% generics::fit(data_prepared_tbl) 6. ├─generics::fit(., data_prepared_tbl) 7. ├─workflows:::fit.workflow(., data_prepared_tbl) 8. │ └─workflows::.fit_model(workflow, control) 9. │ ├─generics::fit(action_model, workflow = workflow, control = control) 10. │ └─workflows:::fit.action_model(...) 11. │ └─workflows:::fit_from_xy(spec, mold, case_weights, control_parsnip) 12. │ ├─generics::fit_xy(...) 13. │ └─parsnip::fit_xy.model_spec(...) 14. │ └─parsnip:::xy_form(...) 15. │ └─parsnip:::form_form(...) 16. │ └─parsnip:::eval_mod(...) 17. │ └─rlang::eval_tidy(e, env = envir, ...) 18. └─stats::lm(formula = ..y ~ ., data = data) 19. └─base::eval(mf, parent.frame()) 20. └─base::eval(mf, parent.frame()) 21. ├─stats::model.frame(formula = ..y ~ ., data = data, drop.unused.levels = TRUE) 22. └─stats::model.frame.default(formula = ..y ~ ., data = data, drop.unused.levels = TRUE) [ FAIL 1 | WARN 1 | SKIP 4 | PASS 85 ] Error: Test failures Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.