The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The BoltzMM package allows for computation of probability mass
functions of fully-visible Boltzmann machines (FVBMs) via
pfvbm
and allpfvbm
. Random data can be
generated using rfvbm
. Maximum pseudolikelihood estimation
of parameters via the MM algorithm can be conducted using
fitfvbm
. Computation of partial derivatives and Hessians
can be performed via fvbmpartiald
and
fvbmHessian
. Covariance estimation and normal standard
errors can be computed using fvbmcov
and
fvbmstderr
.
If devtools
has already been installed, then the most
current build of BoltzMM
can be obtained via the
command:
::install_github('andrewthomasjones/BoltzMM',build_vignettes = TRUE) devtools
The latest stable build of BoltzMM
can be obtain from
CRAN via the command:
install.packages("BoltzMM", repos='http://cran.us.r-project.org')
An archival build of BoltzMM
is available at http://doi.org/10.5281/zenodo.2538256. Manual
installation instructions can be found within the R
installation and administration manual https://cran.r-project.org/doc/manuals/r-release/R-admin.html.
Compute the probability of every length n=3 binary spin vector under bvec and Mmat:
library(BoltzMM)
set.seed(1)
<- c(0,0.5,0.25)
bvec <- matrix(0.1,3,3) - diag(0.1,3,3)
Mmat allpfvbm(bvec,Mmat)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.0666189 0.04465599 0.1213876 0.1213876 0.07362527 0.07362527
#> [,7] [,8]
#> [1,] 0.2001342 0.2985652
Generate num=1000 random strings of n=3 binary spin variables under bvec and Mmat.
library(BoltzMM)
set.seed(1)
<- 1000
num <- c(0,0.5,0.25)
bvec <- matrix(0.1,3,3) - diag(0.1,3,3)
Mmat <- rfvbm(num,bvec,Mmat)
data
head(data)
#> [,1] [,2] [,3]
#> [1,] 1 1 -1
#> [2,] -1 -1 1
#> [3,] -1 1 1
#> [4,] 1 1 1
#> [5,] -1 1 -1
#> [6,] 1 1 1
Fit a fully visible Boltzmann machine to data, starting from parameters bvec and Mmat.
library(BoltzMM)
set.seed(1)
<- c(0,0.5,0.25)
bvec <- matrix(0.1,3,3) - diag(0.1,3,3)
Mmat <- rfvbm(num,bvec,Mmat)
data
fitfvbm(data,bvec,Mmat)
#> $pll
#> [1] -1892.661
#>
#> $bvec
#> [1] 0.02607382 0.46484595 0.27640931
#>
#> $Mmat
#> [,1] [,2] [,3]
#> [1,] 0.0000000 0.1179001 0.1444486
#> [2,] 0.1179001 0.0000000 0.0351134
#> [3,] 0.1444486 0.0351134 0.0000000
#>
#> $itt
#> [1] 5
Example with real data from https://hal.archives-ouvertes.fr/hal-01927188v1.
# Load bnstruct library & package
library(bnstruct)
#> Loading required package: bitops
#> Loading required package: Matrix
#> Loading required package: igraph
#>
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#>
#> decompose, spectrum
#> The following object is masked from 'package:base':
#>
#> union
library(BoltzMM)
# Load data
data(senate)
# Turn data into a matrix
<- as.matrix(senate)
senate_data
# Recode Yes as 1, and No as -1
=="Yes"] <- 1
senate_data[senate=="No"] <- -1
senate_data[senate
# Conduct imputation
<- knn.impute(suppressWarnings(matrix(as.numeric(senate_data),
imp_data dim(senate_data))),
k=1)
# No governement - using as reference level
<- imp_data[,-1]
data_nogov
# Initialize parameters
<- rep(0,8)
bvec <- matrix(0,8,8)
Mmat <-list(bvec=bvec,Mmat=Mmat)
nullmodel
# Fit a fully visible Boltzmann machine to data, starting from parameters bvec and Mmat.
<- fitfvbm(data_nogov,bvec,Mmat)
model # Compute the sandwich covariance matrix using the data and the model.
<- fvbmcov(data_nogov,model,fvbmHess)
covarmat # Compute the standard errors of the parameter elements according to a normal approximation.
<- fvbmstderr(data_nogov,covarmat)
st_errors # Compute z-scores and p-values under null
<-fvbmtests(data_nogov,model,nullmodel)
test_results
test_results#> $bvec_z
#> [1] -1.3871285 3.0958110 1.8099814 -0.4957960 -0.8230061 -0.1625973
#> [7] 0.5715010 2.4308532
#>
#> $bvec_p
#> [1] 0.165402598 0.001962754 0.070298676 0.620038322 0.410504513 0.870835547
#> [7] 0.567660056 0.015063316
#>
#> $Mmat_z
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] NA -0.6596632 -1.3152156 -2.0181850 0.1936413 3.8587216
#> [2,] -0.6596632 NA -0.9536614 -2.0795939 -0.4947831 6.1625534
#> [3,] -1.3152156 -0.9536614 NA 1.3258059 -1.0861345 2.6332797
#> [4,] -2.0181850 -2.0795939 1.3258059 NA 3.0115924 0.4798541
#> [5,] 0.1936413 -0.4947831 -1.0861345 3.0115924 NA -1.2899547
#> [6,] 3.8587216 6.1625534 2.6332797 0.4798541 -1.2899547 NA
#> [7,] 0.5671620 0.5877623 5.8430378 -0.9769979 1.5757127 -1.0129338
#> [8,] 0.3126387 -3.4715041 -0.9287578 4.0101249 0.7587521 2.3224311
#> [,7] [,8]
#> [1,] 0.5671620 0.3126387
#> [2,] 0.5877623 -3.4715041
#> [3,] 5.8430378 -0.9287578
#> [4,] -0.9769979 4.0101249
#> [5,] 1.5757127 0.7587521
#> [6,] -1.0129338 2.3224311
#> [7,] NA 2.2571849
#> [8,] 2.2571849 NA
#>
#> $Mmat_p
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] NA 5.094700e-01 1.884374e-01 4.357200e-02 0.846456748
#> [2,] 0.5094699872 NA 3.402551e-01 3.756280e-02 0.620753227
#> [3,] 0.1884374472 3.402551e-01 NA 1.849040e-01 0.277419500
#> [4,] 0.0435719956 3.756280e-02 1.849040e-01 NA 0.002598813
#> [5,] 0.8464567475 6.207532e-01 2.774195e-01 2.598813e-03 NA
#> [6,] 0.0001139817 7.158116e-10 8.456467e-03 6.313312e-01 0.197066396
#> [7,] 0.5706041434 5.566918e-01 5.125738e-09 3.285702e-01 0.115092039
#> [8,] 0.7545551426 5.175514e-04 3.530146e-01 6.068665e-05 0.448000891
#> [,6] [,7] [,8]
#> [1,] 1.139817e-04 5.706041e-01 7.545551e-01
#> [2,] 7.158116e-10 5.566918e-01 5.175514e-04
#> [3,] 8.456467e-03 5.125738e-09 3.530146e-01
#> [4,] 6.313312e-01 3.285702e-01 6.068665e-05
#> [5,] 1.970664e-01 1.150920e-01 4.480009e-01
#> [6,] NA 3.110918e-01 2.020973e-02
#> [7,] 3.110918e-01 NA 2.399652e-02
#> [8,] 2.020973e-02 2.399652e-02 NA
For more examples, see individual help files.
Please refer to the following sources regarding various facets of the FVBM models that are implemented in the package.
The FVBM model and the consistency of their maximum pseudolikelihood
estimators (MPLEs) was first considered in http://doi.org/10.1162/neco.2006.18.10.2283. The MM
algorithm implemented in the main function fitfvbm
was
introduced in http://doi.org/10.1162/NECO_a_00813. Here various
convergence results regarding the algorithm is proved. Next, the
asymptotic normality results pertaining to the use of the functions
fvbmstderr
and fvbmtests
are proved in http://doi.org/10.1109/TNNLS.2015.2425898. Finally, the
senate
data was introduced and analysed in https://hal.archives-ouvertes.fr/hal-01927188v1.
If you find this package useful in your work, then please follow the
usual R
instructions for citing the package in your
publications. That is, follow the instructions from
citation('BoltzMM')
.
# Citation instructions
citation('BoltzMM')
#> Warning in citation("BoltzMM"): no date field in DESCRIPTION file of
#> package 'BoltzMM'
#> Warning in citation("BoltzMM"): could not determine year for 'BoltzMM' from
#> package DESCRIPTION file
#>
#> To cite package 'BoltzMM' in publications use:
#>
#> Andrew Thomas Jones, Hien Duy Nguyen and Jessica Juanita Bagnall
#> (NA). BoltzMM: Boltzmann Machines with MM Algorithms. R package
#> version 0.1.3.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {BoltzMM: Boltzmann Machines with MM Algorithms},
#> author = {Andrew Thomas Jones and Hien Duy Nguyen and Jessica Juanita Bagnall},
#> note = {R package version 0.1.3},
#> }
#>
#> ATTENTION: This citation information has been auto-generated from
#> the package DESCRIPTION file and may need manual editing, see
#> 'help("citation")'.
The BoltzMM
package is co-authored by Andrew T. Jones, Hien D. Nguyen, and Jessica J.
Bagnall. The initial development of the package, in native
R
was conducted by HDN. Implementation of the core loops of
the package in the C
language was performed by ATJ. JJB
formatted and contributed the senate
data set as well as
the example analysis on the senate
data. All three
co-authors contributed to the documentation of the software as well as
troubleshooting and testing.
Using the package testthat
, we have conducted the
following unit test for the GitHub build, on the date: 31 January, 2019.
The testing files are contained in the tests
folder of the repository.
Thank you for your interest in BoltzMM
. If you happen to
find any bugs in the program, then please report them on the Issues page
(https://github.com/andrewthomasjones/BoltzMM/issues).
Support can also be sought on this page. Furthermore, if you would like
to make a contribution to the software, then please forward a pull
request to the owner of the repository.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.