The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
max_rules hyper parameters for max rules
filtering.B hyper-parameter,subsample hyper-parameter.rules(implicit form) in cre() function return.stability_selection binary -> string
(‘no’,‘vanilla’,‘error_control’).ntrees_gbm hyper-parameter and
ntrees_gbm hyper-parameter in ntrees
hyper-parameter.ite_method_dis, ite_method_inf
method-parameter -> ite_method.ps_method_dis, ps_method_inf
method-parameter -> learner_ps.oreg_method_dis, oreg_method_inf
method-parameter -> learner_y.max_nodes hyper-parameter.replace hyper-parameter.penalty_rl hyper-parameter.t_pvalue hyper-parameter.ite_pred from cre() function return.intervention_vars.bcf) ITE estimator is not
supported.plot() function (remove ATE, old BATE, and
explicit AATEs).offset method-parameter -> hyper-parameterestimate_ite_poisson function ->
estimate_ite_tpoissonmax_dacay hyper-parameter ->
t_decay.interpret_select_rules function ->
interpret_rules.generate_causal_rules function ->
discover_rules.discover_causal_rules function
->select_rules.offset_name method parameter ->
offset.cre.cre object: added parameters and ite estimation.generate_cre_dataset).slearner) method for ITE estimation.tlearner) method for ITE estimation.xlearner) method for ITE estimation.summary.cre.verbose parameter in summary.cre.ite, additional cre input parameter to use
personalized ite estimations.estimation.R).discovery.R).extract_effect_modifiers function (utility for
performance evaluation).evaluate function for discovery evaluation.confounding parameter in
generate_cre_dataset to set confounding type.ite_pred and model in CRE results.binary_covariates parameter in
generate_cre_dataset to set covariates domain.include_ps_inf method-parameter.include_ps_dis method-parameter.oreg method for ITE estimation.ipw method for ITE estimation.sipw method for ITE estimation.type_decay hyper-parameter.linreg for CATE estimation (remove
cate_method and cate_SL_library
parameters).method_params and hyper_params additional
parameters in summary.cre.random_state parameter.include_offset method parameter.binary parameter in generate_cre_dataset
-> binary_outcome .filter_cate hyper-parameter ->
t_pvalue.t_anom hyper-parameter -> t_ext.effect_modifier hyper-parameter ->
intervention_vars.lasso_rules_filter function ->
discover_causal_rules.split_data function ->
honest_splitting.prune_rules function ->
`filter_irrelevant_rules.discard_correlated_rules function ->
filter_correlated_rules.discard_anomalous_rules function ->
filter_extreme_rules.penalty_rl hyper-parameter).q hyper-parameter -> cutoff.pfer_val hyper-parameter -> pfer.select_causal_rules function ->
lasso_rules_filter.t hyper-parameter -> t_anom.generate_rules_matrix function.summary.cre function to describe results.min_nodes hyper-parameter -> node_size
(randomForest convention).cre returns an S3 object.prune_rules function to discard un-predictive
rules.discard_anomalous_rules function to discard anomalous
rules (see t_corr hyper-parameter.).discard_correlated_rules function to discard correlated
rules (see t_anom hyper-parameter).effect_modifiers parameter in
generate_rules function for covariates filtering.generate_causal_rules function.SuperLearner package for
propensity score estimation in estimate_ite_xyz.poisson,
DRLearner, bart-baggr, cf-means,
linreg) in estimate_cate function.ps_method_dis, ps_method_inf,
or_method_dis, or_method_inf,
cate_SL_library) method-parameters to complement
SuperLearner package.cate_method method-parameter to select CATE estimation
method.filter_cate method-parameter for estimation
filtering.p parameter (in generate_cre_dataset
function) to set the number of covariates.replace parameter (in generate_rules
function) to allow bootstrapping.cre.print generic function to print cre S3
object results.cre.summary generic functions to summarize
cre S3 object Results.check_input function to isolate input checks.estimate_ite_aipw function for augmented inverse
propensity weighting.plot.cre generic function to plot cre S3
object results.test-cre_functional.R to test the functionality of the
package.stability_selection function for causal rules
selection.estimate_ite_blp function.take1() function.estimate_cate include two methods for estimating the
CATE values.cre added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.estimate_ite_xyz conduct propensity score estimation
using helper function.generate_cre_dataset.set_logger and get_logger.check_input_data function.generate_cre_dataset function to generate synthetic
data for testing the package.test-generate_cre_dataset function test.estimate_ps function to estimate the propensity
score.estimate_ite_xbart function to generate ITE estimates
using accelerated BART.estimate_ite_xbcf function to generate ITE estimates
using accelerated BCF.analyze_sensitivity function to conduct sensitivity
analysis for unmeasured confounding.cre function to perform the entire Causal Rule Ensemble
method.estimate_cate function to generate CATE estimates from
the ITE estimates and select rules.estimate_ite function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions).estimate_ite_bart function to generate ITE estimates
using BART.estimate_ite_bcf function to generate ITE estimates
using Bayesian Causal Forests.estimate_ite_cf function to generate ITE estimates
using Causal Forests.estimate_ite_ipw function to generate ITE estimates
using IPW.estimate_ite_or function to generate ITE estimates
using Outcome Regression.estimate_ite_sipw function to generate ITE estimates
using SIPW.extract_rules function to extract a list of causal
rules from randomForest and GBM models.generate_rules function to generate causal rule models
using randomForest and GBM methods.generate_rules_matrix function to convert a list of
causal rules into a matrix.select_causal_rules function to apply penalized
regression to causal rules. to select only the most important ones.split_data function to split input data into discovery
and inference subsamples.take1 function to create a subsample of indices.seed argument in generate_cre_datase
function.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.