The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
AzureRMR provides a generic framework for managing Azure resources. While you can use it as provided to work with any Azure service, you may also want to extend it to provide more features for a particular service. This vignette describes the process of doing so.
We’ll use examples from some of the other AzureR packages to show how this works.
Create subclasses of az_resource
and/or
az_template
to represent the resources used by this
service. For example, the AzureStor package provides a new class,
az_storage
, that inherits from az_resource
.
This class represents a storage accounts and has new methods specific to
storage, such as listing access keys, generating a shared access
signature (SAS), and creating a client endpoint object. Here is a
simplified version of the az_storage
class.
az_storage <- R6::R6Class("az_storage", inherit=AzureRMR::az_resource,
public=list(
list_keys=function()
{
keys <- named_list(private$res_op("listKeys", http_verb="POST")$keys, "keyName")
sapply(keys, `[[`, "value")
},
get_blob_endpoint=function(key=self$list_keys()[1], sas=NULL)
{
blob_endpoint(self$properties$primaryEndpoints$blob, key=key, sas=sas)
},
get_file_endpoint=function(key=self$list_keys()[1], sas=NULL)
{
file_endpoint(self$properties$primaryEndpoints$file, key=key, sas=sas)
}
))
In most cases, you can rely on the default
az_resource$initialize
method to handle object
construction. You can override this method if your resource class
contains new data fields that have to be initialised.
A more complex example of a custom class is the
az_vm_template
class in the AzureVM package. This
represents the resources used by a virtual machine, or cluster of
virtual machines, in Azure. The initialisation code not only handles the
details of deploying or getting the template used to create the VM(s),
but also retrieves the individual resource objects themselves.
az_vm_template <- R6::R6Class("az_vm_template", inherit=AzureRMR::az_template,
public=list(
disks=NULL,
status=NULL,
ip_address=NULL,
dns_name=NULL,
clust_size=NULL,
initialize=function(token, subscription, resource_group, name, ...)
{
super$initialize(token, subscription, resource_group, name, ...)
# fill in fields that don't require querying the host
num_instances <- self$properties$outputs$numInstances
if(is_empty(num_instances))
{
self$clust_size <- 1
vmnames <- self$name
}
else
{
self$clust_size <- as.numeric(num_instances$value)
vmnames <- paste0(self$name, seq_len(self$clust_size) - 1)
}
private$vm <- sapply(vmnames, function(name)
{
az_vm_resource$new(self$token, self$subscription, self$resource_group,
type="Microsoft.Compute/virtualMachines", name=name)
}, simplify=FALSE)
# get the hostname/IP address for the VM
outputs <- unlist(self$properties$outputResources)
ip_id <- grep("publicIPAddresses/.+$", outputs, ignore.case=TRUE, value=TRUE)
ip <- lapply(ip_id, function(id)
az_resource$new(self$token, self$subscription, id=id)$properties)
self$ip_address <- sapply(ip, function(x) x$ipAddress)
self$dns_name <- sapply(ip, function(x) x$dnsSettings$fqdn)
lapply(private$vm, function(obj) obj$sync_vm_status())
self$disks <- lapply(private$vm, "[[", "disks")
self$status <- lapply(private$vm, "[[", "status")
NULL
}
# ... other VM-specific methods ...
),
private=list(
# will store a list of VM objects after initialisation
vm=NULL
# ... other private members ...
)
))
Once you’ve created your new class(es), you should add accessor
functions to az_resource_group
(and optionally
az_subscription
as well, if your service has
subscription-level API calls) to create, get and delete resources. This
allows the convenience of method chaining:
res <- az_rm$new("tenant_id", "app_id", "secret") $
get_subscription("subscription_id") $
get_resource_group("resgroup") $
get_my_resource("myresource")
Note that if you are writing a package that extends AzureRMR, these
methods must be defined in the package’s .onLoad
function. This is because the methods must be added at runtime, when the
user loads your package, rather than at compile time, when it is built
or installed.
The create_storage_account
,
get_storage_account
and delete_storage_account
methods from the AzureStor package are defined like this. Note that
calls to your class methods should include the pkgname::
qualifier, to ensure they will work even if your package is not
attached.
# all methods adding methods to classes in external package must go in .onLoad
.onLoad <- function(libname, pkgname)
{
AzureRMR::az_resource_group$set("public", "create_storage_account", overwrite=TRUE,
function(name, location,
kind="Storage",
sku=list(name="Standard_LRS", tier="Standard"),
...)
{
AzureStor::az_storage$new(self$token, self$subscription, self$name,
type="Microsoft.Storage/storageAccounts", name=name, location=location,
kind=kind, sku=sku, ...)
})
AzureRMR::az_resource_group$set("public", "get_storage_account", overwrite=TRUE,
function(name)
{
AzureStor::az_storage$new(self$token, self$subscription, self$name,
type="Microsoft.Storage/storageAccounts", name=name)
})
AzureRMR::az_resource_group$set("public", "delete_storage_account", overwrite=TRUE,
function(name, confirm=TRUE, wait=FALSE)
{
self$get_storage_account(name)$delete(confirm=confirm, wait=wait)
})
# ... other startup code ...
}
The corresponding accessor functions for AzureVM’s
az_vm_template
class are more complex, as might be
imagined. Here is a fragment of that package’s onLoad
function showing the az_resource_group$create_vm_cluster
method.
.onLoad <- function(libname, pkgname)
{
AzureRMR::az_resource_group$set("public", "create_vm_cluster", overwrite=TRUE,
function(name, location,
os=c("Windows", "Ubuntu"), size="Standard_DS3_v2",
username, passkey, userauth_type=c("password", "key"),
ext_file_uris=NULL, inst_command=NULL,
clust_size, template, parameters,
..., wait=TRUE)
{
os <- match.arg(os)
userauth_type <- match.arg(userauth_type)
if(missing(parameters) && (missing(username) || missing(passkey)))
stop("Must supply login username and password/private key", call.=FALSE)
# find template given input args
if(missing(template))
template <- get_dsvm_template(os, userauth_type, clust_size,
ext_file_uris, inst_command)
# convert input args into parameter list for template
if(missing(parameters))
parameters <- make_dsvm_param_list(name=name, size=size,
username=username, userauth_type=userauth_type, passkey=passkey,
ext_file_uris=ext_file_uris, inst_command=inst_command,
clust_size=clust_size, template=template)
AzureVM::az_vm_template$new(self$token, self$subscription, self$name, name,
template=template, parameters=parameters, ..., wait=wait)
})
# ... other startup code ...
}
Documenting methods added to a class in this way can be problematic. R’s .Rd help format is designed around traditional functions, and R6 classes and methods are usually not a good fit. The popular Roxygen format also (as of October 2018) doesn’t deal very well with R6 classes. The fact that we are adding methods to a class defined in an external package is an additional complication.
Here is an example documentation skeleton in Roxygen format, copied from AzureStor. You can add this as a separate block in the source file where you define the accessor method(s). The block uses Markdown formatting, so you will need to have installed roxygen2 version 6.0.1 or later.
#' Get existing Azure resource type 'foo'
#'
#' Methods for the [AzureRMR::az_resource_group] and [AzureRMR::az_subscription] classes.
#'
#' @rdname get_foo
#' @name get_foo
#' @aliases get_foo list_foos
#'
#' @section Usage:
#' ```
#' get_foo(name)
#' list_foos()
#' ```
#' @section Arguments:
#' - `name`: For `get_foo()`, the name of the resource.
#'
#' @section Details:
#' The `AzureRMR::az_resource_group` class has both `get_foo()` and `list_foos()` methods, while the `AzureRMR::az_subscription` class only has the latter.
#'
#' @section Value:
#' For `get_foo()`, an object of class `az_foo` representing the foo resource.
#'
#' For `list_foos()`, a list of such objects.
#'
#' @seealso
#' [create_foo], [delete_foo], [az_foo]
NULL
We note the following: - The @aliases
tag includes all
the names that will bring up this page when using the ?
command, including the default name. - Rather than using the
standard @usage
, @param
, @details
and @return
tags, the block uses @section
to
create sections with the appropriate titles (including one named
‘Arguments’). - The usage block is explicitly formatted as fixed-width
using Markdown backticks. - The arguments are formatted as a (bulleted)
list rather than the usual table format for function arguments.
These changes are necessary because what we’re technically
documenting is not a standalone function, but a method inside a class.
The @usage
, @param
tags et al only apply to
functions, and if you use them here, R CMD check
will
generate a warning when it can’t find a function with the given name.
This can be important if you want to publish your package on CRAN.
The AzureRMR class framework allows you to work with resources at the Azure level, via Azure Resource Manager. If a service exposes a client endpoint that is independent of ARM, you may also want to create a separate R interface for the endpoint.
As the client interface is independent of the ARM interface, you have flexibility to tailor its design. For example, rather than using R6, the AzureStor package uses S3 classes to represent storage endpoints and individual containers and shares within an endpoint. It further defines (S3) methods for these classes to perform common operations like listing directories, uploading and downloading files, and so on. This is consistent with most other data access and manipulation packages in R, which usually stick to S3.
# blob endpoint for a storage account
blob_endpoint <- function(endpoint, key=NULL, sas=NULL, api_version=getOption("azure_storage_api_version"))
{
if(!is_endpoint_url(endpoint, "blob"))
stop("Not a blob endpoint", call.=FALSE)
obj <- list(url=endpoint, key=key, sas=sas, api_version=api_version)
class(obj) <- c("blob_endpoint", "storage_endpoint")
obj
}
# S3 generic and methods to create an object representing a blob container within an endpoint
blob_container <- function(endpoint, ...)
{
UseMethod("blob_container")
}
blob_container.character <- function(endpoint, key=NULL, sas=NULL,
api_version=getOption("azure_storage_api_version"))
{
do.call(blob_container, generate_endpoint_container(endpoint, key, sas, api_version))
}
blob_container.blob_endpoint <- function(endpoint, name)
{
obj <- list(name=name, endpoint=endpoint)
class(obj) <- "blob_container"
obj
}
# download a file from a blob container
download_blob <- function(container, src, dest, overwrite=FALSE, lease=NULL)
{
headers <- list()
if(!is.null(lease))
headers[["x-ms-lease-id"]] <- as.character(lease)
do_container_op(container, src, headers=headers, config=httr::write_disk(dest, overwrite))
}
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.