The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Single outcome event of interest

Set up

Let’s first load the packages required.

library(CDMConnector)
library(CohortSurvival)
library(dplyr)
library(ggplot2)

We’ll create a cdm reference to use our example MGUS2 survival dataset. In practice you would use the CDMConnector package to connect to your data mapped to the OMOP CDM.

cdm <- CohortSurvival::mockMGUS2cdm()

In this vignette we’ll first estimate survival following a diagnosis of MGUS, with death our outcome of interest.

We would typically need to define study cohorts ourselves, but in the case of our example data we already have these cohorts available. You can see for our diagnosis cohort we also have a number of additional features recorded for individuals which we’ll use for stratification.

cdm$mgus_diagnosis %>% 
  glimpse()
#> Rows: ??
#> Columns: 10
#> Database: DuckDB v1.0.0 [eburn@Windows 10 x64:R 4.4.0/:memory:]
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
#> $ subject_id           <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15…
#> $ cohort_start_date    <date> 1981-01-01, 1968-01-01, 1980-01-01, 1977-01-01, …
#> $ cohort_end_date      <date> 1981-01-01, 1968-01-01, 1980-01-01, 1977-01-01, …
#> $ age                  <dbl> 88, 78, 94, 68, 90, 90, 89, 87, 86, 79, 86, 89, 8…
#> $ sex                  <fct> F, F, M, M, F, M, F, F, F, F, M, F, M, F, M, F, F…
#> $ hgb                  <dbl> 13.1, 11.5, 10.5, 15.2, 10.7, 12.9, 10.5, 12.3, 1…
#> $ creat                <dbl> 1.30, 1.20, 1.50, 1.20, 0.80, 1.00, 0.90, 1.20, 0…
#> $ mspike               <dbl> 0.5, 2.0, 2.6, 1.2, 1.0, 0.5, 1.3, 1.6, 2.4, 2.3,…
#> $ age_group            <chr> ">=70", ">=70", ">=70", "<70", ">=70", ">=70", ">…

cdm$death_cohort %>% 
  glimpse()
#> Rows: ??
#> Columns: 4
#> Database: DuckDB v1.0.0 [eburn@Windows 10 x64:R 4.4.0/:memory:]
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
#> $ subject_id           <int> 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 1…
#> $ cohort_start_date    <date> 1981-01-31, 1968-01-26, 1980-02-16, 1977-04-03, …
#> $ cohort_end_date      <date> 1981-01-31, 1968-01-26, 1980-02-16, 1977-04-03, …

Overall survival

First, we can estimate survival for the cohort overall like so. Note that the output will be in a summarised result format.

MGUS_death <- estimateSingleEventSurvival(cdm,
  targetCohortTable = "mgus_diagnosis",
  outcomeCohortTable = "death_cohort"
)
MGUS_death %>% 
  glimpse()
#> Rows: 1,354
#> Columns: 13
#> $ result_id        <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ cdm_name         <chr> "mock", "mock", "mock", "mock", "mock", "mock", "mock…
#> $ group_name       <chr> "target_cohort", "target_cohort", "target_cohort", "t…
#> $ group_level      <chr> "mgus_diagnosis", "mgus_diagnosis", "mgus_diagnosis",…
#> $ strata_name      <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ strata_level     <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ variable_name    <chr> "outcome", "outcome", "outcome", "outcome", "outcome"…
#> $ variable_level   <chr> "death_cohort", "death_cohort", "death_cohort", "deat…
#> $ estimate_name    <chr> "estimate", "estimate_95CI_lower", "estimate_95CI_upp…
#> $ estimate_type    <chr> "numeric", "numeric", "numeric", "numeric", "numeric"…
#> $ estimate_value   <chr> "1", "1", "1", "0.9697", "0.9607", "0.9787", "0.9494"…
#> $ additional_name  <chr> "time", "time", "time", "time", "time", "time", "time…
#> $ additional_level <chr> "0", "0", "0", "1", "1", "1", "2", "2", "2", "3", "3"…
class(MGUS_death)
#> [1] "summarised_result" "omop_result"       "tbl_df"           
#> [4] "tbl"               "data.frame"

We can though convert the result to be in a survival format using asSurvivalResult()

MGUS_death %>% 
  asSurvivalResult() %>%
  glimpse()
#> Rows: 1,275
#> Columns: 13
#> $ cdm_name          <chr> "mock", "mock", "mock", "mock", "mock", "mock", "moc…
#> $ target_cohort     <chr> "mgus_diagnosis", "mgus_diagnosis", "mgus_diagnosis"…
#> $ outcome           <chr> "death_cohort", "death_cohort", "death_cohort", "dea…
#> $ competing_outcome <chr> "none", "none", "none", "none", "none", "none", "non…
#> $ strata_name       <chr> "overall", "overall", "overall", "overall", "overall…
#> $ strata_level      <chr> "overall", "overall", "overall", "overall", "overall…
#> $ variable_name     <chr> "outcome", "outcome", "outcome", "outcome", "outcome…
#> $ variable_level    <chr> "death_cohort", "death_cohort", "death_cohort", "dea…
#> $ estimate_name     <chr> "estimate", "estimate_95CI_lower", "estimate_95CI_up…
#> $ estimate_type     <chr> "numeric", "numeric", "numeric", "numeric", "numeric…
#> $ estimate_value    <dbl> 1.0000, 1.0000, 1.0000, 0.9697, 0.9607, 0.9787, 0.94…
#> $ time              <dbl> 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5…
#> $ result_type       <chr> "survival_probability", "survival_probability", "sur…

As we can see above our results have been outputted in long format. We can plot these results like so.

plotSurvival(MGUS_death)

Our returned results also have attributes containing information that summarises survival.

tableSurvival(MGUS_death) 
CDM name Target cohort Outcome name Estimate name
Number records Number events Median survival (95% CI) Restricted mean survival (SE)
mock mgus_diagnosis death_cohort 1,384 963 98.00 (92.00, 103.00) 133.00 (4.00)

With stratification

To estimate survival for particular strata of interest we need these features to have been added to the target cohort table. Once we have them defined, and as seen above we already have a number of example characteristics added to our diagnosis cohort, we can add stratifications like so.

MGUS_death <- estimateSingleEventSurvival(cdm,
  targetCohortTable = "mgus_diagnosis",
  outcomeCohortTable = "death_cohort",
  strata = list(c("age_group"),
                c("sex"),
                c("age_group", "sex"))
) 

As we can see as well as results for each strata, we’ll always also have overall results returned.

plotSurvival(MGUS_death,
             facet = "strata_name",
             colour = "strata_level")

And we also now have summary statistics for each of the strata as well as overall.

tableSurvival(MGUS_death)
CDM name Target cohort Age group Sex Outcome name Estimate name
Number records Number events Median survival (95% CI) Restricted mean survival (SE)
mock mgus_diagnosis overall overall death_cohort 1,384 963 98.00 (92.00, 103.00) 133.00 (4.00)
<70 overall death_cohort 574 293 180.00 (158.00, 206.00) 197.00 (8.00)
>=70 overall death_cohort 810 670 71.00 (66.00, 77.00) 86.00 (3.00)
overall F death_cohort 631 423 108.00 (100.00, 121.00) 143.00 (6.00)
M death_cohort 753 540 88.00 (79.00, 97.00) 125.00 (6.00)
<70 F death_cohort 240 109 215.00 (179.00, 260.00) 220.00 (13.00)
M death_cohort 334 184 158.00 (139.00, 189.00) 183.00 (10.00)
>=70 F death_cohort 391 314 82.00 (75.00, 94.00) 96.00 (4.00)
M death_cohort 419 356 61.00 (54.00, 70.00) 80.00 (5.00)

Disconnect from the cdm database connection

cdm_disconnect(cdm)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.