The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Demo optimizing parameters

Luis M. Valente, Albert B. Phillimore, Rampal S. Etienne

19 May 2015

DAISIE – Dynamic Assembly of Island biotas through Speciation, Immigration and Extinction

Citation: Valente LM, Phillimore AB, Etienne RS (2015) Equilibrium and non- equilibrium dynamics simultaneously operate in the Galápagos islands. Ecology Letters, In press.

Loading data table

To load the package:

library(DAISIE)

The raw dataset is inputted as a table. The Galápagos dataset table can be visualized with:

data(Galapagos_datatable)
knitr::kable(Galapagos_datatable)
Clade_name Status Missing_species Branching_times
Coccyzus Non_endemic_MaxAge 0 7.456
Dendroica Non_endemic 0 0.34
Finches Endemic 0 3.0282,1.3227,0.8223,0.4286,0.3462,0.245,0.0808,0.0527,0.0327,0.0221,0.118,0.0756,0.0525,0.0322,0.0118
Mimus Endemic 0 3.958,3.422,2.884,0.459
Myiarchus Endemic 0 0.855
Progne Endemic 0 0.086
Pyrocephalus Non_endemic_MaxAge 0 10.285
Zenaida Endemic 0 3.51

Each row in the table represents an independent colonisation event. The table has four columns:

The same data can also be visualized:

DAISIE::DAISIE_plot_island(Galapagos_datatable, island_age = 4)
#> Colonisation time of 7.456 for Coccyzus is older than island age
#> Colonisation time of 10.285 for Pyrocephalus is older than island age

Formatting table to run in DAISIE

Before running analyses, the datatable needs to be converted to a DAISIE datalist format using the function DAISIE_dataprep.

We will prepare two different datalists based on the Galápagos datatable. In the 1st datalist we will treat all taxa as equivalent. We will specify an island age of four million years (island_age=4) and a mainland pool size of 1000 (M=1000).

data(Galapagos_datatable) 
      
Galapagos_datalist <- DAISIE_dataprep( 
  datatable = Galapagos_datatable, 
  island_age = 4, 
  M = 1000
)
#> Colonisation time of 7.456 for Coccyzus is older than island age
#> Colonisation time of 10.285 for Pyrocephalus is older than island age

In the 2nd datalist we will allow for the Darwin’s finches to form a separate group for which rates can be decoupled from those governing the macroevolutionary process in all other clades (number_clade_types=2 and list_type2_clades = “Finches”). We will set the proportion of Darwin’s finch type species in the mainland pool to be 0.163. (prop_type2_pool=0.163). If prop_type2_pool is not specified then by default it is given the value of the proportion of the Galapagos lineages that Darwin’s finches represent (1/8=0.125 in this case).

data(Galapagos_datatable) 

Galapagos_datalist_2types <- DAISIE_dataprep( 
  datatable = Galapagos_datatable, 
  island_age = 4, 
  M = 1000, 
  number_clade_types = 2, 
  list_type2_clades = "Finches", 
  prop_type2_pool = 0.163
)
#> Colonisation time of 7.456 for Coccyzus is older than island age
#> Colonisation time of 10.285 for Pyrocephalus is older than island age

The objects Galapagos_datalist and Galapagos_datalist_2types can now be run directly in DAISIE functions.

Optimizing parameters using maximum likelihood

The function that conducts maximum likelihood optimization of DAISIE model parameters is called DAISIE_ML.

Different models can be specified using ddmodel option in DAISIE_ML:

Different types of parameters can be optimized or fixed. The parameters are given in the following order: (1) cladogenesis rate, (2) extinction rate, (3) K’ or carrying capacity (maximum number of species that a clade can attain within the island), (4) colonisation rate, and (5) anagenesis rate.

The identities of the parameters to be optimized or fixed are specified with idparsopt and idparsfix within the DAISIE_ML function. For example, to optimize all parameters we set idparsopt=1:5 and idparsfix=NULL. To optimize all parameters but fix the rate of extinction, we set idparsopt=c(1,3,4,5) and idparsfix=2. To optimize all parameters except cladogenesis and anagenesis we set idparsopt=c(2,3,4) and idparsfix=c(1,5).

The values of the parameters to be used as initial values for the optimization are specified with initparsopt, and the values to be fixed are specified with parsfix. For example, if we want to optimize all parameters with a starting value of 2 we set initparsopt=c(2,2,2,2,2) and parsfix=NULL. If we want all starting rates to be 0.1, but K’ to be fixed at 20, we use initparsopt=c(0.1,0.1,0.1,0.1) and parsfix=20.

When running your own data, we strongly recommend that you test multiple initial starting parameters for each model, particularly when optimizing models with multiple free parameters, as there is a high risk of being trapped in local likelihood sub-optima. We also suggest running two rounds of optimization using the optimized parameter set of the 1st round as the initial starting values for the 2nd round. Also note that the initial starting values in the examples of this tutorial may not be appropriate for your data.

Example 1: Optimizing all parameters, with diversity-dependence in speciation and colonisation

We will now optimize all five parameters for a datalist where all clades share the same parameters. We will set the model with linear diversity-dependence in speciation rate and in immigration rate using ddmodel=11. We will set an initial rate of cladogenesis of 2.5, an initial rate of extinction of 2.7, an initial K’ value of 20, an initial rate of colonisation of 0.009 and an initial rate of anagenesis of 1.01 (initparsopt = c(2.5,2.7,20,0.009,1.01)). We will optimize all 5 parameters (idparsopt = 1:5) and we will fix no parameters (parsfix = NULL, idparsfix = NULL).

data(Galapagos_datalist) 

DAISIE_ML( 
  datalist = Galapagos_datalist, 
  initparsopt = c(2.5,2.7,20,0.009,1.01), 
  ddmodel = 11, 
  idparsopt = 1:5, 
  parsfix = NULL, 
  idparsfix = NULL
) 

This will take several minutes to run. The parameters optimized and fixed as well as the loglikelihood of the initial starting parameters we have set are shown at the top of the screen output of DAISIE_ML. Once the optimization is completed, the program will output the maximum likelihood parameter estimates and the maximum loglikelihood value. For a given dataset, the likelihood of different DAISIE models can be compared with information criteria such as BIC and AIC.

Example 2: Optimizing model without diversity-dependence

To optimize the parameters of a model with no diversity-dependence, we use the default model (ddmodel=0), and fix the parameter number 3 which corresponds to K’ to infinity (Inf).


data(Galapagos_datalist) 

DAISIE_ML( 
  datalist = Galapagos_datalist, 
  initparsopt = c(2.5,2.7,0.009,1.01), 
  idparsopt = c(1,2,4,5), 
  parsfix = Inf, 
  idparsfix = 3
) 

Example 3: Optimizing model with no diversity-dependence and no anagenesis

To optimize the parameters of a model with no diversity-dependence and no anagenesis, we use the default model (ddmodel=0), and fix parameters number 3 and 5, which correspond, respectively to K’ and rate of anagenesis.

data(Galapagos_datalist) 
DAISIE_ML( 
  datalist=Galapagos_datalist, 
  initparsopt = c(2.5,2.7,0.009), 
  idparsopt = c(1,2,4), 
  parsfix = c(Inf,0), 
  idparsfix = c(3,5)
) 

Example 4: Optimizing all parameters, but allowing Darwin’s finches to have a separate rate of cladogenesis.

For this example we will use the datalist with Darwin’s finches specified to be of a separate type: Galapagos_datalist_2types.

If two types of species are considered, then the parameters of the second type of species are in the same order as the first set of parameters, but start at number 6: (6) cladogenesis rate of type 2 species, (7) extinction rate of type 2 species, (8) K’ of type 2 species, (9) colonisation rate of type 2 species, and (10) anagenesis rate of type 2 species. There is also an additional parameter when 2 types of species are considered: the proportion of species of type 2 in the mainland pool. This is parameter number 11.

Here we will optimize all parameters, but allow the finches to have a separate rate of cladogenesis. We will fix the proportion of type 2 species in the mainland pool at 0.163 (therefore fixing parameter 11 with idparsfix=11 and parsfix=0.163). Note that because we are only allowing the rate of cladogenesis of Darwin’s finches to vary from the background rate, we need to specify that the other rates for Darwin’s finches remain the same as the background – using idparsnoshift = c(7,8,9,10)).

data(Galapagos_datalist_2types) 

DAISIE_ML( 
  ddmodel=11, 
  datalist=Galapagos_datalist_2types, 
  initparsopt= c(0.38,0.55,20,0.004,1.1,2.28), 
  idparsopt = c(1,2,3,4,5,6), 
  parsfix = 0.163, 
  idparsfix = c(11), 
  idparsnoshift = c(7,8,9,10)
) 

Example 5: Optimizing a model with no diversity-dependence, but allowing Darwin’s finches to have a separate rate of cladogenesis and extinction.

data(Galapagos_datalist_2types) 
 
DAISIE_ML( 
  ddmodel=0, 
  datalist=Galapagos_datalist_2types, 
  initparsopt = c(0.38,0.55,0.004,1.1,2.28,2), 
  idparsopt = c(1,2,4,5,6,7), 
  parsfix = c(Inf,0.163), 
  idparsfix = c(3,11), 
  idparsnoshift = c(8,9,10)
) 

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.