The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
AnanseSeurat
package
The AnanseSeurat
package takes pre-processed clustered
single cell objects of scRNAseq and scATACseq or a multiome combination,
and generates files for gene regulatory network (GRN) analysis. It is
part of the scANANSE pipeline. https://doi.org/10.12688/f1000research.130530.1
AnanseSeurat
can be installed from CRAN using
install.packages('AnanseSeurat')
Or to install the developmental branch from github:
library(devtools) # Tools to Make Developing R Packages Easier # Tools to Make Developing R Packages Easier
Sys.unsetenv("GITHUB_PAT")
::install_github("JGASmits/AnanseSeurat@main") remotes
library("AnanseSeurat")
<- './scANANSE/preprocessed_PDMC.Rds'
rds_file <- readRDS(rds_file) pbmc
Next you can output the data from your single cell object, the file
format, config file and sample file are all ready to automate GRN
analysis using anansnake
. https://github.com/vanheeringen-lab/anansnake
export_CPM_scANANSE(
pbmc,min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
RNA_count_assay = 'RNA'
)
export_ATAC_scANANSE(
pbmc,min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
ATAC_peak_assay = 'peaks'
)
# Specify additional contrasts:
<- c('B-naive_B-memory',
contrasts 'B-memory_B-naive',
'B-naive_CD14-Mono',
'CD14-Mono_B-naive')
config_scANANSE(
pbmc,min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
DEGS_scANANSE(
pbmc,min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
Follow the instructions its respective github page, https://github.com/vanheeringen-lab/anansnake After activating the conda environment, use the generated files to run GRN analysis using your single cell cluster data:
anansnake \
\
--configfile scANANSE/analysis/config.yaml --cores 12 --resources mem_mb=48_000
After running Anansnake, you can import the TF influence scores back into your single cell object of choice
<- import_seurat_scANANSE(pbmc,
pbmc cluster_id = 'predicted.id',
anansnake_inf_dir = "./scANANSE/analysis/influence")
<- per_cluster_df(pbmc,
TF_influence cluster_id = 'predicted.id',
assay = 'influence')
scANANSE gene regulatory network and motif analysis of single-cell clusters [version 1; peer review: awaiting peer review] Jos G.A. Smits, Julian A. Arts, Siebren Frölich, Rebecca R. Snabel, Branco M.H. Heuts, Joost H.A. Martens, Simon J van Heeringen, Huiqing Zhou F1000Research 2023, 12:243 (https://doi.org/10.12688/f1000research.130530.1)
The hex sticker is generated using the hexSticker
package.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.