The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Here, we illustrate optimal univariate clustering function
Ckmeans.1d.dp
. It uses a given number of clusters \(k\), or estimates \(k\) if a range is provided. If \(k\) is unspecified, a default range from 1
to 9 is used. It can also perform optimal weighted clustering when a
non-negative weight vector is specified as input. Weighted clustering
can be used to analyze signals such as time series data, spectral data,
genetic or epigenetic events along a chromosome.
Cluster data generated from a Gaussian mixture model of three components.
The number of clusters is provided.
Cluster data generated from a Gaussian mixture model of three components. The number of clusters is determined by Bayesian information criterion:
x <- c(rnorm(50, mean=-1, sd=0.3), rnorm(50, mean=1, sd=1), rnorm(50, mean=2, sd=0.4))
# Divide x into k clusters, k automatically selected (default: 1~9)
result <- Ckmeans.1d.dp(x)
k <- max(result$cluster)
colors <- brewer.pal(k, "Dark2")
## Warning in brewer.pal(k, "Dark2"): minimal value for n is 3, returning requested palette with 3 different levels
plot(x, col=colors[result$cluster], pch=result$cluster, cex=1.5,
main="Optimal univariate clustering with k estimated",
sub=paste("Number of clusters is estimated to be", k))
abline(h=result$centers, col=colors, lty="dashed", lwd=2)
legend("topleft", paste("Cluster", 1:k), col=colors, pch=1:k, cex=1, bty="n")
We segment a time course to identify peaks using weighted clustering. The input data is the time stamp of obtaining each intensity measurement; the weight is the signal intensity.
n <- 160
t <- seq(0, 2*pi*2, length=n)
n1 <- 1:(n/2)
n2 <- (max(n1)+1):n
y1 <- abs(sin(1.5*t[n1]) + 0.1*rnorm(length(n1)))
y2 <- abs(sin(0.5*t[n2]) + 0.1*rnorm(length(n2)))
y <- c(y1, y2)
w <- y^8 # stress the peaks
res <- Ckmeans.1d.dp(t, k=c(1:10), w)
k <- max(res$cluster)
colors <- brewer.pal(k, "Set1")
plot(res, col.clusters = colors)
grid()
plot(t, w, main = "Time course clustering / peak calling",
col=colors[res$cluster], pch=res$cluster, type="h",
xlab="Time t", ylab="Transformed intensity w")
grid()
abline(v=res$centers, col="gray", lty="dashed")
text(res$centers, max(w) * .95, cex=0.75, font=2,
paste(round(res$size / sum(res$size) * 100), "/ 100"))
It is often desirable to visualize boundaries between consecutive
clusters. The ahist()
function offers several ways to
estimate cluster boundaries. The simplest is to use the midpoint between
the two closest points in two consecutive clusters, as illustrated in
the code below.
x <- c(7, 4, 1, 8, 15, 22, -1)
k <- 3
ckm <- Ckmeans.1d.dp(x, k=k)
midpoints <- ahist(ckm, style="midpoints", data=x, plot=FALSE)$breaks[2:k]
colors <- brewer.pal(k, "Set2")
plot(ckm, col.clusters = colors, lwd=5,
main="Midpoints as cluster boundaries")
abline(v=midpoints, col="RoyalBlue", lwd=3, lty=2)
legend("topright", "Midpoints", lwd=3, lty=2, col="RoyalBlue")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.