| Type: | Package |
| Version: | 0.4.0 |
| Title: | Distributed Loading Estimation for General Factor Model |
| Depends: | R (≥ 3.5.0) |
| Suggests: | testthat (≥ 3.0.0) |
| Description: | The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>. |
| License: | MIT + file LICENSE |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.2.3 |
| Imports: | elasticnet, stats |
| LazyData: | true |
| Config/testthat/edition: | 3 |
| NeedsCompilation: | no |
| Packaged: | 2024-02-21 12:42:58 UTC; 17993 |
| Author: | Guangbao Guo [aut, cre, cph], Yaping Li [aut] |
| Maintainer: | Guangbao Guo <ggb11111111@163.com> |
| Repository: | CRAN |
| Date/Publication: | 2024-02-22 21:00:07 UTC |
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
BlPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
Value
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
BlPC(data=ISE,m=3)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DBlPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DBlPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DFanPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DFanPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGaoPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DGaoPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGulPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
S1hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DGulPC(data=ISE,m=3,n1=107,K=5)
Dow Jones industrial average
Description
The Dow Jones industrial average (DJIA) data set.
Usage
data("DJIA")
Format
GAS.Fa numeric vector
Nikkei.Fa numeric vector
NZDa numeric vector
silver.Fa numeric vector
RUSSELL.Fa numeric vector
S.P.Fa numeric vector
CHFa numeric vector
Dollar.index.Fa numeric vector
Dollar.indexa numeric vector
wheat.Fa numeric vector
XAGa numeric vector
XAUa numeric vector
Details
The data set comes from the Dow Jones industrial average (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(DJIA)
## maybe str(DJIA) ; plot(DJIA) ...
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DPPC(data=ISE,m=3,n1=107,K=5)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
FanPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
FanPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GaoPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
GaoPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GulPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
Value
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
Shat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
GulPC(data=ISE,m=3)
Istanbul Stock Exchange
Description
The Istanbul Stock Exchange (ISE) data set.
Usage
data("ISE")
Format
ISEa numeric vector
SPa numeric vector
DAXa numeric vector
FTSEa numeric vector
NIKKEIa numeric vector
BOVESPAa numeric vector
EUa numeric vector
EMa numeric vector
Details
The data set comes from the Istanbul Stock Exchange (ISE) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(ISE)
## maybe str(ISE) ; plot(ISE) ...
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PC(data,m)
Arguments
data |
The data is a highly correlated data set |
m |
The m is the number of principal component |
Value
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
PC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
PPC(data=ISE,m=3)
New York Stock Exchange Composite Index
Description
The New York Stock Exchange Composite Index SECI(SECI) data set.
Usage
data("SECI")
Format
GBPa numeric vector
JPYa numeric vector
CADa numeric vector
AAPLa numeric vector
AMZNa numeric vector
GEa numeric vector
JPMa numeric vector
MSFTa numeric vector
WFCa numeric vector
XOMa numeric vector
FCHIa numeric vector
FTSEa numeric vector
GDAXIa numeric vector
Details
The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SECI)
## maybe str(SECI) ; plot(SECI) ...
Stock Portfolio Performance
Description
The Stock Portfolio Performance (SPP) data set.
Usage
data("SPP")
Format
X1a numeric vector
X2a numeric vector
X3a numeric vector
X4a numeric vector
X5a numeric vector
X6a numeric vector
X7a numeric vector
X8a numeric vector
X9a numeric vector
X10a numeric vector
Details
The data set comes from the Stock Portfolio Performance (SPP) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SPP)
## maybe str(SPP) ; plot(SPP) ...