The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The CytobankAPI
package is designed to make interacting
with Cytobank
API endpoints easy via R. This document is an accompanying overview
of the package to learn concepts and see basic examples. View the Cytobank API Endpoint
Documentation for a comprehensive list of API endpoints for
Cytobank.
Within the CytobankAPI
package, there are endpoints to
interact with advanced analyses via R. This documentation is an overview
of the different ways to utilize advanced analyses. To find more general
documentation on using the CytobankAPI
package, view the Cytobank quickstart guide.
All advanced analyses are encapsulated within an object. This guide will be an overview of advanced analyses object structures:
Every advanced analysis is represented as an object. Creating a new advanced analysis will return an object that is passed to all of their other respective advanced analysis endpoints.
Important information to note:
show
endpoint, or update the advanced analysis with the current settings
using the update
endpointviSNE_analysis <- visne.show(cyto_session, experiment_id=22, visne_id=214)
viSNE_analysis@name
#> [1] "My viSNE analysis example"
# Update the viSNE analysis object name directly
viSNE_analysis@name <- "My updated viSNE analysis name"
# Update the viSNE analysis using the 'visne.update' endpoint
updated_viSNE <- visne.update(cyto_session, viSNE_analysis)
updated_viSNE@name
#> [1] "My updated viSNE analysis name"
There are common features for all advanced analyses:
Name: The name of the advanced analysis
Compensation ID: The compensation ID used for the advanced analysis
compensations.list
Channels: The channels being analyzed within the algorithm (clustering or for general analysis)
Source experiment: The experiment the advanced analysis belongs to (all advanced analyses belong to an experiment)
Status: The state of the advanced analysis (new, running, done, canceled, etc.)
Available FCS files: FCS files available for the advanced analysis
Available channels: Channels available for the advanced analysis
Available populations: Populations available for the advanced analysis
There are special settings that pertain to each advanced analysis algorithm. These settings affect how the advanced analysis algorithm is ran. For each advanced analysis, you can view their respective settings and slots as shown below.
CITRUS_object <- citrus.new(cyto_session, experiment_id, citrus_name="My new Cytobank CITRUS analysis")
slotNames(CITRUS_object)
#> [1] "citrus_id" "population_id"
#> [3] "file_grouping" "association_models"
#> [5] "cluster_characterization" "statistics_channels"
#> [7] "event_sampling_method" "events_per_file"
#> [9] "minimum_cluster_size" "cross_validation_folds"
#> [11] "false_discovery_rate" "normalize_scales"
#> [13] "plot_theme" "attachment_id"
#> [15] "channels" "compensation_id"
#> [17] "name" "source_experiment"
#> [19] "status" ".available_channels"
#> [21] ".available_files" ".available_populations"
Learn more about CITRUS settings.
FlowSOM_object <- flowsom.new(cyto_session, experiment_id, flowsom_name="My new Cytobank FlowSOM analysis")
slotNames(FlowSOM_object)
#> [1] "author"
#> [2] "type"
#> [3] "flowsom_id"
#> [4] "selected_population_name"
#> [5] "population_id"
#> [6] "num_fcs_files"
#> [7] "fcs_files"
#> [8] "event_sampling_method"
#> [9] "desired_events_per_file"
#> [10] "desired_total_events"
#> [11] "sampled_event_total"
#> [12] "num_events_to_actually_sample"
#> [13] "random_seed"
#> [14] "som_creation_method"
#> [15] "clustering_method"
#> [16] "expected_metaclusters"
#> [17] "expected_clusters"
#> [18] "iterations"
#> [19] "normalize_scales"
#> [20] "created_experiment"
#> [21] "attachment_id"
#> [22] "auto_seed"
#> [23] "external_som_analysis_info"
#> [24] "external_som_analysis_id"
#> [25] "channels_to_plot"
#> [26] "cluster_size_type"
#> [27] "fixed_cluster_size"
#> [28] "gate_set_names_to_label"
#> [29] "max_relative_cluster_size"
#> [30] "output_file_type"
#> [31] "show_background_on_legend"
#> [32] "show_background_on_channel_colored_msts"
#> [33] "show_background_on_population_pies"
#> [34] "final_result"
#> [35] "completed"
#> [36] "canceled"
#> [37] "channels"
#> [38] "compensation_id"
#> [39] "name"
#> [40] "source_experiment"
#> [41] "status"
#> [42] ".available_channels"
#> [43] ".available_files"
#> [44] ".available_populations"
Learn more about FlowSOM settings.
SPADE_object <- spade.new(cyto_session, experiment_id=22, spade_name="My new Cytobank SPADE analysis")
slotNames(SPADE_object)
#> [1] "created_experiment" "down_sampled_events_target"
#> [3] "down_sampled_events_type" "fold_change_groups"
#> [5] "population_id" "spade_id"
#> [7] "target_number_nodes" "channels"
#> [9] "compensation_id" "name"
#> [11] "source_experiment" "status"
#> [13] ".available_channels" ".available_files"
#> [15] ".available_populations"
Learn more about SPADE settings.
viSNE_object <- visne.new(cyto_session, experiment_id, visne_name="My new Cytobank viSNE analysis")
slotNames(viSNE_object)
#> [1] "iterations" "perplexity" "channels"
#> [4] "compensation_id" "population_selections" "sampling_total_count"
#> [7] "sampling_target_type" "seed" "theta"
#> [10] "visne_id" "analysis_id" "type"
#> [13] "name" "status" "source_experiment"
#> [16] "created_experiment" ".available_channels" ".available_files"
#> [19] ".available_populations"
Learn more about viSNE settings.
slotNames(dimensionality_reduction_object)
#> [1] "analysis_id" "type" "name"
#> [4] "status" "source_experiment" "created_experiment"
#> [7] ".available_channels" ".available_files" ".available_populations"
See each section below for instructions on how to interact with the object for each advanced analysis.
Directly update CITRUS settings via their slot names.
The following slots can be updated directly:
Required settings:
gateSetId
from
CITRUS_object@.available_populations
Optional settings (defaults in parentheses):
# Set association models, plot theme and compensation
CITRUS_object@association_models <- c("sam", "pamr", "glmnet")
CITRUS_object@plot_theme <- "black"
CITRUS_object@compensation_id <- 22
# Bulk update the changes made to the CITRUS object
CITRUS_object <- citrus.update(cyto_session, CITRUS_object)
The core functionality of CITRUS is establishing biological explanations for why samples between two or more groups differ from each other. CITRUS file grouping is used to categorize different files into these groups. There is 1 important setting to pay attention to:
group_name: the group that each file is associated with
The minimum number of samples per group is three. However, for more robust statistical analysis and to avoid spurious results, at least eight samples are recommended per group (see documentation for more information here)
There must be at least 2 groups in order to run a CITRUS analysis
Directly update CITRUS file grouping data.
# Set 'file1.fcs' through 'file4.fcs' to 'Group 1' and 'file5.fcs' through 'file8.fcs' to 'Group 2', exclude 'file9.fcs' from analysis
CITRUS_object@file_grouping[CITRUS_object@file_grouping$id <= 44856,]$group_name <- "Group 1"
CITRUS_object@file_grouping[is.element(c(44857, 44858, 44859, 44860), CITRUS_object@file_grouping$id),]$group_name <- "Group 2"
View(CITRUS_object@file_grouping)
id | name | group_name |
---|---|---|
44853 | file1.fcs | Group 1 |
44854 | file2.fcs | Group 1 |
44855 | file3.fcs | Group 1 |
44856 | file4.fcs | Group 1 |
44857 | file5.fcs | Group 2 |
44858 | file6.fcs | Group 2 |
44859 | file7.fcs | Group 2 |
44860 | file8.fcs | Group 2 |
44861 | file9.fcs | Unassigned |
Directly update FlowSOM settings via their slot names.
The following slots can be updated directly:
gateSetId
from
FlowSOM_object@.available_populations
If the required channels
, fcs_files
and
random_seed
slots are not present, updates will not occur
to the FlowSOM analysis.
# Set a clustering method and target number of nodes
FlowSOM_object@clustering_method <- "kmeans"
FlowSOM_object@num_expected_clusters <- 144
# Update FCS file selection to the first 5 files
FlowSOM_object@fcs_files <- FlowSOM_object@.available_files$id[1:5]
# Update channel selection
FlowSOM_object@channels <- list("CD3", "CD4")
# Bulk update the changes made to the FlowSOM object
FlowSOM_object <- flowsom.update(cyto_session, FlowSOM_object)
Directly update SPADE settings via their slot names.
The following slots can be updated directly:
# Set a new population, target number of nodes, and compensation
SPADE_object@population_id <- 2
SPADE_object@target_number_nodes <- 150
SPADE_object@compensation_id <- 22
# Update channels
channel_ids_list <- list(2, 3, 5, 8)
SPADE_object@channels <- channel_ids_list
# Update channels by long channel names
channel_names_list <- list("channel1", "channel2", "channel3")
SPADE_object@channels <- channel_names_list
# Bulk update the changes made to the SPADE object
SPADE_object <- spade.update(cyto_session, SPADE_object)
SPADE_object@population_id
#> [1] 2
SPADE_object@target_number_nodes
#> [1] 150
SPADE_object@compensation_id
#> [1] 22
SPADE_object@channels
#> [[1]]
#> [1] "channel1"
#>
#> [[2]]
#> ...
SPADE fold change groups are used to categorize different files into separate collections that will be compared amongst each other. There are 2 important settings to pay attention to:
Directly update SPADE fold change groups data.
# Set 'file6.fcs' and 'file7.fcs' as the baseline for 'Group 1'
SPADE_object@fold_change_groups[grep("my_file6|my_file7",
SPADE_object@fold_change_groups$name),]$baseline <- TRUE
# Set 'file2.fcs', 'file4.fcs', and 'file8.fcs' as part of 'Group 2', and set 'file2.fcs' as the baseline
SPADE_object@fold_change_groups[grep("file2|file4|file8",
SPADE_object@fold_change_groups$name),]$group_name <- "Group 2"
SPADE_object@fold_change_groups[SPADE_object@fold_change_groups$name=="file2.fcs",]$baseline <- TRUE
View(SPADE_object@fold_change_groups)
id | name | baseline | group_name |
---|---|---|---|
44853 | file1.fcs | FALSE | Group 1 |
44854 | file2.fcs | TRUE | Group 2 |
44855 | file3.fcs | FALSE | Group 1 |
44856 | file4.fcs | FALSE | Group 2 |
44857 | file5.fcs | FALSE | Group 1 |
44858 | file6.fcs | TRUE | Group 1 |
44859 | file7.fcs | TRUE | Group 1 |
44860 | file8.fcs | FALSE | Group 2 |
Directly update viSNE settings via their slot names.
The following slots can be updated directly:
sampling_target_type
sampling_total_count
channels
compensation_id
iterations
perplexity
theta
seed
The following slots must be updated via helper functions:
population_selections (see the next section for how to update viSNE population selections)
# Set a new sampling target type, sampling total count, and compensation
viSNE_object@sampling_target_type <- "equal"
viSNE_object@sampling_total_count <- 150000
viSNE_object@compensation_id <- 22
# Bulk update the changes made to the viSNE object
viSNE_object <- visne.update(cyto_session, viSNE_object)
Adding viSNE population selections is slightly more difficult because
the same file can be used in the analysis in combination with multiple
populations. Because of this complexity, the
visne.helper.set_populations
helper function is used to set
files for a selected population.
Parameters for visne.helper.set_populations
:
.available_populations
slot)Set files for a specific population through the
visne.helper.set_populations
helper function.
Setting files for a specific population will overwrite the files previously set for the population in question.
# Set files for different populations
viSNE_object <- visne.helper.set_populations(viSNE_object, population_id=1, fcs_files=c(44853))
viSNE_object <- visne.helper.set_populations(viSNE_object, population_id=2, fcs_files=c(44867,44868))
viSNE_object <- visne.helper.set_populations(viSNE_object, population_id=4, fcs_files=unlist(visne@.available_files[grep("file4|file5|file6", visne@.available_files$filename),]$id))
# Overwrite 'population_id=2' FCS file selection, note that 'file1.fcs' and 'file2.fcs' are in both 'Population 1', as well as 'Population 2'
viSNE_object <- visne.helper.set_populations(viSNE_object, population_id=2, fcs_files=c(44854,44855, 44853, 44867))
# Update the changes made to viSNE population selections
viSNE_object <- visne.update(cyto_session, viSNE_object)
View(viSNE_object@population_selections)
id | name | samplingCount | eventCount | populationId | populationName |
---|---|---|---|---|---|
44853 | file1.fcs | NA | NA | 1 | Population 1 |
44856 | file4.fcs | NA | NA | 4 | Population 4 |
44857 | file5.fcs | NA | NA | 4 | Population 4 |
44858 | file6.fcs | NA | NA | 4 | Population 4 |
44854 | file2.fcs | NA | NA | 2 | Population 2 |
44855 | file3.fcs | NA | NA | 2 | Population 2 |
44853 | file1.fcs | NA | NA | 2 | Population 2 |
44856 | file4.fcs | NA | NA | 2 | Population 2 |
The following example shows how to set up and launch a tSNE-CUDA analysis run.
# create a new dimensionality reduction analysis object and set the analysis type to be tSNE-CUDA
dimensionality_reduction_object<-dimensionality_reduction.new(cyto_session, experiment_id=22, analysis_name = 'use API to launch a tSNEcuda run', analysis_type = 'tSNE-CUDA')
# select clustering channels
dimensionality_reduction_object@clustering_channels<-list('CD4','CD8','CD3')
# Bulk update the change
dimensionality_reduction_object<-dimensionality_reduction.update(cyto_session,dimensionality_reduction_object)
# Launch the configured analysis run
dimensionality_reduction.run(cyto_session,dimensionality_reduction_object)
# Check the status of the launched analysis run
dimensionality_reduction.status(cyto_session,cyto_tsnecuda)
Directly update settings via their slot names.
The following slots can be updated directly:
.available_channels
slot# Set a new sampling target type, sampling total count, and compensation
dimensionality_reduction_object@event_sampling_method <- "equal"
dimensionality_reduction_object@desired_total_events <- 150000
# Bulk update the changes made to the dimensionality reduction object
dimensionality_reduction_object <- dimensionality_reduction.update(cyto_session, dimensionality_reduction_object)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.