The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
max_rules
hyper parameters for max rules
filtering.B
hyper-parameter,subsample
hyper-parameter.rules
(implicit form) in cre() function return.stability_selection
binary -> string
(‘no’,‘vanilla’,‘error_control’).ntrees_gbm
hyper-parameter and
ntrees_gbm
hyper-parameter in ntrees
hyper-parameter.ite_method_dis
, ite_method_inf
method-parameter -> ite_method
.ps_method_dis
, ps_method_inf
method-parameter -> learner_ps
.oreg_method_dis
, oreg_method_inf
method-parameter -> learner_y
.max_nodes
hyper-parameter.replace
hyper-parameter.penalty_rl
hyper-parameter.t_pvalue
hyper-parameter.ite_pred
from cre() function return.intervention_vars
.bcf
) ITE estimator is not
supported.plot()
function (remove ATE, old BATE, and
explicit AATEs).offset
method-parameter -> hyper-parameterestimate_ite_poisson
function ->
estimate_ite_tpoisson
max_dacay
hyper-parameter ->
t_decay
.interpret_select_rules
function ->
interpret_rules
.generate_causal_rules
function ->
discover_rules
.discover_causal_rules
function
->select_rules
.offset_name
method parameter ->
offset
.cre
.cre
object: added parameters and ite estimation.generate_cre_dataset
).slearner
) method for ITE estimation.tlearner
) method for ITE estimation.xlearner
) method for ITE estimation.summary.cre
.verbose
parameter in summary.cre
.ite
, additional cre
input parameter to use
personalized ite estimations.estimation.R
).discovery.R
).extract_effect_modifiers
function (utility for
performance evaluation).evaluate
function for discovery evaluation.confounding
parameter in
generate_cre_dataset
to set confounding type.ite_pred
and model
in CRE results.binary_covariates
parameter in
generate_cre_dataset
to set covariates domain.include_ps_inf
method-parameter.include_ps_dis
method-parameter.oreg
method for ITE estimation.ipw
method for ITE estimation.sipw
method for ITE estimation.type_decay
hyper-parameter.linreg
for CATE estimation (remove
cate_method
and cate_SL_library
parameters).method_params
and hyper_params
additional
parameters in summary.cre
.random_state
parameter.include_offset
method parameter.binary
parameter in generate_cre_dataset
-> binary_outcome
.filter_cate
hyper-parameter ->
t_pvalue
.t_anom
hyper-parameter -> t_ext
.effect_modifier
hyper-parameter ->
intervention_vars
.lasso_rules_filter
function ->
discover_causal_rules
.split_data
function ->
honest_splitting
.prune_rules
function ->
`filter_irrelevant_rules
.discard_correlated_rules
function ->
filter_correlated_rules
.discard_anomalous_rules
function ->
filter_extreme_rules
.penalty_rl
hyper-parameter).q
hyper-parameter -> cutoff
.pfer_val
hyper-parameter -> pfer
.select_causal_rules
function ->
lasso_rules_filter
.t
hyper-parameter -> t_anom
.generate_rules_matrix
function.summary.cre
function to describe results.min_nodes
hyper-parameter -> node_size
(randomForest
convention).cre
returns an S3 object.prune_rules
function to discard un-predictive
rules.discard_anomalous_rules
function to discard anomalous
rules (see t_corr
hyper-parameter.).discard_correlated_rules
function to discard correlated
rules (see t_anom
hyper-parameter).effect_modifiers
parameter in
generate_rules
function for covariates filtering.generate_causal_rules
function.SuperLearner
package for
propensity score estimation in estimate_ite_xyz
.poisson
,
DRLearner
, bart-baggr
, cf-means
,
linreg
) in estimate_cate
function.ps_method_dis
, ps_method_inf
,
or_method_dis
, or_method_inf
,
cate_SL_library
) method-parameters to complement
SuperLearner
package.cate_method
method-parameter to select CATE estimation
method.filter_cate
method-parameter for estimation
filtering.p
parameter (in generate_cre_dataset
function) to set the number of covariates.replace
parameter (in generate_rules
function) to allow bootstrapping.cre.print
generic function to print cre
S3
object results.cre.summary
generic functions to summarize
cre
S3 object Results.check_input
function to isolate input checks.estimate_ite_aipw
function for augmented inverse
propensity weighting.plot.cre
generic function to plot cre
S3
object results.test-cre_functional.R
to test the functionality of the
package.stability_selection
function for causal rules
selection.estimate_ite_blp
function.take1()
function.estimate_cate
include two methods for estimating the
CATE values.cre
added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.estimate_ite_xyz
conduct propensity score estimation
using helper function.generate_cre_dataset
.set_logger
and get_logger
.check_input_data
function.generate_cre_dataset
function to generate synthetic
data for testing the package.test-generate_cre_dataset
function test.estimate_ps
function to estimate the propensity
score.estimate_ite_xbart
function to generate ITE estimates
using accelerated BART.estimate_ite_xbcf
function to generate ITE estimates
using accelerated BCF.analyze_sensitivity
function to conduct sensitivity
analysis for unmeasured confounding.cre
function to perform the entire Causal Rule Ensemble
method.estimate_cate
function to generate CATE estimates from
the ITE estimates and select rules.estimate_ite
function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions).estimate_ite_bart
function to generate ITE estimates
using BART.estimate_ite_bcf
function to generate ITE estimates
using Bayesian Causal Forests.estimate_ite_cf
function to generate ITE estimates
using Causal Forests.estimate_ite_ipw
function to generate ITE estimates
using IPW.estimate_ite_or
function to generate ITE estimates
using Outcome Regression.estimate_ite_sipw
function to generate ITE estimates
using SIPW.extract_rules
function to extract a list of causal
rules from randomForest and GBM models.generate_rules
function to generate causal rule models
using randomForest and GBM methods.generate_rules_matrix
function to convert a list of
causal rules into a matrix.select_causal_rules
function to apply penalized
regression to causal rules. to select only the most important ones.split_data
function to split input data into discovery
and inference subsamples.take1
function to create a subsample of indices.seed
argument in generate_cre_datase
function.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.