The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In breeding programmes, the observed genetic change is a sum of the contributions of different groups of individuals. Here we show how to partition the genetic mean and variance of breeding values using AlphaPart.
In addition to the contribution of paths to changes in genetic mean, breeding programmes should also consider analysing changes in genetic variance to understand the drivers of genetic change in a population fully. Managing the change in genetic mean and variance in breeding programmes is essential to ensure long-term genetic gain.
#=======================================================================
# Packges
#=======================================================================
#devtools::install_github("AlphaGenes/AlphaPart")
library(AlphaPart)
library(dplyr)
library(ggplot2)
library(ggridges)
#=======================================================================
# Reading and organizing Scenario 1
#=======================================================================
readRDS("./../inst/extdata/AlphaPartCattleSim.rds") %>%
data <- dplyr::mutate(across(generation:mother, as.numeric)) %>%
dplyr::rename(status = type) %>%
dplyr::mutate(across(c("sex", "status"), as.factor)) %>%
dplyr::mutate(path = interaction(sex,status, sep = ":")) %>%
arrange(generation, ind) %>%
select(ind, father, mother, sex, status, path, generation, tbv, pheno) %>%
dplyr::mutate(generation = generation - 20) %>%
droplevels()
# Data head
head(data) %>%
knitr::kable(digits = 2)
ind | father | mother | sex | status | path | generation | tbv | pheno |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | -0.27 | -0.48 |
2 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | 0.75 | 0.89 |
3 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | -0.10 | -0.04 |
4 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | -0.53 | -1.44 |
5 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | 0.70 | 0.88 |
6 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | 0.25 | -0.63 |
# Data size
dim(data)
## [1] 42000 9
ind
- individualfather
and mother
- individual’s parentssex
- individual sexstatus
- if the individual is or not selectedpath
- the path variable used to partition the additive genetic meantbv
- true breeding valuepheno
- phenotypic valueWe use the AlphaPart
function to partition the true breeding values (tbv)
in the data
by the animal sex and status variable combination into females (F) and males (M) non-selected (N) and males selected (S) contributions:
AlphaPart(data, colId = "ind", colFid = "father",
part <-colMid = "mother", colBV = "tbv", colPath = "path")
##
## Size:
## - individuals: 42000
## - traits: 1 (tbv)
## - paths: 3 (F:Non-Selected, M:Non-Selected, M:Selected)
## - unknown (missing) values:
## tbv
## 0
head(part$tbv) %>%
knitr::kable(digits = 2)
ind | father | mother | sex | status | path | generation | pheno | tbv | tbv_pa | tbv_w | tbv_F:Non-Selected | tbv_M:Non-Selected | tbv_M:Selected |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | -0.48 | -0.27 | 0 | -0.27 | 0.00 | -0.27 | 0 |
2 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | 0.89 | 0.75 | 0 | 0.75 | 0.75 | 0.00 | 0 |
3 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | -0.04 | -0.10 | 0 | -0.10 | 0.00 | -0.10 | 0 |
4 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | -1.44 | -0.53 | 0 | -0.53 | -0.53 | 0.00 | 0 |
5 | 0 | 0 | M | Non-Selected | M:Non-Selected | -20 | 0.88 | 0.70 | 0 | 0.70 | 0.00 | 0.70 | 0 |
6 | 0 | 0 | F | Non-Selected | F:Non-Selected | -20 | -0.63 | 0.25 | 0 | 0.25 | 0.25 | 0.00 | 0 |
We use the generic summary.AlphaPart
function to summarize an AlphaPart
object by generation, con*sering:
# Trends in the additve genetic mean
summary(part, by = "generation", FUN = mean)
partMean <-
head(partMean$tbv) %>%
knitr::kable(digits = 2)
generation | N | Sum | F:Non-Selected | M:Non-Selected | M:Selected |
---|---|---|---|---|---|
-20 | 2000 | 0.00 | 0.00 | 0.00 | 0.00 |
-19 | 1000 | -0.12 | 0.00 | 0.00 | -0.12 |
-18 | 1000 | 0.31 | 0.13 | -0.01 | 0.18 |
-17 | 1000 | 0.68 | 0.17 | 0.00 | 0.51 |
-16 | 1000 | 1.14 | 0.34 | 0.01 | 0.79 |
-15 | 1000 | 1.34 | 0.37 | 0.00 | 0.97 |
# Trends in the additive genetic variance
summary(part, by = "generation", FUN = var, cov = TRUE)
partVar <-
head(partVar$tbv) %>%
knitr::kable(digits = 2)
generation | N | Sum | F:Non-Selected | M:Non-Selected | M:Selected | F:Non-SelectedM:Non-Selected | F:Non-SelectedM:Selected | M:Non-SelectedM:Selected |
---|---|---|---|---|---|---|---|---|
-20 | 2000 | 0.30 | 0.15 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 |
-19 | 1000 | 0.31 | 0.15 | 0.07 | 0.08 | 0.00 | 0.00 | 0.00 |
-18 | 1000 | 0.24 | 0.16 | 0.06 | 0.05 | 0.00 | -0.04 | 0.01 |
-17 | 1000 | 0.27 | 0.14 | 0.06 | 0.08 | 0.00 | -0.01 | 0.00 |
-16 | 1000 | 0.19 | 0.11 | 0.06 | 0.03 | 0.00 | -0.01 | 0.00 |
-15 | 1000 | 0.21 | 0.15 | 0.07 | 0.08 | -0.01 | -0.08 | 0.00 |
Distribution of breeding value partitions by sex and selection status (selected males (M(S)), non-selected males (M(N)), and females (F)) over generations.
$tbv %>%
part ggplot(aes(y = as.factor(generation), `tbv_F:Non-Selected`)) +
geom_density_ridges(
aes(fill = "F - Non-Selected", linetype = "F - Non-Selected"),
alpha = .4, point_alpha = 1, rel_min_height = 0.01
+
) geom_density_ridges(
aes(y = as.factor(generation), x= `tbv_M:Non-Selected`, fill = "M - Non-Selected",
linetype = "M - Non-Selected"),
alpha = .4, point_alpha = 1, rel_min_height = 0.01
+
) geom_density_ridges(
aes(y = as.factor(generation), x= `tbv_M:Selected`, fill = "M - Selected",
linetype = "M - Selected"),
alpha = .4, point_alpha = 1, rel_min_height = 0.01
+
) geom_density_ridges(
aes(y = as.factor(generation), x= `tbv`,
fill = "Sum", linetype = "Sum"),
alpha = .4, point_alpha = 1, rel_min_height = 0.01
+
) ylab("Generation") +
xlab("Density plot of breeding value partitions") +
labs(fill = "Path:", linetype = "Path:") +
theme_bw(base_size = 20) +
theme(
legend.position = "top"
)
## Picking joint bandwidth of 0.0624
## Picking joint bandwidth of 0.0073
## Picking joint bandwidth of 0.0357
## Picking joint bandwidth of 0.0918
Partitions of genetic mean and variance by sex and selection status (selected males (M(S)), non-selected males (M(N)), and females (F)) using true breeding values:
$tbv %>%
partMean ggplot(aes(y = Sum, x = generation, colour = "Sum"),
size = 0.1) +
scale_linetype_manual(
values = c("solid", "longdash", "dashed", "dotted"))+
geom_line() +
geom_line(aes(y = `F:Non-Selected`, x = generation,
colour = "F"), alpha = 0.8) +
geom_line(aes(y = `M:Selected`, x = generation,
colour = "M(S)"), alpha = 0.8) +
geom_line(aes(y = `M:Non-Selected`, x = generation,
colour = "M(N)"), alpha = 0.8) +
geom_vline(xintercept = 0, linetype = 2, alpha = 0.3) +
ylab("Genetic Mean") +
xlab("Generation") +
labs(colour = "Path:") +
theme_bw(base_size = 18) +
theme(legend.position = "top")
$tbv %>%
partVar ggplot(aes(y = Sum, x = generation, colour = "Sum")) +
geom_line() +
geom_line(aes(y = `F:Non-Selected`, x = generation,
colour = "F"), alpha = 0.8) +
geom_line(aes(y = `F:Non-SelectedM:Selected`, x = generation,
colour = "F:M(S)"), size =0.5, alpha =0.8) +
geom_line(aes(y = `F:Non-SelectedM:Non-Selected`, x = generation,
colour = "F:M(N)"), size =0.5, alpha =0.6) +
geom_line(aes(y = `M:Non-SelectedM:Selected`, x = generation,
colour = "M(N):M(S)"), size =0.5, alpha =0.6) +
geom_line(aes(y = `M:Selected`, x = generation,
colour = "M(S)"), alpha = 0.8) +
geom_line(aes(y = `M:Non-Selected`, x = generation,
colour = "M(N)"), size =0.5, alpha =0.8) +
geom_vline(xintercept = 0, linetype = 2, alpha = 0.3) +
ylab("Genetic Variance") +
xlab("Generation") +
labs(colour = "Path: ") +
theme_bw(base_size = 18) +
theme(
legend.position = "top"
)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.