The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

ARIMAANN: Time Series Forecasting using ARIMA-ANN Hybrid Model

Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>.

Version: 0.1.0
Depends: R (≥ 2.3.1), stats, forecast, tseries
Published: 2022-10-13
DOI: 10.32614/CRAN.package.ARIMAANN
Author: Ramasubramanian V. [aut, ctb], Mrinmoy Ray [aut, cre]
Maintainer: Mrinmoy Ray <mrinmoy4848 at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: ARIMAANN results

Documentation:

Reference manual: ARIMAANN.pdf

Downloads:

Package source: ARIMAANN_0.1.0.tar.gz
Windows binaries: r-devel: ARIMAANN_0.1.0.zip, r-release: ARIMAANN_0.1.0.zip, r-oldrel: ARIMAANN_0.1.0.zip
macOS binaries: r-release (arm64): ARIMAANN_0.1.0.tgz, r-oldrel (arm64): ARIMAANN_0.1.0.tgz, r-release (x86_64): ARIMAANN_0.1.0.tgz, r-oldrel (x86_64): ARIMAANN_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ARIMAANN to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.